int main(int argc, char *argv[]) { // Initialize location of Aria, Arnl and their args. Aria::init(); Arnl::init(); // The robot object ArRobot robot; // Parse the command line arguments. ArArgumentParser parser(&argc, argv); // Read data_index if exists int data_index; bool exist_data_index; parser.checkParameterArgumentInteger("dataIndex",&data_index,&exist_data_index); // Load default arguments for this computer (from /etc/Aria.args, environment // variables, and other places) parser.loadDefaultArguments(); // Object that connects to the robot or simulator using program options ArRobotConnector robotConnector(&parser, &robot); // set up a gyro ArAnalogGyro gyro(&robot); ArLog::init(ArLog::File,ArLog::Normal,"run.log",false,true,true); // Parse arguments for the simple connector. if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { ArLog::log(ArLog::Normal, "\nUsage: %s -map mapfilename\n", argv[0]); Aria::logOptions(); Aria::exit(1); } // Collision avoidance actions at higher priority ArActionAvoidFront avoidAction("avoid",200); ArActionLimiterForwards limiterAction("speed limiter near", 150, 500, 150); ArActionLimiterForwards limiterFarAction("speed limiter far", 300, 1100, 400); ArActionLimiterTableSensor tableLimiterAction; //robot.addAction(&tableLimiterAction, 100); //robot.addAction(&avoidAction,100); //robot.addAction(&limiterAction, 95); //robot.addAction(&limiterFarAction, 90); // Goto action at lower priority ArActionGoto gotoPoseAction("goto"); //robot.addAction(&gotoPoseAction, 50); gotoPoseAction.setCloseDist(750); // Stop action at lower priority, so the robot stops if it has no goal ArActionStop stopAction("stop"); //robot.addAction(&stopAction, 40); // Connect the robot if (!robotConnector.connectRobot()) { ArLog::log(ArLog::Normal, "Could not connect to robot... exiting"); Aria::exit(3); } if(!robot.isConnected()) { ArLog::log(ArLog::Terse, "Internal error: robot connector succeeded but ArRobot::isConnected() is false!"); } // Connector for laser rangefinders ArLaserConnector laserConnector(&parser, &robot, &robotConnector); // Sonar, must be added to the robot, used by teleoperation and wander to // detect obstacles, and for localization if SONARNL ArSonarDevice sonarDev; // Add the sonar to the robot robot.addRangeDevice(&sonarDev); // Start the robot thread. robot.runAsync(true); // Connect to the laser(s) if lasers were configured in this robot's parameter // file or on the command line, and run laser processing thread if applicable // for that laser class. For the purposes of this demo, add all // possible lasers to ArRobot's list rather than just the ones that were // connected by this call so when you enter laser mode, you // can then interactively choose which laser to use from that list of all // lasers mentioned in robot parameters and on command line. Normally, // only connected lasers are put in ArRobot's list. if (!laserConnector.connectLasers( false, // continue after connection failures true, // add only connected lasers to ArRobot true // add all lasers to ArRobot )) { ArLog::log(ArLog::Normal ,"Could not connect to lasers... exiting\n"); Aria::exit(2); } // Puntero a laser ArSick* sick=(ArSick*)robot.findLaser(1); // Conectamos el laser sick->asyncConnect(); //Esperamos a que esté encendido while(!sick->isConnected()) { ArUtil::sleep(100); } ArLog::log(ArLog::Normal ,"Laser conectado\n"); // Set up things so data can be logged (only do it with the laser // since it can overrun a 9600 serial connection which the sonar is // more likely to have) ArDataLogger dataLogger(&robot); dataLogger.addToConfig(Aria::getConfig()); // add our logging to the config //ArLog::addToConfig(Aria::getConfig()); // Set up a class that'll put the movement and gyro parameters into ArConfig ArRobotConfig robotConfig(&robot); robotConfig.addAnalogGyro(&gyro); // Add additional range devices to the robot and path planning task. // IRs if the robot has them. robot.lock(); ArIRs irs; robot.addRangeDevice(&irs); // Bumpers. ArBumpers bumpers; robot.addRangeDevice(&bumpers); // cause the sonar to turn off automatically // when the robot is stopped, and turn it back on when commands to move // are sent. (Note, this should not be done if you need the sonar // data to localize, or for other purposes while stopped) ArSonarAutoDisabler sonarAutoDisabler(&robot); // Read in parameter files. Aria::getConfig()->useArgumentParser(&parser); if (!Aria::getConfig()->parseFile(Arnl::getTypicalParamFileName())) { ArLog::log(ArLog::Normal, "Trouble loading configuration file, exiting"); Aria::exit(5); } //Configuracion del laser sick->setMinDistBetweenCurrent(0); robot.enableMotors(); robot.setAbsoluteMaxTransVel(1000); /* Finally, get ready to run the robot: */ robot.unlock(); Controlador driver(&robot); if(exist_data_index){ driver.setDataIndex(data_index); } driver.runAsync(); ControlHandler handler(&driver,&robot); // Use manual key handler //handler.addKeyHandlers(&robot); robot.addSensorInterpTask("ManualKeyHandler",50,handler.getFunctor()); ArLog::log(ArLog::Normal ,"Añadido manejador teclado\n"); // double x,y,dist,angle; // ArPose punto; // ArPose origen=robot.getPose(); // sick->lockDevice(); // for(int i=-90;i<90;i++){ // // Obtengo la medida de distancia y angulo // dist=sick->currentReadingPolar(i,i+1,&angle); // // Obtengo coordenadas del punto usando el laser como referencia // x=dist*ArMath::cos(angle); // y=dist*ArMath::sin(angle); // //Roto los puntos // ArMath::pointRotate(&x,&y,-origen.getTh()); // punto.setX(x); // punto.setY(y); // punto=punto + origen; // printf("Medida: %d\t Angulo:%.2f\t Angulo:%.2f\t Distancia:%0.2f\t X:%0.2f\t Y:%0.2f\n",i,angle,angle+origen.getTh(),dist,punto.getX(),punto.getY()); // } // printf("Medidas adquiridas\n"); // sick->unlockDevice(); robot.waitForRunExit(); //ArUtil::sleep(10000); return 0; }
int __cdecl _tmain (int argc, char** argv) { //------------ I N I C I O M A I N D E L P R O G R A M A D E L R O B O T-----------// //inicializaion de variables Aria::init(); ArArgumentParser parser(&argc, argv); parser.loadDefaultArguments(); ArSimpleConnector simpleConnector(&parser); ArRobot robot; ArSonarDevice sonar; ArAnalogGyro gyro(&robot); robot.addRangeDevice(&sonar); ActionGos go(500, 350); robot.addAction(&go, 48); ActionTurns turn(400, 110); robot.addAction(&turn, 49); ActionTurns turn2(400, 110); robot.addAction(&turn2, 49); // presionar tecla escape para salir del programa ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); printf("Presionar ESC para salir\n"); // uso de sonares para evitar colisiones con las paredes u // obstaculos grandes, mayores a 8cm de alto ArActionLimiterForwards limiterAction("limitador velocidad cerca", 300, 600, 250); ArActionLimiterForwards limiterFarAction("limitador velocidad lejos", 300, 1100, 400); ArActionLimiterTableSensor tableLimiterAction; robot.addAction(&tableLimiterAction, 100); robot.addAction(&limiterAction, 95); robot.addAction(&limiterFarAction, 90); // Inicializon la funcion de goto ArActionGoto gotoPoseAction("goto"); robot.addAction(&gotoPoseAction, 50); // Finaliza el goto si es que no hace nada ArActionStop stopAction("stop"); robot.addAction(&stopAction, 40); // Parser del CLI if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); exit(1); } // Conexion del robot if (!simpleConnector.connectRobot(&robot)) { printf("Could not connect to robot... exiting\n"); Aria::exit(1); } robot.runAsync(true); // enciende motores, apaga sonidos robot.enableMotors(); robot.comInt(ArCommands::SOUNDTOG, 0); // Imprimo algunos datos del robot como posicion velocidad y bateria robot.lock(); ArLog::log(ArLog::Normal, "Posicion=(%.2f,%.2f,%.2f), Trans. Vel=%.2f, Bateria=%.2fV", robot.getX(), robot.getY(), robot.getTh(), robot.getVel(), robot.getBatteryVoltage()); robot.unlock(); const int duration = 100000; //msec ArLog::log(ArLog::Normal, "Completados los puntos en %d segundos", duration/1000); // ============================ INICIO CONFIG COM =================================// CSerial serial; LONG lLastError = ERROR_SUCCESS; // Trata de abrir el com seleccionado lLastError = serial.Open(_T("COM3"),0,0,false); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Imposible abrir el COM")); // Inicia el puerto serial (9600,8N1) lLastError = serial.Setup(CSerial::EBaud9600,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Imposible setear la config del COM")); // Register only for the receive event lLastError = serial.SetMask(CSerial::EEventBreak | CSerial::EEventCTS | CSerial::EEventDSR | CSerial::EEventError | CSerial::EEventRing | CSerial::EEventRLSD | CSerial::EEventRecv); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to set COM-port event mask")); // Use 'non-blocking' reads, because we don't know how many bytes // will be received. This is normally the most convenient mode // (and also the default