コード例 #1
0
ファイル: vacuumlazy.c プロジェクト: craig-chasseur/gpdb
/*
 *	lazy_vacuum_page() -- free dead tuples on a page
 *					 and repair its fragmentation.
 *
 * Caller must hold pin and buffer cleanup lock on the buffer.
 *
 * tupindex is the index in vacrelstats->dead_tuples of the first dead
 * tuple for this page.  We assume the rest follow sequentially.
 * The return value is the first tupindex after the tuples of this page.
 */
static int
lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
				 int tupindex, LVRelStats *vacrelstats)
{
	OffsetNumber unused[MaxOffsetNumber];
	int			uncnt;
	Page		page = BufferGetPage(buffer);
	ItemId		itemid;

	MIRROREDLOCK_BUFMGR_MUST_ALREADY_BE_HELD;

	START_CRIT_SECTION();

	for (; tupindex < vacrelstats->num_dead_tuples; tupindex++)
	{
		BlockNumber tblk;
		OffsetNumber toff;

		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		if (tblk != blkno)
			break;				/* past end of tuples for this block */
		toff = ItemPointerGetOffsetNumber(&vacrelstats->dead_tuples[tupindex]);
		itemid = PageGetItemId(page, toff);
		itemid->lp_flags &= ~LP_USED;
	}

	uncnt = PageRepairFragmentation(page, unused);

	MarkBufferDirty(buffer);

	/* XLOG stuff */
	if (!onerel->rd_istemp)
	{
		XLogRecPtr	recptr;

		recptr = log_heap_clean(onerel, buffer, unused, uncnt);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
	}
	else
	{
		/* No XLOG record, but still need to flag that XID exists on disk */
		MyXactMadeTempRelUpdate = true;
	}

	END_CRIT_SECTION();

	return tupindex;
}
コード例 #2
0
ファイル: vacuumlazy.c プロジェクト: Mrfuture1/gpdb
/*
 *	lazy_vacuum_page() -- free dead tuples on a page
 *					 and repair its fragmentation.
 *
 * Caller must hold pin and buffer cleanup lock on the buffer.
 *
 * tupindex is the index in vacrelstats->dead_tuples of the first dead
 * tuple for this page.  We assume the rest follow sequentially.
 * The return value is the first tupindex after the tuples of this page.
 */
static int
lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
				 int tupindex, LVRelStats *vacrelstats)
{
	Page		page = BufferGetPage(buffer);
	OffsetNumber unused[MaxOffsetNumber];
	int			uncnt = 0;

	MIRROREDLOCK_BUFMGR_MUST_ALREADY_BE_HELD;

	START_CRIT_SECTION();

	for (; tupindex < vacrelstats->num_dead_tuples; tupindex++)
	{
		BlockNumber tblk;
		OffsetNumber toff;
		ItemId		itemid;

		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		if (tblk != blkno)
			break;				/* past end of tuples for this block */
		toff = ItemPointerGetOffsetNumber(&vacrelstats->dead_tuples[tupindex]);
		itemid = PageGetItemId(page, toff);
		ItemIdSetUnused(itemid);
		unused[uncnt++] = toff;
	}

	PageRepairFragmentation(page);

	MarkBufferDirty(buffer);

	/* XLOG stuff */
	if (!onerel->rd_istemp)
	{
		XLogRecPtr	recptr;

		recptr = log_heap_clean(onerel, buffer,
								NULL, 0, NULL, 0,
								unused, uncnt,
								false);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
	}

	END_CRIT_SECTION();

	return tupindex;
}
コード例 #3
0
ファイル: pruneheap.c プロジェクト: PengJi/gpdb-comments
/*
 * Prune and repair fragmentation in the specified page.
 *
 * Caller must have pin and buffer cleanup lock on the page.
 *
 * OldestXmin is the cutoff XID used to distinguish whether tuples are DEAD
 * or RECENTLY_DEAD (see HeapTupleSatisfiesVacuum).
 *
 * If redirect_move is set, we remove redirecting line pointers by
 * updating the root line pointer to point directly to the first non-dead
 * tuple in the chain.	NOTE: eliminating the redirect changes the first
 * tuple's effective CTID, and is therefore unsafe except within VACUUM FULL.
 * The only reason we support this capability at all is that by using it,
 * VACUUM FULL need not cope with LP_REDIRECT items at all; which seems a
 * good thing since VACUUM FULL is overly complicated already.
 *
 * If report_stats is true then we send the number of reclaimed heap-only
 * tuples to pgstats.  (This must be FALSE during vacuum, since vacuum will
 * send its own new total to pgstats, and we don't want this delta applied
 * on top of that.)
 *
 * Returns the number of tuples deleted from the page.
 */
int
heap_page_prune(Relation relation, Buffer buffer, TransactionId OldestXmin,
				bool redirect_move, bool report_stats)
{
	int			ndeleted = 0;
	Page		page = BufferGetPage(buffer);
	OffsetNumber offnum,
				maxoff;
	PruneState	prstate;

	/*
	 * Our strategy is to scan the page and make lists of items to change,
	 * then apply the changes within a critical section.  This keeps as much
	 * logic as possible out of the critical section, and also ensures that
	 * WAL replay will work the same as the normal case.
	 *
	 * First, inform inval.c that upcoming CacheInvalidateHeapTuple calls are
	 * nontransactional.
	 */
	if (redirect_move)
		BeginNonTransactionalInvalidation();

