コード例 #1
0
void
lp_emit_declaration_aos(
   struct lp_build_tgsi_aos_context *bld,
   const struct tgsi_full_declaration *decl)
{
   struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
   LLVMTypeRef vec_type = lp_build_vec_type(bld->bld_base.base.gallivm, bld->bld_base.base.type);

   unsigned first = decl->Range.First;
   unsigned last = decl->Range.Last;
   unsigned idx;

   for (idx = first; idx <= last; ++idx) {
      switch (decl->Declaration.File) {
      case TGSI_FILE_TEMPORARY:
         assert(idx < LP_MAX_INLINED_TEMPS);
         if (bld->indirect_files & (1 << TGSI_FILE_TEMPORARY)) {
            LLVMValueRef array_size = lp_build_const_int32(gallivm, last + 1);
            bld->temps_array = lp_build_array_alloca(bld->bld_base.base.gallivm,
                                                     vec_type, array_size, "");
         } else {
            bld->temps[idx] = lp_build_alloca(gallivm, vec_type, "");
         }
         break;

      case TGSI_FILE_OUTPUT:
         bld->outputs[idx] = lp_build_alloca(gallivm, vec_type, "");
         break;

      case TGSI_FILE_ADDRESS:
         assert(idx < LP_MAX_TGSI_ADDRS);
         bld->addr[idx] = lp_build_alloca(gallivm, vec_type, "");
         break;

      case TGSI_FILE_PREDICATE:
         assert(idx < LP_MAX_TGSI_PREDS);
         bld->preds[idx] = lp_build_alloca(gallivm, vec_type, "");
         break;

      case TGSI_FILE_SAMPLER_VIEW:
         /*
          * The target stored here MUST match whatever there actually
          * is in the set sampler views (what about return type?).
          */
         assert(last < PIPE_MAX_SHADER_SAMPLER_VIEWS);
         for (idx = first; idx <= last; ++idx) {
            bld->sv[idx] = decl->SamplerView;
         }
         break;

      default:
         /* don't need to declare other vars */
         break;
      }
   }
}
コード例 #2
0
static void
emit_declaration(
   struct lp_build_tgsi_aos_context *bld,
   const struct tgsi_full_declaration *decl)
{
   LLVMTypeRef vec_type = lp_build_vec_type(bld->base.type);

   unsigned first = decl->Range.First;
   unsigned last = decl->Range.Last;
   unsigned idx;

   for (idx = first; idx <= last; ++idx) {
      switch (decl->Declaration.File) {
      case TGSI_FILE_TEMPORARY:
         assert(idx < LP_MAX_TGSI_TEMPS);
         if (bld->indirect_files & (1 << TGSI_FILE_TEMPORARY)) {
            LLVMValueRef array_size = LLVMConstInt(LLVMInt32Type(),
                                                   last + 1, 0);
            bld->temps_array = lp_build_array_alloca(bld->base.builder,
                                                     vec_type, array_size, "");
         } else {
            bld->temps[idx] = lp_build_alloca(bld->base.builder,
                                              vec_type, "");
         }
         break;

      case TGSI_FILE_OUTPUT:
         bld->outputs[idx] = lp_build_alloca(bld->base.builder,
                                             vec_type, "");
         break;

      case TGSI_FILE_ADDRESS:
         assert(idx < LP_MAX_TGSI_ADDRS);
         bld->addr[idx] = lp_build_alloca(bld->base.builder,
                                          vec_type, "");
         break;

      case TGSI_FILE_PREDICATE:
         assert(idx < LP_MAX_TGSI_PREDS);
         bld->preds[idx] = lp_build_alloca(bld->base.builder,
                                           vec_type, "");
         break;

      default:
         /* don't need to declare other vars */
         break;
      }
   }
}
コード例 #3
0
ファイル: lp_bld_flow.c プロジェクト: ChristophHaag/mesa-mesa
/**
 * Creates a c-style for loop,
 * contrasts lp_build_loop as this checks condition on entry
 * e.g. for(i = start; i cmp_op end; i += step)
 * \param state      the for loop state, initialized here
 * \param gallivm    the gallivm state
 * \param start      starting value of iterator
 * \param cmp_op     comparison operator used for comparing current value with end value
 * \param end        value used to compare against iterator
 * \param step       value added to iterator at end of each loop
 */
void
lp_build_for_loop_begin(struct lp_build_for_loop_state *state,
                        struct gallivm_state *gallivm,
                        LLVMValueRef start,
                        LLVMIntPredicate cmp_op,
                        LLVMValueRef end,
                        LLVMValueRef step)
{
   LLVMBuilderRef builder = gallivm->builder;

   assert(LLVMTypeOf(start) == LLVMTypeOf(end));
   assert(LLVMTypeOf(start) == LLVMTypeOf(step));

   state->begin = lp_build_insert_new_block(gallivm, "loop_begin");
   state->step  = step;
   state->counter_var = lp_build_alloca(gallivm, LLVMTypeOf(start), "loop_counter");
   state->gallivm = gallivm;
   state->cond = cmp_op;
   state->end = end;

   LLVMBuildStore(builder, start, state->counter_var);
   LLVMBuildBr(builder, state->begin);