mode for reading data). lLastError = serial.SetupReadTimeouts(CSerial::EReadTimeoutNonblocking); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to set COM-port read timeout.")); // ============================ FIN CONFIG COM =================================// bool first = true; int goalNum = 0; int color = 3; ArTime start; start.setToNow(); while (Aria::getRunning()) { robot.lock(); // inicia el primer punto if (first || gotoPoseAction.haveAchievedGoal()) { first = false; goalNum++; //cambia de 0 a 1 el contador printf("El contador esta en: --> %d <---\n",goalNum); if (goalNum > 20) goalNum = 1; //comienza la secuencia de puntos if (goalNum == 1) { gotoPoseAction.setGoal(ArPose(1150, 0)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); // Imprimo algunos datos del robot como posicion velocidad y bateria robot.lock(); ArLog::log(ArLog::Normal, "Posicion=(%.2f,%.2f,%.2f), Trans. Vel=%.2f, Bateria=%.2fV", robot.getX(), robot.getY(), robot.getTh(), robot.getVel(), robot.getBatteryVoltage()); robot.unlock(); // Create the sound queue. ArSoundsQueue soundQueue; // Run the sound queue in a new thread soundQueue.runAsync(); std::vector<const char*> filenames; filenames.push_back("sound-r2a.wav"); soundQueue.play(filenames[0]); } else if (goalNum == 2) { printf("Gira 90 grados izquierda\n"); robot.unlock(); turn.myActivate = 1; turn.myDirection = 1; turn.activate(); ArUtil::sleep(1000); turn.deactivate(); turn.myActivate = 0; turn.myDirection = 0; robot.lock(); } else if (goalNum == 3) { gotoPoseAction.setGoal(ArPose(1150, 2670)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); // Imprimo algunos datos del robot como posicion velocidad y bateria robot.lock(); ArLog::log(ArLog::Normal, "Posicion=(%.2f,%.2f,%.2f), Trans. Vel=%.2f, Bateria=%.2fV", robot.getX(), robot.getY(), robot.getTh(), robot.getVel(), robot.getBatteryVoltage()); robot.unlock(); } else if (goalNum == 4) { printf("Gira 90 grados izquierda\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 1; turn2.activate(); ArUtil::sleep(1000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); } else if (goalNum == 5) { gotoPoseAction.setGoal(ArPose(650, 2670)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 6) { printf("Gira 90 grados izquierda\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 1; turn2.activate(); ArUtil::sleep(1000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); } else if (goalNum == 7) { gotoPoseAction.setGoal(ArPose(650, 0)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 8) { gotoPoseAction.setGoal(ArPose(1800,1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 9) { gotoPoseAction.setGoal(ArPose(2600, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 10) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 850)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 2) { gotoPoseAction.setGoal(ArPose(3500, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1550)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 11) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 613)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 2) { printf("Gira 180 grados derecha\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 2; turn2.activate(); ArUtil::sleep(2000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); goalNum = 19; } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1785)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 12) { if (color == 1) { gotoPoseAction.setGoal(ArPose(3300, 413)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(3300, 1985)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 13) { if (color == 1) { gotoPoseAction.setGoal(ArPose(3500, 413)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(3500, 1985)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 14) { robot.unlock(); //Valor para el while bool fContinue = true; // <<<<<<------------- 1 Parte Secuencia: BAJA BRAZO ------------->>>>>> // lLastError = serial.Write("b"); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to send data")); //-------------------------E S C U C H A C O M ----------------------------// do { // Wait for an event lLastError = serial.WaitEvent(); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to wait for a COM-port event.")); // Save event const CSerial::EEvent eEvent = serial.GetEventType(); // Handle break event if (eEvent & CSerial::EEventBreak) { printf("\n### BREAK received ###\n"); } // Handle CTS event if (eEvent & CSerial::EEventCTS) { printf("\n### Clear to send %s ###\n", serial.GetCTS()?"on":"off"); } // Handle DSR event if (eEvent & CSerial::EEventDSR) { printf("\n### Data set ready %s ###\n", serial.GetDSR()?"on":"off"); } // Handle error event if (eEvent & CSerial::EEventError) { printf("\n### ERROR: "); switch (serial.GetError()) { case CSerial::EErrorBreak: printf("Break condition"); break; case CSerial::EErrorFrame: printf("Framing error"); break; case CSerial::EErrorIOE: printf("IO device error"); break; case CSerial::EErrorMode: printf("Unsupported mode"); break; case CSerial::EErrorOverrun: printf("Buffer overrun"); break; case CSerial::EErrorRxOver: printf("Input buffer overflow"); break; case CSerial::EErrorParity: printf("Input parity error"); break; case CSerial::EErrorTxFull: printf("Output buffer full"); break; default: printf("Unknown"); break; } printf(" ###\n"); } // Handle ring event if (eEvent & CSerial::EEventRing) { printf("\n### RING ###\n"); } // Handle RLSD/CD event if (eEvent & CSerial::EEventRLSD) { printf("\n### RLSD/CD %s ###\n", serial.GetRLSD()?"on":"off"); } // Handle data receive event if (eEvent & CSerial::EEventRecv) { // Read data, until there is nothing left DWORD dwBytesRead = 0; char szBuffer[101]; do { // Lee datos del Puerto COM lLastError = serial.Read(szBuffer,sizeof(szBuffer)-1,&dwBytesRead); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to read from COM-port.")); if (dwBytesRead > 0) { //Preseteo color int color = 0; // Finaliza el dato, asi que sea una string valida szBuffer[dwBytesRead] = '\0'; // Display the data printf("%s", szBuffer); // <<<<<<----------- 2 Parte Secuencia: CIERRA GRIPPER ----------->>>>>> // if (strchr(szBuffer,76)) { lLastError = serial.Write("c"); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to send data")); } // <<<<<<------------- 3 Parte Secuencia: SUBE BRAZO ------------->>>>>> // if (strchr(szBuffer,117)) { lLastError = serial.Write("s"); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to send data")); } // <<<<<<------------- 4 Parte Secuencia: COLOR ------------->>>>>> // if (strchr(szBuffer,72)) { lLastError = serial.Write("C"); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to send data")); } // <<<<<<---------- 5.1 Parte Secuencia: COLOR ROJO---------->>>>>> // if (strchr(szBuffer,82)) { color = 1; //salir del bucle fContinue = false; } // <<<<<<---------- 5.2 Parte Secuencia: COLOR AZUL ---------->>>>>> // if (strchr(szBuffer,66)) { color = 2; //salir del bucle fContinue = false; } // <<<<<<---------- 5.3 Parte Secuencia: COLOR VERDE ---------->>>>>> // if (strchr(szBuffer,71)) { color = 3; //salir del bucle fContinue = false; } } } while (dwBytesRead == sizeof(szBuffer)-1); } } while (fContinue); // Close the port again serial.Close(); robot.lock(); } else if (goalNum == 15) { printf("Gira 180 grados derecha\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 2; turn2.activate(); ArUtil::sleep(2000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); } else if (goalNum == 16) { if (color == 1) { gotoPoseAction.setGoal(ArPose(3300, 413)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(3300, 1985)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 17) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 603)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1795)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 18) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 860)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1540)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 19) { gotoPoseAction.setGoal(ArPose(2600, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 20) { gotoPoseAction.setGoal(ArPose(1800, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } if(start.mSecSince() >= duration) { ArLog::log(ArLog::Normal, "No puede llegar al punto, y la aplicacion saldra en %d", duration/1000); gotoPoseAction.cancelGoal(); robot.unlock(); ArUtil::sleep(3000); break; } robot.unlock(); ArUtil::sleep(10); } // Robot desconectado al terminal el sleep Aria::shutdown(); //------------ F I N M A I N D E L P R O G R A M A D E L R O B O T-----------// return 0; }
