void lpp_load_sol(LPP *lpp, LPX *prob) { int i, j, ref, stat; double prim, dual; insist(lpp->m == lpx_get_num_rows(prob)); insist(lpp->n == lpx_get_num_cols(prob)); insist(lpp->orig_dir == lpx_get_obj_dir(prob)); insist(lpx_get_status(prob) != LPX_UNDEF); for (i = 1; i <= lpp->m; i++) { lpx_get_row_info(prob, i, &stat, &prim, &dual); ref = lpp->row_ref[i]; insist(1 <= ref && ref <= lpp->nrows); insist(lpp->row_stat[ref] == 0); lpp->row_stat[ref] = stat; lpp->row_prim[ref] = prim; lpp->row_dual[ref] = (lpp->orig_dir == LPX_MIN ? + dual : - dual); } for (j = 1; j <= lpp->n; j++) { lpx_get_col_info(prob, j, &stat, &prim, &dual); ref = lpp->col_ref[j]; insist(1 <= ref && ref <= lpp->ncols); insist(lpp->col_stat[ref] == 0); lpp->col_stat[ref] = stat; lpp->col_prim[ref] = prim; lpp->col_dual[ref] = (lpp->orig_dir == LPX_MIN ? + dual : - dual); } ufree(lpp->row_ref), lpp->row_ref = NULL; ufree(lpp->col_ref), lpp->col_ref = NULL; return; }
int CClp_rc(CClp *lp, double *rc) { /* RETURNS the current reduced costs. - rc should be an array of length at least ncols. */ int ncols, j; ncols = lpx_get_num_cols(lp->lp); insist(ncols > 0); for (j = 0; j < ncols; j++) lpx_get_col_info(lp->lp, j+1, NULL, NULL, &rc[j]); return 0; }
int CClp_x(CClp *lp, double *x) { /* RETURNS the current LP solution. - x should be an array of length at least ncols. */ int ncols, j; ncols = lpx_get_num_cols(lp->lp); insist(ncols > 0); for (j = 0; j < ncols; j++) lpx_get_col_info(lp->lp, j+1, NULL, &x[j], NULL); return 0; }
int CClp_get_warmstart(CClp *lp, CClp_warmstart **warm) { /* SAVES information for efficiently resolving the current lp in warm, for example, basis or norm information. */ int i, j, tagx; CClp_free_warmstart(warm); (*warm) = umalloc(sizeof(CClp_warmstart)); (*warm)->ncols = 0; (*warm)->nrows = 0; (*warm)->cstat = NULL; (*warm)->rstat = NULL; (*warm)->ncols = lpx_get_num_cols(lp->lp); if ((*warm)->ncols == 0) { print("CClp_get_warmstart: no columns in LP"); CClp_free_warmstart(warm); return 1; } (*warm)->nrows = lpx_get_num_rows(lp->lp); if ((*warm)->nrows == 0) { print("CClp_get_warmstart: no rows in LP"); CClp_free_warmstart(warm); return 1; } (*warm)->cstat = ucalloc((*warm)->ncols, sizeof(int)); (*warm)->rstat = ucalloc((*warm)->nrows, sizeof(int)); for (i = 1; i <= (*warm)->nrows; i++) { lpx_get_row_info(lp->lp, i, &tagx, NULL, NULL); switch (tagx) { case LPX_BS: (*warm)->rstat[i-1] = IS_BASIC; break; case LPX_NL: (*warm)->rstat[i-1] = AT_LOWER; break; case LPX_NU: (*warm)->rstat[i-1] = AT_UPPER; break; case LPX_NS: (*warm)->rstat[i-1] = AT_LOWER; break; default: insist(tagx != tagx); } } for (j = 1; j <= (*warm)->ncols; j++) { lpx_get_col_info(lp->lp, j, &tagx, NULL, NULL); switch (tagx) { case LPX_BS: (*warm)->cstat[j-1] = IS_BASIC; break; case LPX_NL: (*warm)->cstat[j-1] = AT_LOWER; break; case LPX_NU: (*warm)->cstat[j-1] = AT_UPPER; break; case LPX_NS: (*warm)->cstat[j-1] = AT_LOWER; break; default: insist(tagx != tagx); } } return 0; }