   LLVMPositionBuilderAtEnd(builder, state->begin);
   state->counter = LLVMBuildLoad(builder, state->counter_var, "");

   state->body = lp_build_insert_new_block(gallivm, "loop_body");
   LLVMPositionBuilderAtEnd(builder, state->body);
}
コード例 #4
0
ファイル: lp_bld_flow.c プロジェクト: ChristophHaag/mesa-mesa
/**
 * Begin a section of code which is predicated on a mask.
 * \param mask  the mask context, initialized here
 * \param flow  the flow context
 * \param type  the type of the mask
 * \param value  storage for the mask
 */
void
lp_build_mask_begin(struct lp_build_mask_context *mask,
                    struct gallivm_state *gallivm,
                    struct lp_type type,
                    LLVMValueRef value)
{
   memset(mask, 0, sizeof *mask);

   mask->reg_type = LLVMIntTypeInContext(gallivm->context, type.width * type.length);
   mask->var = lp_build_alloca(gallivm,
                               lp_build_int_vec_type(gallivm, type),
                               "execution_mask");

   LLVMBuildStore(gallivm->builder, value, mask->var);

   lp_build_flow_skip_begin(&mask->skip, gallivm);
}
コード例 #5
0
ファイル: lp_bld_flow.c プロジェクト: ChristophHaag/mesa-mesa
void
lp_build_loop_begin(struct lp_build_loop_state *state,
                    struct gallivm_state *gallivm,
                    LLVMValueRef start)
                    
{
   LLVMBuilderRef builder = gallivm->builder;

   state->block = lp_build_insert_new_block(gallivm, "loop_begin");

   state->counter_var = lp_build_alloca(gallivm, LLVMTypeOf(start), "loop_counter");
   state->gallivm = gallivm;

   LLVMBuildStore(builder, start, state->counter_var);

   LLVMBuildBr(builder, state->block);

   LLVMPositionBuilderAtEnd(builder, state->block);

   state->counter = LLVMBuildLoad(builder, state->counter_var, "");
}
コード例 #6
0
/**
 * Fetch a pixel into a 4 float AoS.
 *
 * \param format_desc  describes format of the image we're fetching from
 * \param ptr  address of the pixel block (or the texel if uncompressed)
 * \param i, j  the sub-block pixel coordinates.  For non-compressed formats
 *              these will always be (0, 0).
 * \return  a 4 element vector with the pixel's RGBA values.
 */
LLVMValueRef
lp_build_fetch_rgba_aos(struct gallivm_state *gallivm,
                        const struct util_format_description *format_desc,
                        struct lp_type type,
                        LLVMValueRef base_ptr,
                        LLVMValueRef offset,
                        LLVMValueRef i,
                        LLVMValueRef j)
{
   LLVMBuilderRef builder = gallivm->builder;
   unsigned num_pixels = type.length / 4;
   struct lp_build_context bld;

   assert(type.length <= LP_MAX_VECTOR_LENGTH);
   assert(type.length % 4 == 0);

   lp_build_context_init(&bld, gallivm, type);

   /*
    * Trivial case
    *
    * The format matches the type (apart of a swizzle) so no need for
    * scaling or converting.
    */

   if (format_matches_type(format_desc, type) &&
       format_desc->block.bits <= type.width * 4 &&
       util_is_power_of_two(format_desc->block.bits)) {
      LLVMValueRef packed;

      /*
       * The format matches the type (apart of a swizzle) so no need for
       * scaling or converting.
       */

      packed = lp_build_gather(gallivm, type.length/4,
                               format_desc->block.bits, type.width*4,
                               base_ptr, offset);

      assert(format_desc->block.bits <= type.width * type.length);

      packed = LLVMBuildBitCast(gallivm->builder, packed,
                                lp_build_vec_type(gallivm, type), "");

      return lp_build_format_swizzle_aos(format_desc, &bld, packed);
   }

   /*
    * Bit arithmetic
    */

   if (format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN &&
       (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
        format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS) &&
       format_desc->block.width == 1 &&
       format_desc->block.height == 1 &&
       util_is_power_of_two(format_desc->block.bits) &&
       format_desc->block.bits <= 32 &&
       format_desc->is_bitmask &&
       !format_desc->is_mixed &&
       (format_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED ||
        format_desc->channel[1].type == UTIL_FORMAT_TYPE_UNSIGNED)) {

      LLVMValueRef tmps[LP_MAX_VECTOR_LENGTH/4];
      LLVMValueRef res;
      unsigned k;

      /*
       * Unpack a pixel at a time into a <4 x float> RGBA vector
       */

      for (k = 0; k < num_pixels; ++k) {
         LLVMValueRef packed;

         packed = lp_build_gather_elem(gallivm, num_pixels,
                                       format_desc->block.bits, 32,
                                       base_ptr, offset, k);

         tmps[k] = lp_build_unpack_arith_rgba_aos(gallivm,
                                                  format_desc,
                                                  packed);
      }