int _tmain(int argc, char** argv) { //-------------- M A I N D E L P R O G R A M A D E L R O B O T------------// //----------------------------------------------------------------------------------// //inicializaion de variables Aria::init(); ArArgumentParser parser(&argc, argv); parser.loadDefaultArguments(); ArSimpleConnector simpleConnector(&parser); ArRobot robot; ArSonarDevice sonar; ArAnalogGyro gyro(&robot); robot.addRangeDevice(&sonar); ActionTurns turn(400, 55); robot.addAction(&turn, 49); ActionTurns turn2(400, 55); robot.addAction(&turn2, 49); turn.deactivate(); turn2.deactivate(); // presionar tecla escape para salir del programa ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); printf("Presionar ESC para salir\n"); // uso de sonares para evitar colisiones con las paredes u // obstaculos grandes, mayores a 8cm de alto ArActionLimiterForwards limiterAction("limitador velocidad cerca", 300, 600, 250); ArActionLimiterForwards limiterFarAction("limitador velocidad lejos", 300, 1100, 400); ArActionLimiterTableSensor tableLimiterAction; robot.addAction(&tableLimiterAction, 100); robot.addAction(&limiterAction, 95); robot.addAction(&limiterFarAction, 90); // Inicializon la funcion de goto ArActionGoto gotoPoseAction("goto"); robot.addAction(&gotoPoseAction, 50); // Finaliza el goto si es que no hace nada ArActionStop stopAction("stop"); robot.addAction(&stopAction, 40); // Parser del CLI if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); exit(1); } // Conexion del robot if (!simpleConnector.connectRobot(&robot)) { printf("Could not connect to robot... exiting\n"); Aria::exit(1); } robot.runAsync(true); // enciende motores, apaga sonidos robot.enableMotors(); robot.comInt(ArCommands::SOUNDTOG, 0); // Imprimo algunos datos del robot como posicion velocidad y bateria robot.lock(); ArLog::log(ArLog::Normal, "Posicion=(%.2f,%.2f,%.2f), Trans. Vel=%.2f, Bateria=%.2fV", robot.getX(), robot.getY(), robot.getTh(), robot.getVel(), robot.getBatteryVoltage()); robot.unlock(); const int duration = 100000; //msec ArLog::log(ArLog::Normal, "Completados los puntos en %d segundos", duration/1000); bool first = true; int goalNum = 0; int color = 3; ArTime start; start.setToNow(); while (Aria::getRunning()) { robot.lock(); // inicia el primer punto if (first || gotoPoseAction.haveAchievedGoal()) { first = false; goalNum++; //cambia de 0 a 1 el contador printf("El contador esta en: --> %d <---\n",goalNum); if (goalNum > 20) goalNum = 1; //comienza la secuencia de puntos if (goalNum == 1) { gotoPoseAction.setGoal(ArPose(1150, 0)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); // Imprimo algunos datos del robot como posicion velocidad y bateria robot.lock(); ArLog::log(ArLog::Normal, "Posicion=(%.2f,%.2f,%.2f), Trans. Vel=%.2f, Bateria=%.2fV", robot.getX(), robot.getY(), robot.getTh(), robot.getVel(), robot.getBatteryVoltage()); robot.unlock(); } else if (goalNum == 2) { printf("Gira 90 grados izquierda\n"); robot.unlock(); turn.myActivate = 1; turn.myDirection = 1; turn.activate(); ArUtil::sleep(1000); turn.deactivate(); turn.myActivate = 0; turn.myDirection = 0; robot.lock(); } else if (goalNum == 3) { gotoPoseAction.setGoal(ArPose(1150, 2670)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); // Imprimo algunos datos del robot como posicion velocidad y bateria robot.lock(); ArLog::log(ArLog::Normal, "Posicion=(%.2f,%.2f,%.2f), Trans. Vel=%.2f, Bateria=%.2fV", robot.getX(), robot.getY(), robot.getTh(), robot.getVel(), robot.getBatteryVoltage()); robot.unlock(); } else if (goalNum == 4) { printf("Gira 90 grados izquierda\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 1; turn2.activate(); ArUtil::sleep(1000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); } else if (goalNum == 5) { gotoPoseAction.setGoal(ArPose(650, 2670)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 6) { printf("Gira 90 grados izquierda\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 1; turn2.activate(); ArUtil::sleep(1000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); } else if (goalNum == 7) { gotoPoseAction.setGoal(ArPose(650, 0)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 8) { gotoPoseAction.setGoal(ArPose(1800,1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 9) { gotoPoseAction.setGoal(ArPose(2600, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 10) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 850)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 2) { gotoPoseAction.setGoal(ArPose(3500, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1550)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 11) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 