int CClp_get_info(CClp *lp, CClp_info **info) { /* BUILDS information useful for efficiently answering questions about the status of rows and columns. */ int i, j, tagx; CClp_free_info(info); (*info) = umalloc(sizeof(CClp_info)); (*info)->ncols = 0; (*info)->nrows = 0; (*info)->cstat = NULL; (*info)->rstat = NULL; (*info)->ncols = lpx_get_num_cols(lp->lp); insist((*info)->ncols > 0); (*info)->nrows = lpx_get_num_rows(lp->lp); insist((*info)->nrows > 0); (*info)->cstat = ucalloc((*info)->ncols, sizeof(int)); (*info)->rstat = ucalloc((*info)->nrows, sizeof(int)); for (i = 1; i <= (*info)->nrows; i++) { lpx_get_row_info(lp->lp, i, &tagx, NULL, NULL); (*info)->rstat[i-1] = tagx == LPX_BS ? 1 : 0; } for (j = 1; j <= (*info)->ncols; j++) { lpx_get_col_info(lp->lp, j, &tagx, NULL, NULL); switch (tagx) { case LPX_BS: (*info)->cstat[j-1] = 0; break; case LPX_NL: (*info)->cstat[j-1] = 1; break; case LPX_NU: (*info)->cstat[j-1] = 2; break; case LPX_NS: (*info)->cstat[j-1] = 1; break; default: insist(tagx != tagx); } } return 0; }
int lpx_print_prob(LPX *lp, const char *fname) { XFILE *fp; int m, n, mip, i, j, len, t, type, *ndx; double coef, lb, ub, *val; char *str, name[255+1]; xprintf("lpx_write_prob: writing problem data to `%s'...\n", fname); fp = xfopen(fname, "w"); if (fp == NULL) { xprintf("lpx_write_prob: unable to create `%s' - %s\n", fname, strerror(errno)); goto fail; } m = lpx_get_num_rows(lp); n = lpx_get_num_cols(lp); mip = (lpx_get_class(lp) == LPX_MIP); str = (void *)lpx_get_prob_name(lp); xfprintf(fp, "Problem: %s\n", str == NULL ? "(unnamed)" : str); xfprintf(fp, "Class: %s\n", !mip ? "LP" : "MIP"); xfprintf(fp, "Rows: %d\n", m); if (!mip) xfprintf(fp, "Columns: %d\n", n); else xfprintf(fp, "Columns: %d (%d integer, %d binary)\n", n, lpx_get_num_int(lp), lpx_get_num_bin(lp)); xfprintf(fp, "Non-zeros: %d\n", lpx_get_num_nz(lp)); xfprintf(fp, "\n"); xfprintf(fp, "*** OBJECTIVE FUNCTION ***\n"); xfprintf(fp, "\n"); switch (lpx_get_obj_dir(lp)) { case LPX_MIN: xfprintf(fp, "Minimize:"); break; case LPX_MAX: xfprintf(fp, "Maximize:"); break; default: xassert(lp != lp); } str = (void *)lpx_get_obj_name(lp); xfprintf(fp, " %s\n", str == NULL ? "(unnamed)" : str); coef = lpx_get_obj_coef(lp, 0); if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, "(constant term)"); for (i = 1; i <= m; i++) #if 0 { coef = lpx_get_row_coef(lp, i); #else { coef = 0.0; #endif if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, row_name(lp, i, name)); } for (j = 1; j <= n; j++) { coef = lpx_get_obj_coef(lp, j); if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, col_name(lp, j, name)); } xfprintf(fp, "\n"); xfprintf(fp, "*** ROWS (CONSTRAINTS) ***\n"); ndx = xcalloc(1+n, sizeof(int)); val = xcalloc(1+n, sizeof(double)); for (i = 1; i <= m; i++) { xfprintf(fp, "\n"); xfprintf(fp, "Row %d: %s", i, row_name(lp, i, name)); lpx_get_row_bnds(lp, i, &type, &lb, &ub); switch (type) { case LPX_FR: xfprintf(fp, " free"); break; case LPX_LO: xfprintf(fp, " >= %.*g", DBL_DIG, lb); break; case LPX_UP: xfprintf(fp, " <= %.*g", DBL_DIG, ub); break; case LPX_DB: xfprintf(fp, " >= %.*g <= %.*g", DBL_DIG, lb, DBL_DIG, ub); break; case LPX_FX: xfprintf(fp, " = %.