	/*
	 * Initialize the new pd_prune_xid value to zero (indicating no prunable
	 * tuples).  If we find any tuples which may soon become prunable, we will
	 * save the lowest relevant XID in new_prune_xid. Also initialize the rest
	 * of our working state.
	 */
	prstate.new_prune_xid = InvalidTransactionId;
	prstate.nredirected = prstate.ndead = prstate.nunused = 0;
	memset(prstate.marked, 0, sizeof(prstate.marked));

	/* Scan the page */
	maxoff = PageGetMaxOffsetNumber(page);
	for (offnum = FirstOffsetNumber;
		 offnum <= maxoff;
		 offnum = OffsetNumberNext(offnum))
	{
		ItemId		itemid;

		/* Ignore items already processed as part of an earlier chain */
		if (prstate.marked[offnum])
			continue;

		/* Nothing to do if slot is empty or already dead */
		itemid = PageGetItemId(page, offnum);
		if (!ItemIdIsUsed(itemid) || ItemIdIsDead(itemid))
			continue;

		/* Process this item or chain of items */
		ndeleted += heap_prune_chain(relation, buffer, offnum,
									 OldestXmin,
									 &prstate,
									 redirect_move);
	}

	/*
	 * Send invalidation messages for any tuples we are about to move. It is
	 * safe to do this now, even though we could theoretically still fail
	 * before making the actual page update, because a useless cache
	 * invalidation doesn't hurt anything.  Also, no one else can reload the
	 * tuples while we have exclusive buffer lock, so it's not too early to
	 * send the invals.  This avoids sending the invals while inside the
	 * critical section, which is a good thing for robustness.
	 */
	if (redirect_move)
		EndNonTransactionalInvalidation();

	/* Any error while applying the changes is critical */
	START_CRIT_SECTION();

	/* Have we found any prunable items? */
	if (prstate.nredirected > 0 || prstate.ndead > 0 || prstate.nunused > 0)
	{
		/*
		 * Apply the planned item changes, then repair page fragmentation, and
		 * update the page's hint bit about whether it has free line pointers.
		 */
		heap_page_prune_execute(buffer,
								prstate.redirected, prstate.nredirected,
								prstate.nowdead, prstate.ndead,
								prstate.nowunused, prstate.nunused,
								redirect_move);

		/*
		 * Update the page's pd_prune_xid field to either zero, or the lowest
		 * XID of any soon-prunable tuple.
		 */
		((PageHeader) page)->pd_prune_xid = prstate.new_prune_xid;

		/*
		 * Also clear the "page is full" flag, since there's no point in
		 * repeating the prune/defrag process until something else happens to
		 * the page.
		 */
		PageClearFull(page);

		MarkBufferDirty(buffer);

		/*
		 * Emit a WAL HEAP_CLEAN or HEAP_CLEAN_MOVE record showing what we did
		 */
		if (!relation->rd_istemp)
		{
			XLogRecPtr	recptr;

			recptr = log_heap_clean(relation, buffer,
									prstate.redirected, prstate.nredirected,
									prstate.nowdead, prstate.ndead,
									prstate.nowunused, prstate.nunused,
									redirect_move);

			PageSetLSN(BufferGetPage(buffer), recptr);
		}
	}
	else
	{
		/*
		 * If we didn't prune anything, but have found a new value for the
		 * pd_prune_xid field, update it and mark the buffer dirty. This is
		 * treated as a non-WAL-logged hint.
		 *
		 * Also clear the "page is full" flag if it is set, since there's no
		 * point in repeating the prune/defrag process until something else
		 * happens to the page.
		 */
		if (((PageHeader) page)->pd_prune_xid != prstate.new_prune_xid ||
			PageIsFull(page))
		{
			((PageHeader) page)->pd_prune_xid = prstate.new_prune_xid;
			PageClearFull(page);
			MarkBufferDirtyHint(buffer, relation);
		}
	}

	END_CRIT_SECTION();

	/*
	 * If requested, report the number of tuples reclaimed to pgstats. This is
	 * ndeleted minus ndead, because we don't want to count a now-DEAD root
	 * item as a deletion for this purpose.
	 */
	if (report_stats && ndeleted > prstate.ndead)
		pgstat_update_heap_dead_tuples(relation, ndeleted - prstate.ndead);

	/*
	 * XXX Should we update the FSM information of this page ?
	 *
	 * There are two schools of thought here. We may not want to update FSM
	 * information so that the page is not used for unrelated UPDATEs/INSERTs
	 * and any free space in this page will remain available for further
	 * UPDATEs in *this* page, thus improving chances for doing HOT updates.
	 *
	 * But for a large table and where a page does not receive further UPDATEs
	 * for a long time, we might waste this space by not updating the FSM
	 * information. The relation may get extended and fragmented further.
	 *
	 * One possibility is to leave "fillfactor" worth of space in this page
	 * and update FSM with the remaining space.
	 *
	 * In any case, the current FSM implementation doesn't accept
	 * one-page-at-a-time updates, so this is all academic for now.
	 */

	return ndeleted;
}