      /*
       * Type conversion.
       *
       * TODO: We could avoid floating conversion for integer to
       * integer conversions.
       */

      if (gallivm_debug & GALLIVM_DEBUG_PERF && !type.floating) {
         debug_printf("%s: unpacking %s with floating point\n",
                      __FUNCTION__, format_desc->short_name);
      }

      lp_build_conv(gallivm,
                    lp_float32_vec4_type(),
                    type,
                    tmps, num_pixels, &res, 1);

      return lp_build_format_swizzle_aos(format_desc, &bld, res);
   }

   /*
    * YUV / subsampled formats
    */

   if (format_desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED) {
      struct lp_type tmp_type;
      LLVMValueRef tmp;

      memset(&tmp_type, 0, sizeof tmp_type);
      tmp_type.width = 8;
      tmp_type.length = num_pixels * 4;
      tmp_type.norm = TRUE;

      tmp = lp_build_fetch_subsampled_rgba_aos(gallivm,
                                               format_desc,
                                               num_pixels,
                                               base_ptr,
                                               offset,
                                               i, j);

      lp_build_conv(gallivm,
                    tmp_type, type,
                    &tmp, 1, &tmp, 1);

      return tmp;
   }

   /*
    * Fallback to util_format_description::fetch_rgba_8unorm().
    */

   if (format_desc->fetch_rgba_8unorm &&
       !type.floating && type.width == 8 && !type.sign && type.norm) {
      /*
       * Fallback to calling util_format_description::fetch_rgba_8unorm.
       *
       * This is definitely not the most efficient way of fetching pixels, as
       * we miss the opportunity to do vectorization, but this it is a
       * convenient for formats or scenarios for which there was no opportunity
       * or incentive to optimize.
       */

      LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(gallivm->builder)));
      char name[256];
      LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
      LLVMTypeRef pi8t = LLVMPointerType(i8t, 0);
      LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
      LLVMValueRef function;
      LLVMValueRef tmp_ptr;
      LLVMValueRef tmp;
      LLVMValueRef res;
      LLVMValueRef callee;
      unsigned k;

      util_snprintf(name, sizeof name, "util_format_%s_fetch_rgba_8unorm",
                    format_desc->short_name);

      if (gallivm_debug & GALLIVM_DEBUG_PERF) {
         debug_printf("%s: falling back to %s\n", __FUNCTION__, name);
      }

      /*
       * Declare and bind format_desc->fetch_rgba_8unorm().
       */

      function = LLVMGetNamedFunction(module, name);
      if (!function) {
         /*
          * Function to call looks like:
          *   fetch(uint8_t *dst, const uint8_t *src, unsigned i, unsigned j)
          */
         LLVMTypeRef ret_type;
         LLVMTypeRef arg_types[4];
         LLVMTypeRef function_type;

         ret_type = LLVMVoidTypeInContext(gallivm->context);
         arg_types[0] = pi8t;
         arg_types[1] = pi8t;
         arg_types[2] = i32t;
         arg_types[3] = i32t;
         function_type = LLVMFunctionType(ret_type, arg_types,
                                          Elements(arg_types), 0);
         function = LLVMAddFunction(module, name, function_type);

         LLVMSetFunctionCallConv(function, LLVMCCallConv);
         LLVMSetLinkage(function, LLVMExternalLinkage);

         assert(LLVMIsDeclaration(function));
      }

      /* make const pointer for the C fetch_rgba_float function */
      callee = lp_build_const_int_pointer(gallivm,
         func_to_pointer((func_pointer) format_desc->fetch_rgba_8unorm));

      /* cast the callee pointer to the function's type */
      function = LLVMBuildBitCast(builder, callee,
                                  LLVMTypeOf(function), "cast callee");

      tmp_ptr = lp_build_alloca(gallivm, i32t, "");

      res = LLVMGetUndef(LLVMVectorType(i32t, num_pixels));

      /*
       * Invoke format_desc->fetch_rgba_8unorm() for each pixel and insert the result
       * in the SoA vectors.
       */

      for (k = 0; k < num_pixels; ++k) {
         LLVMValueRef index = lp_build_const_int32(gallivm, k);
         LLVMValueRef args[4];

         args[0] = LLVMBuildBitCast(builder, tmp_ptr, pi8t, "");
         args[1] = lp_build_gather_elem_ptr(gallivm, num_pixels,
                                            base_ptr, offset, k);

         if (num_pixels == 1) {
            args[2] = i;
            args[3] = j;
         }
         else {
            args[2] = LLVMBuildExtractElement(builder, i, index, "");
            args[3] = LLVMBuildExtractElement(builder, j, index, "");
         }

         LLVMBuildCall(builder, function, args, Elements(args), "");

         tmp = LLVMBuildLoad(builder, tmp_ptr, "");

         if (num_pixels == 1) {
            res = tmp;
         }
         else {
            res = LLVMBuildInsertElement(builder, res, tmp, index, "");
         }
      }

      /* Bitcast from <n x i32> to <4n x i8> */
      res = LLVMBuildBitCast(builder, res, bld.vec_type, "");

      return res;
   }


   /*
    * Fallback to util_format_description::fetch_rgba_float().
    */

   if (format_desc->fetch_rgba_float) {
      /*
       * Fallback to calling util_format_description::fetch_rgba_float.
       *
       * This is definitely not the most efficient way of fetching pixels, as
       * we miss the opportunity to do vectorization, but this it is a
       * convenient for formats or scenarios for which there was no opportunity
       * or incentive to optimize.
       */

      LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(builder)));
      char name[256];
      LLVMTypeRef f32t = LLVMFloatTypeInContext(gallivm->context);
      LLVMTypeRef f32x4t = LLVMVectorType(f32t, 4);
      LLVMTypeRef pf32t = LLVMPointerType(f32t, 0);
      LLVMTypeRef pi8t = LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0);
      LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
      LLVMValueRef function;
      LLVMValueRef tmp_ptr;
      LLVMValueRef tmps[LP_MAX_VECTOR_LENGTH/4];
      LLVMValueRef res;
      LLVMValueRef callee;
      unsigned k;

      util_snprintf(name, sizeof name, "util_format_%s_fetch_rgba_float",
                    format_desc->short_name);

      if (gallivm_debug & GALLIVM_DEBUG_PERF) {
         debug_printf("%s: falling back to %s\n", __FUNCTION__, name);
      }

      /*
       * Declare and bind format_desc->fetch_rgba_float().
       */

      function = LLVMGetNamedFunction(module, name);
      if (!function) {
         /*
          * Function to call looks like:
          *   fetch(float *dst, const uint8_t *src, unsigned i, unsigned j)
          */
         LLVMTypeRef ret_type;
         LLVMTypeRef arg_types[4];
         LLVMTypeRef function_type;

         ret_type = LLVMVoidTypeInContext(gallivm->context);
         arg_types[0] = pf32t;
         arg_types[1] = pi8t;
         arg_types[2] = i32t;
         arg_types[3] = i32t;
         function_type = LLVMFunctionType(ret_type, arg_types,
                                          Elements(arg_types), 0);
         function = LLVMAddFunction(module, name, function_type);

         LLVMSetFunctionCallConv(function, LLVMCCallConv);
         LLVMSetLinkage(function, LLVMExternalLinkage);

         assert(LLVMIsDeclaration(function));
      }

      /* Note: we're using this casting here instead of LLVMAddGlobalMapping()
       * to work around a bug in LLVM 2.6.
       */

      /* make const pointer for the C fetch_rgba_float function */
      callee = lp_build_const_int_pointer(gallivm,
         func_to_pointer((func_pointer) format_desc->fetch_rgba_float));

      /* cast the callee pointer to the function's type */
      function = LLVMBuildBitCast(builder, callee,
                                  LLVMTypeOf(function), "cast callee");


      tmp_ptr = lp_build_alloca(gallivm, f32x4t, "");

      /*
       * Invoke format_desc->fetch_rgba_float() for each pixel and insert the result
       * in the SoA vectors.
       */

      for (k = 0; k < num_pixels; ++k) {
         LLVMValueRef args[4];

         args[0] = LLVMBuildBitCast(builder, tmp_ptr, pf32t, "");
         args[1] = lp_build_gather_elem_ptr(gallivm, num_pixels,
                                            base_ptr, offset, k);

         if (num_pixels == 1) {
            args[2] = i;
            args[3] = j;
         }
         else {
            LLVMValueRef index = lp_build_const_int32(gallivm, k);
            args[2] = LLVMBuildExtractElement(builder, i, index, "");
            args[3] = LLVMBuildExtractElement(builder, j, index, "");
         }

         LLVMBuildCall(builder, function, args, Elements(args), "");

         tmps[k] = LLVMBuildLoad(builder, tmp_ptr, "");
      }

      lp_build_conv(gallivm,
                    lp_float32_vec4_type(),
                    type,
                    tmps, num_pixels, &res, 1);

      return res;
   }

   assert(0);
   return lp_build_undef(gallivm, type);
}
コード例 #7
0
ファイル: lp_bld_sample.c プロジェクト: mslusarz/mesa
/**
 * Generate code to do cube face selection and compute per-face texcoords.
 */
void
lp_build_cube_lookup(struct lp_build_sample_context *bld,
                     LLVMValueRef s,
                     LLVMValueRef t,
                     LLVMValueRef r,
                     LLVMValueRef *face,
                     LLVMValueRef *face_s,
                     LLVMValueRef *face_t)
{
   struct lp_build_context *float_bld = &bld->float_bld;
   struct lp_build_context *coord_bld = &bld->coord_bld;
   LLVMBuilderRef builder = bld->gallivm->builder;
   LLVMValueRef rx, ry, rz;
   LLVMValueRef arx, ary, arz;
   LLVMValueRef c25 = lp_build_const_float(bld->gallivm, 0.25);
   LLVMValueRef arx_ge_ary, arx_ge_arz;
   LLVMValueRef ary_ge_arx, ary_ge_arz;
   LLVMValueRef arx_ge_ary_arz, ary_ge_arx_arz;

   assert(bld->coord_bld.type.length == 4);

   /*
    * Use the average of the four pixel's texcoords to choose the face.
    */
   rx = lp_build_mul(float_bld, c25,
                     lp_build_sum_vector(&bld->coord_bld, s));
   ry = lp_build_mul(float_bld, c25,
                     lp_build_sum_vector(&bld->coord_bld, t));
   rz = lp_build_mul(float_bld, c25,
                     lp_build_sum_vector(&bld->coord_bld, r));

   arx = lp_build_abs(float_bld, rx);
   ary = lp_build_abs(float_bld, ry);
   arz = lp_build_abs(float_bld, rz);