*g", DBL_DIG, lb); break; default: xassert(type != type); } xfprintf(fp, "\n"); #if 0 coef = lpx_get_row_coef(lp, i); #else coef = 0.0; #endif if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, "(objective)"); len = lpx_get_mat_row(lp, i, ndx, val); for (t = 1; t <= len; t++) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, val[t], col_name(lp, ndx[t], name)); } xfree(ndx); xfree(val); xfprintf(fp, "\n"); xfprintf(fp, "*** COLUMNS (VARIABLES) ***\n"); ndx = xcalloc(1+m, sizeof(int)); val = xcalloc(1+m, sizeof(double)); for (j = 1; j <= n; j++) { xfprintf(fp, "\n"); xfprintf(fp, "Col %d: %s", j, col_name(lp, j, name)); if (mip) { switch (lpx_get_col_kind(lp, j)) { case LPX_CV: break; case LPX_IV: xfprintf(fp, " integer"); break; default: xassert(lp != lp); } } lpx_get_col_bnds(lp, j, &type, &lb, &ub); switch (type) { case LPX_FR: xfprintf(fp, " free"); break; case LPX_LO: xfprintf(fp, " >= %.*g", DBL_DIG, lb); break; case LPX_UP: xfprintf(fp, " <= %.*g", DBL_DIG, ub); break; case LPX_DB: xfprintf(fp, " >= %.*g <= %.*g", DBL_DIG, lb, DBL_DIG, ub); break; case LPX_FX: xfprintf(fp, " = %.*g", DBL_DIG, lb); break; default: xassert(type != type); } xfprintf(fp, "\n"); coef = lpx_get_obj_coef(lp, j); if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, "(objective)"); len = lpx_get_mat_col(lp, j, ndx, val); for (t = 1; t <= len; t++) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, val[t], row_name(lp, ndx[t], name)); } xfree(ndx); xfree(val); xfprintf(fp, "\n"); xfprintf(fp, "End of output\n"); xfflush(fp); if (xferror(fp)) { xprintf("lpx_write_prob: write error on `%s' - %s\n", fname, strerror(errno)); goto fail; } xfclose(fp); return 0; fail: if (fp != NULL) xfclose(fp); return 1; } #undef row_name #undef col_name /*---------------------------------------------------------------------- -- lpx_print_sol - write LP problem solution in printable format. -- -- *Synopsis* -- -- #include "glplpx.h" -- int lpx_print_sol(LPX *lp, char *fname); -- -- *Description* -- -- The routine lpx_print_sol writes the current basic solution of an LP -- problem, which is specified by the pointer lp, to a text file, whose -- name is the character string fname, in printable format. -- -- Information reported by the routine lpx_print_sol is intended mainly -- for visual analysis. -- -- *Returns* -- -- If the operation was successful, the routine returns zero. Otherwise -- the routine prints an error message and returns non-zero. */ int lpx_print_sol(LPX *lp, const char *fname) { XFILE *fp; int what, round; xprintf( "lpx_print_sol: writing LP problem solution to `%s'...\n", fname); fp = xfopen(fname, "w"); if (fp == NULL) { xprintf("lpx_print_sol: can't create `%s' - %s\n", fname, strerror(errno)); goto fail; } /* problem name */ { const char *name; name = lpx_get_prob_name(lp); if (name == NULL) name = ""; xfprintf(fp, "%-12s%s\n", "Problem:", name); } /* number of rows (auxiliary variables) */ { int nr; nr = lpx_get_num_rows(lp); xfprintf(fp, "%-12s%d\n", "Rows:", nr); } /* number of columns (structural variables) */ { int nc; nc = lpx_get_num_cols(lp); xfprintf(fp, "%-12s%d\n", "Columns:", nc); } /* number