613)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 2) { printf("Gira 180 grados derecha\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 2; turn2.activate(); ArUtil::sleep(2000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); goalNum = 19; } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1785)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 12) { if (color == 1) { gotoPoseAction.setGoal(ArPose(3300, 413)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(3300, 1985)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 13) { if (color == 1) { gotoPoseAction.setGoal(ArPose(3500, 413)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(3500, 1985)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 14) { //secuencia de drop de la figura } else if (goalNum == 15) { printf("Gira 180 grados derecha\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 2; turn2.activate(); ArUtil::sleep(2000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); } else if (goalNum == 16) { if (color == 1) { gotoPoseAction.setGoal(ArPose(3300, 413)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(3300, 1985)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 17) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 603)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1795)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 18) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 860)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1540)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 19) { gotoPoseAction.setGoal(ArPose(2600, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 20) { gotoPoseAction.setGoal(ArPose(1800, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } if(start.mSecSince() >= duration) { ArLog::log(ArLog::Normal, "No puede llegar al punto, y la aplicacion saldra en %d", duration/1000); gotoPoseAction.cancelGoal(); robot.unlock(); ArUtil::sleep(3000); break; } robot.unlock(); ArUtil::sleep(10); } // Robot desconectado al terminal el sleep Aria::shutdown(); //----------------------------------------------------------------------------------// return 0; }
int main(int argc, char **argv) { Aria::init(); ArArgumentParser parser(&argc, argv); parser.loadDefaultArguments(); ArRobot robot; ArAnalogGyro gyro(&robot); ArSonarDevice sonar; ArRobotConnector robotConnector(&parser, &robot); ArLaserConnector laserConnector(&parser, &robot, &robotConnector); // Connect to the robot, get some initial data from it such as type and name, // and then load parameter files for this robot. if(!robotConnector.connectRobot()) { ArLog::log(ArLog::Terse, "gotoActionExample: Could not connect to the robot."); if(parser.checkHelpAndWarnUnparsed()) { // -help not given Aria::logOptions(); Aria::exit(1); } } if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); Aria::exit(1); } ArLog::log(ArLog::Normal, "gotoActionExample: Connected to robot."); robot.addRangeDevice(&sonar); robot.runAsync(true); // Make a key handler, so that escape will shut down the program // cleanly ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); printf("You may press escape to exit\n"); // Collision avoidance actions at higher priority ArActionLimiterForwards limiterAction("speed limiter near", 300, 600, 250); ArActionLimiterForwards limiterFarAction("speed limiter far", 300, 1100, 400); ArActionLimiterTableSensor tableLimiterAction; robot.addAction(&tableLimiterAction, 100); robot.addAction(&limiterAction, 95); robot.addAction(&limiterFarAction, 90); // Goto action at lower priority ArActionGoto gotoPoseAction("goto"); robot.addAction(&gotoPoseAction, 50); // Stop action at lower priority, so the robot stops if it has no goal ArActionStop stopAction("stop"); robot.addAction(&stopAction, 40); // turn on the motors, turn off amigobot sounds robot.enableMotors(); robot.comInt(ArCommands::SOUNDTOG, 0); const int duration = 30000; //msec ArLog::log(ArLog::Normal, "Going to four goals in turn for %d seconds, then cancelling goal and exiting.", duration/1000); bool first = true; int goalNum = 0; ArTime start; start.setToNow(); while (Aria::getRunning()) { robot.lock(); // Choose a new goal if this is the first loop iteration, or if we // achieved the previous goal. if (first || gotoPoseAction.haveAchievedGoal()) { first = false; goalNum++; if (goalNum > 4) goalNum = 1; // start again at goal #1 // set our positions for the different goals if (goalNum == 1) gotoPoseAction.setGoal(ArPose(2500, 0)); else if (goalNum == 2) gotoPoseAction.setGoal(ArPose(2500, 2500)); else if (goalNum == 3) gotoPoseAction.setGoal(ArPose(0, 2500)); else if (goalNum == 4) gotoPoseAction.setGoal(ArPose(0, 0)); ArLog::log(ArLog::Normal, "Going to next goal at %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if(start.mSecSince() >= duration) { ArLog::log(ArLog::Normal, "%d seconds have elapsed. Cancelling current goal, waiting 3 seconds, and exiting.", duration/1000); gotoPoseAction.cancelGoal(); robot.unlock(); ArUtil::sleep(3000); break; } robot.unlock(); ArUtil::sleep(100); } // Robot disconnected or time elapsed, shut down Aria::exit(0); return 0; }