   /*
    * Compare sign/magnitude of rx,ry,rz to determine face
    */
   arx_ge_ary = LLVMBuildFCmp(builder, LLVMRealUGE, arx, ary, "");
   arx_ge_arz = LLVMBuildFCmp(builder, LLVMRealUGE, arx, arz, "");
   ary_ge_arx = LLVMBuildFCmp(builder, LLVMRealUGE, ary, arx, "");
   ary_ge_arz = LLVMBuildFCmp(builder, LLVMRealUGE, ary, arz, "");

   arx_ge_ary_arz = LLVMBuildAnd(builder, arx_ge_ary, arx_ge_arz, "");
   ary_ge_arx_arz = LLVMBuildAnd(builder, ary_ge_arx, ary_ge_arz, "");

   {
      struct lp_build_if_state if_ctx;
      LLVMValueRef face_s_var;
      LLVMValueRef face_t_var;
      LLVMValueRef face_var;

      face_s_var = lp_build_alloca(bld->gallivm, bld->coord_bld.vec_type, "face_s_var");
      face_t_var = lp_build_alloca(bld->gallivm, bld->coord_bld.vec_type, "face_t_var");
      face_var = lp_build_alloca(bld->gallivm, bld->int_bld.vec_type, "face_var");

      lp_build_if(&if_ctx, bld->gallivm, arx_ge_ary_arz);
      {
         /* +/- X face */
         LLVMValueRef sign = lp_build_sgn(float_bld, rx);
         LLVMValueRef ima = lp_build_cube_ima(coord_bld, s);
         *face_s = lp_build_cube_coord(coord_bld, sign, +1, r, ima);
         *face_t = lp_build_cube_coord(coord_bld, NULL, +1, t, ima);
         *face = lp_build_cube_face(bld, rx,
                                    PIPE_TEX_FACE_POS_X,
                                    PIPE_TEX_FACE_NEG_X);
         LLVMBuildStore(builder, *face_s, face_s_var);
         LLVMBuildStore(builder, *face_t, face_t_var);
         LLVMBuildStore(builder, *face, face_var);
      }
      lp_build_else(&if_ctx);
      {
         struct lp_build_if_state if_ctx2;

         lp_build_if(&if_ctx2, bld->gallivm, ary_ge_arx_arz);
         {
            /* +/- Y face */
            LLVMValueRef sign = lp_build_sgn(float_bld, ry);
            LLVMValueRef ima = lp_build_cube_ima(coord_bld, t);
            *face_s = lp_build_cube_coord(coord_bld, NULL, -1, s, ima);
            *face_t = lp_build_cube_coord(coord_bld, sign, -1, r, ima);
            *face = lp_build_cube_face(bld, ry,
                                       PIPE_TEX_FACE_POS_Y,
                                       PIPE_TEX_FACE_NEG_Y);
            LLVMBuildStore(builder, *face_s, face_s_var);
            LLVMBuildStore(builder, *face_t, face_t_var);
            LLVMBuildStore(builder, *face, face_var);
         }
         lp_build_else(&if_ctx2);
         {
            /* +/- Z face */
            LLVMValueRef sign = lp_build_sgn(float_bld, rz);
            LLVMValueRef ima = lp_build_cube_ima(coord_bld, r);
            *face_s = lp_build_cube_coord(coord_bld, sign, -1, s, ima);
            *face_t = lp_build_cube_coord(coord_bld, NULL, +1, t, ima);
            *face = lp_build_cube_face(bld, rz,
                                       PIPE_TEX_FACE_POS_Z,
                                       PIPE_TEX_FACE_NEG_Z);
            LLVMBuildStore(builder, *face_s, face_s_var);
            LLVMBuildStore(builder, *face_t, face_t_var);
            LLVMBuildStore(builder, *face, face_var);
         }
         lp_build_endif(&if_ctx2);
      }

      lp_build_endif(&if_ctx);

      *face_s = LLVMBuildLoad(builder, face_s_var, "face_s");
      *face_t = LLVMBuildLoad(builder, face_t_var, "face_t");
      *face   = LLVMBuildLoad(builder, face_var, "face");
   }
}
コード例 #8
0
ファイル: lp_bld_interp.c プロジェクト: airlied/mesa
/**
 * Initialize the bld->a, dadq fields.  This involves fetching
 * those values from the arrays which are passed into the JIT function.
 */
static void
coeffs_init(struct lp_build_interp_soa_context *bld,
            LLVMValueRef a0_ptr,
            LLVMValueRef dadx_ptr,
            LLVMValueRef dady_ptr)
{
   struct lp_build_context *coeff_bld = &bld->coeff_bld;
   struct lp_build_context *setup_bld = &bld->setup_bld;
   struct gallivm_state *gallivm = coeff_bld->gallivm;
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef pixoffx, pixoffy;
   unsigned attrib;
   unsigned chan;
   unsigned i;

   pixoffx = coeff_bld->undef;
   pixoffy = coeff_bld->undef;
   for (i = 0; i < coeff_bld->type.length; i++) {
      LLVMValueRef nr = lp_build_const_int32(gallivm, i);
      LLVMValueRef pixxf = lp_build_const_float(gallivm, quad_offset_x[i]);
      LLVMValueRef pixyf = lp_build_const_float(gallivm, quad_offset_y[i]);
      pixoffx = LLVMBuildInsertElement(builder, pixoffx, pixxf, nr, "");
      pixoffy = LLVMBuildInsertElement(builder, pixoffy, pixyf, nr, "");
   }


   for (attrib = 0; attrib < bld->num_attribs; ++attrib) {
      const unsigned mask = bld->mask[attrib];
      const unsigned interp = bld->interp[attrib];
      LLVMValueRef index = lp_build_const_int32(gallivm,
                                attrib * TGSI_NUM_CHANNELS);
      LLVMValueRef ptr;
      LLVMValueRef dadxaos = setup_bld->zero;
      LLVMValueRef dadyaos = setup_bld->zero;
      LLVMValueRef a0aos = setup_bld->zero;