of non-zeros (constraint coefficients) */ { int nz; nz = lpx_get_num_nz(lp); xfprintf(fp, "%-12s%d\n", "Non-zeros:", nz); } /* solution status */ { int status; status = lpx_get_status(lp); xfprintf(fp, "%-12s%s\n", "Status:", status == LPX_OPT ? "OPTIMAL" : status == LPX_FEAS ? "FEASIBLE" : status == LPX_INFEAS ? "INFEASIBLE (INTERMEDIATE)" : status == LPX_NOFEAS ? "INFEASIBLE (FINAL)" : status == LPX_UNBND ? "UNBOUNDED" : status == LPX_UNDEF ? "UNDEFINED" : "???"); } /* objective function */ { char *name; int dir; double obj; name = (void *)lpx_get_obj_name(lp); dir = lpx_get_obj_dir(lp); obj = lpx_get_obj_val(lp); xfprintf(fp, "%-12s%s%s%.10g %s\n", "Objective:", name == NULL ? "" : name, name == NULL ? "" : " = ", obj, dir == LPX_MIN ? "(MINimum)" : dir == LPX_MAX ? "(MAXimum)" : "(" "???" ")"); } /* main sheet */ for (what = 1; what <= 2; what++) { int mn, ij; xfprintf(fp, "\n"); xfprintf(fp, " No. %-12s St Activity Lower bound Upp" "er bound Marginal\n", what == 1 ? " Row name" : "Column name"); xfprintf(fp, "------ ------------ -- ------------- -----------" "-- ------------- -------------\n"); mn = (what == 1 ? lpx_get_num_rows(lp) : lpx_get_num_cols(lp)); for (ij = 1; ij <= mn; ij++) { const char *name; int typx, tagx; double lb, ub, vx, dx; if (what == 1) { name = lpx_get_row_name(lp, ij); if (name == NULL) name = ""; lpx_get_row_bnds(lp, ij, &typx, &lb, &ub); round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); lpx_get_row_info(lp, ij, &tagx, &vx, &dx); lpx_set_int_parm(lp, LPX_K_ROUND, round); } else { name = lpx_get_col_name(lp, ij); if (name == NULL) name = ""; lpx_get_col_bnds(lp, ij, &typx, &lb, &ub); round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); lpx_get_col_info(lp, ij, &tagx, &vx, &dx); lpx_set_int_parm(lp, LPX_K_ROUND, round); } /* row/column ordinal number */ xfprintf(fp, "%6d ", ij); /* row column/name */ if (strlen(name) <= 12) xfprintf(fp, "%-12s ", name); else xfprintf(fp, "%s\n%20s", name, ""); /* row/column status */ xfprintf(fp, "%s ", tagx == LPX_BS ? "B " : tagx == LPX_NL ? "NL" : tagx == LPX_NU ? "NU" : tagx == LPX_NF ? "NF" : tagx == LPX_NS ? "NS" : "??"); /* row/column primal activity */ xfprintf(fp, "%13.6g ", vx); /* row/column lower bound */ if (typx == LPX_LO || typx == LPX_DB || typx == LPX_FX) xfprintf(fp, "%13.6g ", lb); else xfprintf(fp, "%13s ", ""); /* row/column upper bound */ if (typx == LPX_UP || typx == LPX_DB) xfprintf(fp, "%13.6g ", ub); else if (typx == LPX_FX) xfprintf(fp, "%13s ", "="); else xfprintf(fp, "%13s ", ""); /* row/column dual activity */ if (tagx != LPX_BS) { if (dx == 0.0) xfprintf(fp, "%13s", "< eps"); else xfprintf(fp, "%13.6g", dx); } /* end of line */ xfprintf(fp, "\n"); } } xfprintf(fp, "\n"); #if 1 if (lpx_get_prim_stat(lp) != LPX_P_UNDEF && lpx_get_dual_stat(lp) != LPX_D_UNDEF) { int m = lpx_get_num_rows(lp); LPXKKT kkt; xfprintf(fp, "Karush-Kuhn-Tucker optimality conditions:\n\n"); lpx_check_kkt(lp, 1, &kkt); xfprintf(fp, "KKT.PE: max.abs.err. = %.2e on row %d\n", kkt.pe_ae_max, kkt.pe_ae_row); xfprintf(fp, " max.rel.err. = %.2e on row %d\n", kkt.pe_re_max, kkt.pe_re_row); switch (kkt.pe_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " PRIMAL SOLUTION IS WRONG\n"); break; } xfprintf(fp, "\n"); xfprintf(fp, "KKT.PB: max.abs.err. = %.2e on %s %d\n", kkt.pb_ae_max, kkt.pb_ae_ind <= m ? "row" : "column", kkt.pb_ae_ind <= m ? kkt.pb_ae_ind : kkt.pb_ae_ind - m); xfprintf(fp, " max.rel.err. = %.2e on %s %d\n", kkt.pb_re_max, kkt.pb_re_ind <= m ? "row" : "column", kkt.pb_re_ind <= m ? kkt.pb_re_ind : kkt.pb_re_ind - m); switch (kkt.pb_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " PRIMAL SOLUTION IS INFEASIBLE\n"); break; } xfprintf(fp, "\n"); xfprintf(fp, "KKT.DE: max.abs.err. = %.2e on column %d\n", kkt.de_ae_max, kkt.de_ae_col); xfprintf(fp, " max.rel.err. = %.2e on column %d\n", kkt.de_re_max, kkt.de_re_col); switch (kkt.de_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " DUAL SOLUTION IS WRONG\n"); break; } xfprintf(fp, "\n"); xfprintf(fp, "KKT.DB: max.abs.err. = %.2e on %s %d\n", kkt.db_ae_max, kkt.db_ae_ind <= m ? "row" : "column", kkt.db_ae_ind <= m ? kkt.db_ae_ind : kkt.db_ae_ind - m); xfprintf(fp, " max.rel.err. = %.2e on %s %d\n", kkt.db_re_max, kkt.db_re_ind <= m ? "row" : "column", kkt.db_re_ind <= m ? kkt.db_re_ind : kkt.db_re_ind - m); switch (kkt.db_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " DUAL SOLUTION IS INFEASIBLE\n"); break; } xfprintf(fp, "\n"); } #endif #if 1 if (lpx_get_status(lp) == LPX_UNBND) { int m = lpx_get_num_rows(lp); int k = lpx_get_ray_info(lp); xfprintf(fp, "Unbounded ray: %s %d\n", k <= m ? "row" : "column", k <= m ? k : k - m); xfprintf(fp, "\n"); } #endif xfprintf(fp, "End of output\n"); xfflush(fp); if (xferror(fp)) { xprintf("lpx_print_sol: can't write to `%s' - %s\n", fname, strerror(errno)); goto fail; } xfclose(fp); return 0; fail: if (fp != NULL) xfclose(fp); return 1; }
void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt) { int m = lpx_get_num_rows(lp); int n = lpx_get_num_cols(lp); #if 0 /* 21/XII-2003 */ int *typx = lp->typx; double *lb = lp->lb; double *ub = lp->ub; double *rs = lp->rs; #else int typx, tagx; double lb, ub; #endif int dir = lpx_get_obj_dir(lp); #if 0 /* 21/XII-2003 */ double *coef = lp->coef; #endif #if 0 /* 22/XII-2003 */ int *A_ptr = lp->A->ptr; int *A_len = lp->A->len; int *A_ndx = lp->A->ndx; double *A_val = lp->A->val; #endif int *A_ndx; double *A_val; #if 0 /* 21/XII-2003 */ int *tagx = lp->tagx; int *posx = lp->posx; int *indx = lp->indx; double *bbar = lp->bbar; double *cbar = lp->cbar; #endif int beg, end, i, j, k, t; double cR_i, cS_j, c_k, xR_i, xS_j, x_k, dR_i, dS_j, d_k; double g_i, h_k, u_j, v_k, temp, rii, sjj; if (lpx_get_prim_stat(lp) == LPX_P_UNDEF) xfault("lpx_check_kkt: primal basic solution is undefined\n"); if (lpx_get_dual_stat(lp) == LPX_D_UNDEF) xfault("lpx_check_kkt: dual basic solution is undefined\n"); /*--------------------------------------------------------------*/ /* compute largest absolute and relative errors and corresponding row indices for the condition (KKT.PE) */ kkt->pe_ae_max = 0.0, kkt->pe_ae_row = 0; kkt->pe_re_max = 0.0, kkt->pe_re_row = 0; A_ndx = xcalloc(1+n, sizeof(int)); A_val = xcalloc(1+n, sizeof(double)); for (i = 1; i <= m; i++) { /* determine xR[i] */ #if 0 /* 21/XII-2003 */ if (tagx[i] == LPX_BS) xR_i = bbar[posx[i]]; else xR_i = spx_eval_xn_j(lp, posx[i] - m); #else lpx_get_row_info(lp, i, NULL, &xR_i, NULL); xR_i *= lpx_get_rii(lp, i); #endif /* g[i] := xR[i] */ g_i = xR_i; /* g[i] := g[i] - (i-th row of A) * xS */ beg = 1; end = lpx_get_mat_row(lp, i, A_ndx, A_val); for (t = beg; t <= end; t++) { j = m + A_ndx[t]; /* a[i,j] != 0 */ /* determine xS[j] */ #if 0 /* 21/XII-2003 */ if (tagx[j] == LPX_BS) xS_j = bbar[posx[j]]; else xS_j = spx_eval_xn_j(lp, posx[j] - m); #else lpx_get_col_info(lp, j-m, NULL, &xS_j, NULL); xS_j /= lpx_get_sjj(lp, j-m); #endif /* g[i] := g[i] - a[i,j] * xS[j] */ rii = lpx_get_rii(lp, i); sjj = lpx_get_sjj(lp, j-m); g_i -= (rii * A_val[t] * sjj) * xS_j; } /* unscale xR[i] and g[i] (if required) */ if (!scaled) { rii = lpx_get_rii(lp, i); xR_i /= rii, g_i /= rii; } /* determine absolute error */ temp = fabs(g_i); if (kkt->pe_ae_max < temp) kkt->pe_ae_max = temp, kkt->pe_ae_row = i; /* determine relative error */ temp /= (1.0 + fabs(xR_i)); if (kkt->pe_re_max < temp) kkt->pe_re_max = temp, kkt->pe_re_row = i; } xfree(A_ndx); xfree(A_val); /* estimate the solution quality */ if (kkt->pe_re_max <= 1e-9) kkt->pe_quality = 'H'; else if (kkt->pe_re_max <= 1e-6) kkt->pe_quality = 'M'; else if (kkt->pe_re_max <= 1e-3) kkt->pe_quality = 'L'; else kkt->pe_quality = '?'; /*--------------------------------------------------------------*/ /* compute largest absolute and relative errors and corresponding variable indices for the condition (KKT.PB) */ kkt->pb_ae_max = 0.0, kkt->pb_ae_ind = 0; kkt->pb_re_max = 0.0, kkt->pb_re_ind = 0; for (k = 1; k <= m+n; k++) { /* determine x[k] */ if (k <= m) { lpx_get_row_bnds(lp, k, &typx, &lb, &ub); rii = lpx_get_rii(lp, k); lb *= rii; ub *= rii; lpx_get_row_info(lp, k, &tagx, &x_k, NULL); x_k *= rii; } else { lpx_get_col_bnds(lp, k-m, &typx, &lb, &ub); sjj = lpx_get_sjj(lp, k-m); lb /= sjj; ub /= sjj; lpx_get_col_info(lp, k-m, &tagx, &x_k, NULL); x_k /= sjj; } /* skip non-basic variable */ if (tagx != LPX_BS) continue; /* compute h[k] */ h_k = 0.0; switch (typx) { case LPX_FR: break; case LPX_LO: if (x_k < lb) h_k = x_k - lb; break; case LPX_UP: if (x_k > ub) h_k = x_k - ub; break; case LPX_DB: case LPX_FX: if (x_k < lb) h_k = x_k - lb; if (x_k > ub) h_k = x_k - ub; break; default: xassert(typx != typx); } /* unscale x[k] and h[k] (if required) */ if (!scaled) { if (k <= m) { rii = lpx_get_rii(lp, k); x_k /= rii, h_k /= rii; } else { sjj = lpx_get_sjj(lp, k-m); x_k *= sjj, h_k *= sjj; } } /* determine absolute error */ temp = fabs(h_k); if (kkt->pb_ae_max < temp) kkt->pb_ae_max = temp, kkt->pb_ae_ind = k; /* determine relative error */ temp /= (1.0 + fabs(x_k)); if (kkt->pb_re_max < temp) kkt->pb_re_max = temp, kkt->pb_re_ind = k; } /* estimate the solution quality */ if (kkt->pb_re_max <= 1e-9) kkt->pb_quality = 'H'; else if (kkt->pb_re_max <= 1e-6) kkt->pb_quality = 'M'; else if (kkt->pb_re_max <= 1e-3) kkt->pb_quality = 'L'; else