int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { UNREFERENCED_PARAMETER(hPrevInstance); UNREFERENCED_PARAMETER(lpCmdLine); //-------------- M A I N D E L P R O G R A M A D E L R O B O T------------// //---------------------------------------------------------------------------------------------------------- //inicializaion de variables Aria::init(); ArArgumentParser parser(&argc, argv); parser.loadDefaultArguments(); ArSimpleConnector simpleConnector(&parser); ArRobot robot; ArSonarDevice sonar; ArAnalogGyro gyro(&robot); robot.addRangeDevice(&sonar); // presionar tecla escape para salir del programa ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); printf("You may press escape to exit\n"); // uso de sonares para evitar colisiones con las paredes u // obstaculos grandes, mayores a 8cm de alto ArActionLimiterForwards limiterAction("speed limiter near", 300, 600, 250); ArActionLimiterForwards limiterFarAction("speed limiter far", 300, 1100, 400); ArActionLimiterTableSensor tableLimiterAction; robot.addAction(&tableLimiterAction, 100); robot.addAction(&limiterAction, 95); robot.addAction(&limiterFarAction, 90); // Inicializon la funcion de goto ArActionGoto gotoPoseAction("goto"); robot.addAction(&gotoPoseAction, 50); // Finaliza el goto si es que no hace nada ArActionStop stopAction("stop"); robot.addAction(&stopAction, 40); // Parser del CLI if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); exit(1); } // Conexion del robot if (!simpleConnector.connectRobot(&robot)) { printf("Could not connect to robot... exiting\n"); Aria::exit(1); } robot.runAsync(true); // enciende motores, apaga sonidos robot.enableMotors(); robot.comInt(ArCommands::SOUNDTOG, 0); const int duration = 100000; //msec ArLog::log(ArLog::Normal, "Completados los puntos en %d segundos", duration/1000); bool first = true; int horiz = 1800; int vert = 380; int goalNum = 0; ArTime start; start.setToNow(); while (Aria::getRunning()) { robot.lock(); // inicia el primer punto if (first || gotoPoseAction.haveAchievedGoal()) { first = false; goalNum++; //cambia de 0 a 1 el contador if (goalNum > 7) goalNum = 1; //comienza la secuencia de puntos if (goalNum == 1) gotoPoseAction.setGoal(ArPose(horiz, vert*0)); else if (goalNum == 2) gotoPoseAction.setGoal(ArPose(0, vert*1)); else if (goalNum == 3) gotoPoseAction.setGoa l(ArPose(horiz, vert*2)+5); else if (goalNum == 4) gotoPoseAction.setGoal(ArPose(0, vert*3)); else if (goalNum == 5) gotoPoseAction.setGoal(ArPose(horiz, vert*4+5)); else if (goalNum == 6) gotoPoseAction.setGoal(ArPose(0, vert*5)); else if (goalNum == 7) gotoPoseAction.setGoal(ArPose(0, vert*0)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if(start.mSecSince() >= duration) { ArLog::log(ArLog::Normal, "%d seconds have elapsed. Cancelling current goal, waiting 3 seconds, and exiting.", duration/1000); gotoPoseAction.cancelGoal(); robot.unlock(); ArUtil::sleep(3000); break; } robot.unlock(); ArUtil::sleep(100); } // Robot desconectado al terminal el sleep Aria::shutdown(); return 0; //---------------------------------------------------------------------------------------------------------- // TODO: Place code here. MSG msg; HACCEL hAccelTable; // Initialize global strings LoadString(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING); LoadString(hInstance, IDC_VENTANAROBOT, szWindowClass, MAX_LOADSTRING); MyRegisterClass(hInstance); // Perform application initialization: if (!InitInstance (hInstance, nCmdShow)) { return FALSE; } hAccelTable = LoadAccelerators(hInstance, MAKEINTRESOURCE(IDC_VENTANAROBOT)); // Main message loop: while (GetMessage(&msg, NULL, 0, 0)) { if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg)) { TranslateMessage(&msg); DispatchMessage(&msg); } } return (int) msg.wParam; }