      /* always fetch all 4 values for performance/simplicity */
      switch (interp) {
      case LP_INTERP_PERSPECTIVE:
         /* fall-through */

      case LP_INTERP_LINEAR:
         ptr = LLVMBuildGEP(builder, dadx_ptr, &index, 1, "");
         ptr = LLVMBuildBitCast(builder, ptr,
               LLVMPointerType(setup_bld->vec_type, 0), "");
         dadxaos = LLVMBuildLoad(builder, ptr, "");

         ptr = LLVMBuildGEP(builder, dady_ptr, &index, 1, "");
         ptr = LLVMBuildBitCast(builder, ptr,
               LLVMPointerType(setup_bld->vec_type, 0), "");
         dadyaos = LLVMBuildLoad(builder, ptr, "");

         attrib_name(dadxaos, attrib, 0, ".dadxaos");
         attrib_name(dadyaos, attrib, 0, ".dadyaos");
         /* fall-through */

      case LP_INTERP_CONSTANT:
      case LP_INTERP_FACING:
         ptr = LLVMBuildGEP(builder, a0_ptr, &index, 1, "");
         ptr = LLVMBuildBitCast(builder, ptr,
               LLVMPointerType(setup_bld->vec_type, 0), "");
         a0aos = LLVMBuildLoad(builder, ptr, "");
         attrib_name(a0aos, attrib, 0, ".a0aos");
         break;

      case LP_INTERP_POSITION:
         /* Nothing to do as the position coeffs are already setup in slot 0 */
         continue;

      default:
         assert(0);
         break;
      }

      /*
       * a = a0 + (x * dadx + y * dady)
       * a0aos is the attrib value at top left corner of stamp
       */
      if (interp != LP_INTERP_CONSTANT &&
          interp != LP_INTERP_FACING) {
         LLVMValueRef x = lp_build_broadcast_scalar(setup_bld, bld->x);
         LLVMValueRef y = lp_build_broadcast_scalar(setup_bld, bld->y);
         a0aos = lp_build_fmuladd(builder, x, dadxaos, a0aos);
         a0aos = lp_build_fmuladd(builder, y, dadyaos, a0aos);
      }

      /*
       * dadq = {0, dadx, dady, dadx + dady}
       * for two quads (side by side) this is:
       * {0, dadx, dady, dadx+dady, 2*dadx, 2*dadx+dady, 3*dadx+dady}
       */
      for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
         /* this generates a CRAPLOAD of shuffles... */
         if (mask & (1 << chan)) {
            LLVMValueRef dadx, dady;
            LLVMValueRef dadq, dadq2;
            LLVMValueRef a;
            LLVMValueRef chan_index = lp_build_const_int32(gallivm, chan);

            if (attrib == 0 && chan == 0) {
               a = bld->x;
               if (bld->pos_offset) {
                  a = LLVMBuildFAdd(builder, a, lp_build_const_float(gallivm, bld->pos_offset), "");
               }
               a = lp_build_broadcast_scalar(coeff_bld, a);
               dadx = coeff_bld->one;
               dady = coeff_bld->zero;
            }
            else if (attrib == 0 && chan == 1) {
               a = bld->y;
               if (bld->pos_offset) {
                  a = LLVMBuildFAdd(builder, a, lp_build_const_float(gallivm, bld->pos_offset), "");
               }
               a = lp_build_broadcast_scalar(coeff_bld, a);
               dady = coeff_bld->one;
               dadx = coeff_bld->zero;
            }
            else {
               dadx = lp_build_extract_broadcast(gallivm, setup_bld->type,
                                              coeff_bld->type, dadxaos, chan_index);
               dady = lp_build_extract_broadcast(gallivm, setup_bld->type,
                                              coeff_bld->type, dadyaos, chan_index);

               /*
                * a = {a, a, a, a}
                */
               a = lp_build_extract_broadcast(gallivm, setup_bld->type,
                                              coeff_bld->type, a0aos, chan_index);
            }

            dadx = LLVMBuildFMul(builder, dadx, pixoffx, "");
            dady = LLVMBuildFMul(builder, dady, pixoffy, "");
            dadq = LLVMBuildFAdd(builder, dadx, dady, "");

            /*
             * Compute the attrib values on the upper-left corner of each
             * group of quads.
             * Note that if we process 2 quads at once this doesn't
             * really exactly to what we want.
             * We need to access elem 0 and 2 respectively later if we process
             * 2 quads at once.
             */

            if (interp != LP_INTERP_CONSTANT &&
                interp != LP_INTERP_FACING) {
               dadq2 = LLVMBuildFAdd(builder, dadq, dadq, "");
               a = LLVMBuildFAdd(builder, a, dadq2, "");
	    }