kkt->pb_quality = '?'; /*--------------------------------------------------------------*/ /* compute largest absolute and relative errors and corresponding column indices for the condition (KKT.DE) */ kkt->de_ae_max = 0.0, kkt->de_ae_col = 0; kkt->de_re_max = 0.0, kkt->de_re_col = 0; A_ndx = xcalloc(1+m, sizeof(int)); A_val = xcalloc(1+m, sizeof(double)); for (j = m+1; j <= m+n; j++) { /* determine cS[j] */ #if 0 /* 21/XII-2003 */ cS_j = coef[j]; #else sjj = lpx_get_sjj(lp, j-m); cS_j = lpx_get_obj_coef(lp, j-m) * sjj; #endif /* determine dS[j] */ #if 0 /* 21/XII-2003 */ if (tagx[j] == LPX_BS) dS_j = 0.0; else dS_j = cbar[posx[j] - m]; #else lpx_get_col_info(lp, j-m, NULL, NULL, &dS_j); dS_j *= sjj; #endif /* u[j] := dS[j] - cS[j] */ u_j = dS_j - cS_j; /* u[j] := u[j] + (j-th column of A) * (dR - cR) */ beg = 1; end = lpx_get_mat_col(lp, j-m, A_ndx, A_val); for (t = beg; t <= end; t++) { i = A_ndx[t]; /* a[i,j] != 0 */ /* determine cR[i] */ #if 0 /* 21/XII-2003 */ cR_i = coef[i]; #else cR_i = 0.0; #endif /* determine dR[i] */ #if 0 /* 21/XII-2003 */ if (tagx[i] == LPX_BS) dR_i = 0.0; else dR_i = cbar[posx[i] - m]; #else lpx_get_row_info(lp, i, NULL, NULL, &dR_i); rii = lpx_get_rii(lp, i); dR_i /= rii; #endif /* u[j] := u[j] + a[i,j] * (dR[i] - cR[i]) */ rii = lpx_get_rii(lp, i); sjj = lpx_get_sjj(lp, j-m); u_j += (rii * A_val[t] * sjj) * (dR_i - cR_i); } /* unscale cS[j], dS[j], and u[j] (if required) */ if (!scaled) { sjj = lpx_get_sjj(lp, j-m); cS_j /= sjj, dS_j /= sjj, u_j /= sjj; } /* determine absolute error */ temp = fabs(u_j); if (kkt->de_ae_max < temp) kkt->de_ae_max = temp, kkt->de_ae_col = j - m; /* determine relative error */ temp /= (1.0 + fabs(dS_j - cS_j)); if (kkt->de_re_max < temp) kkt->de_re_max = temp, kkt->de_re_col = j - m; } xfree(A_ndx); xfree(A_val); /* estimate the solution quality */ if (kkt->de_re_max <= 1e-9) kkt->de_quality = 'H'; else if (kkt->de_re_max <= 1e-6) kkt->de_quality = 'M'; else if (kkt->de_re_max <= 1e-3) kkt->de_quality = 'L'; else kkt->de_quality = '?'; /*--------------------------------------------------------------*/ /* compute largest absolute and relative errors and corresponding variable indices for the condition (KKT.DB) */ kkt->db_ae_max = 0.0, kkt->db_ae_ind = 0; kkt->db_re_max = 0.0, kkt->db_re_ind = 0; for (k = 1; k <= m+n; k++) { /* determine c[k] */ #if 0 /* 21/XII-2003 */ c_k = coef[k]; #else if (k <= m) c_k = 0.0; else { sjj = lpx_get_sjj(lp, k-m); c_k = lpx_get_obj_coef(lp, k-m) / sjj; } #endif /* determine d[k] */ #if 0 /* 21/XII-2003 */ d_k = cbar[j-m]; #else if (k <= m) { lpx_get_row_info(lp, k, &tagx, NULL, &d_k); rii = lpx_get_rii(lp, k); d_k /= rii; } else { lpx_get_col_info(lp, k-m, &tagx, NULL, &d_k); sjj = lpx_get_sjj(lp, k-m); d_k *= sjj; } #endif /* skip basic variable */ if (tagx == LPX_BS) continue; /* compute v[k] */ v_k = 0.0; switch (tagx) { case LPX_NL: switch (dir) { case LPX_MIN: if (d_k < 0.0) v_k = d_k; break; case LPX_MAX: if (d_k > 0.0) v_k = d_k; break; default: xassert(dir != dir); } break; case LPX_NU: switch (dir) { case LPX_MIN: if (d_k > 0.0) v_k = d_k; break; case