#if PERSPECTIVE_DIVIDE_PER_QUAD
            /*
             * a *= 1 / w
             */

            /*
             * XXX since we're only going to access elements 0,2 out of 8
             * if we have 8-wide vectors we should do the division only 4-wide.
             * a is really a 2-elements in a 4-wide vector disguised as 8-wide
             * in this case.
             */
            if (interp == LP_INTERP_PERSPECTIVE) {
               LLVMValueRef w = bld->a[0][3];
               assert(attrib != 0);
               assert(bld->mask[0] & TGSI_WRITEMASK_W);
               if (!bld->oow) {
                  bld->oow = lp_build_rcp(coeff_bld, w);
                  lp_build_name(bld->oow, "oow");
               }
               a = lp_build_mul(coeff_bld, a, bld->oow);
            }
#endif

            attrib_name(a, attrib, chan, ".a");
            attrib_name(dadq, attrib, chan, ".dadq");

            bld->a[attrib][chan] = lp_build_alloca(gallivm,
                                                   LLVMTypeOf(a), "");
            LLVMBuildStore(builder, a, bld->a[attrib][chan]);
            bld->dadq[attrib][chan] = dadq;
         }
      }
   }
}
コード例 #9
0
static void emit_declaration(
	struct lp_build_tgsi_context * bld_base,
	const struct tgsi_full_declaration *decl)
{
	struct radeon_llvm_context * ctx = radeon_llvm_context(bld_base);
	switch(decl->Declaration.File) {
	case TGSI_FILE_ADDRESS:
	{
		 unsigned idx;
		for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
			unsigned chan;
			for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
				 ctx->soa.addr[idx][chan] = lp_build_alloca(
					&ctx->gallivm,
					ctx->soa.bld_base.uint_bld.elem_type, "");
			}
		}
		break;
	}

	case TGSI_FILE_TEMPORARY:
		lp_emit_declaration_soa(bld_base, decl);
		break;

	case TGSI_FILE_INPUT:
	{
		unsigned idx;
		for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
			ctx->load_input(ctx, idx, decl);
		}
	}
	break;

	case TGSI_FILE_SYSTEM_VALUE:
	{
		unsigned idx;
		for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
			ctx->load_system_value(ctx, idx, decl);
		}
	}
	break;

	case TGSI_FILE_OUTPUT:
	{
		unsigned idx;
		for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
			unsigned chan;
			assert(idx < RADEON_LLVM_MAX_OUTPUTS);
			for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
				ctx->soa.outputs[idx][chan] = lp_build_alloca(&ctx->gallivm,
					ctx->soa.bld_base.base.elem_type, "");
			}
		}

		ctx->output_reg_count = MAX2(ctx->output_reg_count,
							 decl->Range.Last + 1);
		break;
	}

	default:
		break;
	}
}
コード例 #10
0
ファイル: lp_bld_sample_aos.c プロジェクト: nikai3d/mesa
/**
 * Texture sampling in AoS format.  Used when sampling common 32-bit/texel
 * formats.  1D/2D/3D/cube texture supported.  All mipmap sampling modes
 * but only limited texture coord wrap modes.
 */
void
lp_build_sample_aos(struct lp_build_sample_context *bld,
                    unsigned unit,
                    LLVMValueRef s,
                    LLVMValueRef t,
                    LLVMValueRef r,
                    const LLVMValueRef *ddx,
                    const LLVMValueRef *ddy,
                    LLVMValueRef lod_bias, /* optional */
                    LLVMValueRef explicit_lod, /* optional */
                    LLVMValueRef texel_out[4])
{
   struct lp_build_context *int_bld = &bld->int_bld;
   LLVMBuilderRef builder = bld->gallivm->builder;
   const unsigned mip_filter = bld->static_state->min_mip_filter;
   const unsigned min_filter = bld->static_state->min_img_filter;
   const unsigned mag_filter = bld->static_state->mag_img_filter;
   const unsigned dims = bld->dims;
   LLVMValueRef lod_ipart = NULL, lod_fpart = NULL;
   LLVMValueRef ilevel0, ilevel1 = NULL;
   LLVMValueRef packed, packed_lo, packed_hi;
   LLVMValueRef unswizzled[4];
   LLVMValueRef face_ddx[4], face_ddy[4];
   struct lp_build_context h16_bld;
   LLVMValueRef first_level;
   LLVMValueRef i32t_zero = lp_build_const_int32(bld->gallivm, 0);

   /* we only support the common/simple wrap modes at this time */
   assert(lp_is_simple_wrap_mode(bld->static_state->wrap_s));
   if (dims >= 2)
      assert(lp_is_simple_wrap_mode(bld->static_state->wrap_t));
   if (dims >= 3)
      assert(lp_is_simple_wrap_mode(bld->static_state->wrap_r));


   /* make 16-bit fixed-pt builder context */
   lp_build_context_init(&h16_bld, bld->gallivm, lp_type_ufixed(16));

   /* cube face selection, compute pre-face coords, etc. */
   if (bld->static_state->target == PIPE_TEXTURE_CUBE) {
      LLVMValueRef face, face_s, face_t;
      lp_build_cube_lookup(bld, s, t, r, &face, &face_s, &face_t);
      s = face_s; /* vec */
      t = face_t; /* vec */
      /* use 'r' to indicate cube face */
      r = lp_build_broadcast_scalar(&bld->int_coord_bld, face); /* vec */

      /* recompute ddx, ddy using the new (s,t) face texcoords */
      face_ddx[0] = lp_build_scalar_ddx(&bld->coord_bld, s);
      face_ddx[1] = lp_build_scalar_ddx(&bld->coord_bld, t);
      face_ddx[2] = NULL;
      face_ddx[3] = NULL;
      face_ddy[0] = lp_build_scalar_ddy(&bld->coord_bld, s);
      face_ddy[1] = lp_build_scalar_ddy(&bld->coord_bld, t);
      face_ddy[2] = NULL;
      face_ddy[3] = NULL;
      ddx = face_ddx;
      ddy = face_ddy;
   }

   /*
    * Compute the level of detail (float).
    */
   if (min_filter != mag_filter ||
       mip_filter != PIPE_TEX_MIPFILTER_NONE) {
      /* Need to compute lod either to choose mipmap levels or to
       * distinguish between minification/magnification with one mipmap level.
       */
      lp_build_lod_selector(bld, unit, ddx, ddy,
                            lod_bias, explicit_lod,
                            mip_filter,
                            &lod_ipart, &lod_fpart);
   } else {
      lod_ipart = i32t_zero;
   }

   /*
    * Compute integer mipmap level(s) to fetch texels from: ilevel0, ilevel1
    */
   switch (mip_filter) {
   default:
      assert(0 && "bad mip_filter value in lp_build_sample_aos()");
      /* fall-through */
   case PIPE_TEX_MIPFILTER_NONE:
      /* always use mip level 0 */
      if (bld->static_state->target == PIPE_TEXTURE_CUBE) {
         /* XXX this is a work-around for an apparent bug in LLVM 2.7.
          * We should be able to set ilevel0 = const(0) but that causes
          * bad x86 code to be emitted.
          */
         assert(lod_ipart);
         lp_build_nearest_mip_level(bld, unit, lod_ipart, &ilevel0);
      }
      else {
         first_level = bld->dynamic_state->first_level(bld->dynamic_state,
                                                       bld->gallivm, unit);
         ilevel0 = first_level;
      }
      break;
   case PIPE_TEX_MIPFILTER_NEAREST:
      assert(lod_ipart);
      lp_build_nearest_mip_level(bld, unit, lod_ipart, &ilevel0);
      break;
   case PIPE_TEX_MIPFILTER_LINEAR:
      assert(lod_ipart);
      assert(lod_fpart);
      lp_build_linear_mip_levels(bld, unit,
                                 lod_ipart, &lod_fpart,
                                 &ilevel0, &ilevel1);
      break;
   }

   /*
    * Get/interpolate texture colors.
    */

   packed_lo = lp_build_alloca(bld->gallivm, h16_bld.vec_type, "packed_lo");
   packed_hi = lp_build_alloca(bld->gallivm, h16_bld.vec_type, "packed_hi");

   if (min_filter == mag_filter) {
      /* no need to distinquish between minification and magnification */
      lp_build_sample_mipmap(bld,
                             min_filter, mip_filter,
                             s, t, r,
                             ilevel0, ilevel1, lod_fpart,
                             packed_lo, packed_hi);
   }
   else {
      /* Emit conditional to choose min image filter or mag image filter
       * depending on the lod being > 0 or <= 0, respectively.
       */
      struct lp_build_if_state if_ctx;
      LLVMValueRef minify;

      /* minify = lod >= 0.0 */
      minify = LLVMBuildICmp(builder, LLVMIntSGE,
                             lod_ipart, int_bld->zero, "");

      lp_build_if(&if_ctx, bld->gallivm, minify);
      {
         /* Use the minification filter */
         lp_build_sample_mipmap(bld,
                                min_filter, mip_filter,
                                s, t, r,
                                ilevel0, ilevel1, lod_fpart,
                                packed_lo, packed_hi);
      }
      lp_build_else(&if_ctx);
      {
         /* Use the magnification filter */
         lp_build_sample_mipmap(bld, 
                                mag_filter, PIPE_TEX_MIPFILTER_NONE,
                                s, t, r,
                                ilevel0, NULL, NULL,
                                packed_lo, packed_hi);
      }
      lp_build_endif(&if_ctx);
   }

   /*
    * combine the values stored in 'packed_lo' and 'packed_hi' variables
    * into 'packed'
    */
   packed = lp_build_pack2(bld->gallivm,
                           h16_bld.type, lp_type_unorm(8),
                           LLVMBuildLoad(builder, packed_lo, ""),
                           LLVMBuildLoad(builder, packed_hi, ""));

   /*
    * Convert to SoA and swizzle.
    */
   lp_build_rgba8_to_f32_soa(bld->gallivm,
                             bld->texel_type,
                             packed, unswizzled);

   if (util_format_is_rgba8_variant(bld->format_desc)) {
      lp_build_format_swizzle_soa(bld->format_desc,
                                  &bld->texel_bld,
                                  unswizzled, texel_out);
   }
   else {
      texel_out[0] = unswizzled[0];
      texel_out[1] = unswizzled[1];
      texel_out[2] = unswizzled[2];
      texel_out[3] = unswizzled[3];
   }
}