LPX_MAX: if (d_k < 0.0) v_k = d_k; break; default: xassert(dir != dir); } break; case LPX_NF: v_k = d_k; break; case LPX_NS: break; default: xassert(tagx != tagx); } /* unscale c[k], d[k], and v[k] (if required) */ if (!scaled) { if (k <= m) { rii = lpx_get_rii(lp, k); c_k *= rii, d_k *= rii, v_k *= rii; } else { sjj = lpx_get_sjj(lp, k-m); c_k /= sjj, d_k /= sjj, v_k /= sjj; } } /* determine absolute error */ temp = fabs(v_k); if (kkt->db_ae_max < temp) kkt->db_ae_max = temp, kkt->db_ae_ind = k; /* determine relative error */ temp /= (1.0 + fabs(d_k - c_k)); if (kkt->db_re_max < temp) kkt->db_re_max = temp, kkt->db_re_ind = k; } /* estimate the solution quality */ if (kkt->db_re_max <= 1e-9) kkt->db_quality = 'H'; else if (kkt->db_re_max <= 1e-6) kkt->db_quality = 'M'; else if (kkt->db_re_max <= 1e-3) kkt->db_quality = 'L'; else kkt->db_quality = '?'; /* complementary slackness is always satisfied by definition for any basic solution, so not checked */ kkt->cs_ae_max = 0.0, kkt->cs_ae_ind = 0; kkt->cs_re_max = 0.0, kkt->cs_re_ind = 0; kkt->cs_quality = 'H'; return; }
int lpx_print_sens_bnds(LPX *lp, char *fname) { FILE *fp = NULL; int what, round; print("lpx_print_sens_bnds: writing LP problem solution bounds to" " `%s'...", fname); #if 1 /* added by mao */ /* this routine needs factorization of the current basis matrix which, however, does not exist if the basic solution was obtained by the lp presolver; therefore we should warm up the basis to be sure that the factorization is valid (note that if the factorization exists, lpx_warm_up does nothing) */ lpx_warm_up(lp); #endif #if 0 /* 21/XII-2003 by mao */ if (lp->b_stat == LPX_B_UNDEF) #else if (!lpx_is_b_avail(lp)) #endif { print("lpx_print_sens_bnds: basis information not available (m" "ay be a presolve issue)"); goto fail; } fp = ufopen(fname, "w"); if (fp == NULL) { print("lpx_print_sens_bnds: can't create `%s' - %s", fname, strerror(errno)); goto fail; } /* problem name */ { char *name; name = lpx_get_prob_name(lp); if (name == NULL) name = ""; fprintf(fp, "%-12s%s\n", "Problem:", name); } /* number of rows (auxiliary variables) */ { int nr; nr = lpx_get_num_rows(lp); fprintf(fp, "%-12s%d\n", "Rows:", nr); } /* number of columns (structural variables) */ { int nc; nc = lpx_get_num_cols(lp); fprintf(fp, "%-12s%d\n", "Columns:", nc); } /* number of non-zeros (constraint coefficients) */ { int nz; nz = lpx_get_num_nz(lp); fprintf(fp, "%-12s%d\n", "Non-zeros:", nz); } /* solution status */ { int status; status = lpx_get_status(lp); fprintf(fp, "%-12s%s\n", "Status:", status == LPX_OPT ? "OPTIMAL" : status == LPX_FEAS ? "FEASIBLE" : status == LPX_INFEAS ? "INFEASIBLE (INTERMEDIATE)" : status == LPX_NOFEAS ? "INFEASIBLE (FINAL)" : status == LPX_UNBND ? "UNBOUNDED" : status == LPX_UNDEF ? "UNDEFINED" : "???"); } /* explanation/warning */ { fprintf(fp, "\nExplanation: This file presents amounts by whi" "ch objective coefficients,\n"); fprintf(fp, "constraint bounds, and variable bounds may be cha" "nged in the original problem\n"); fprintf(fp, "while the optimal basis remains the same. Note t" "hat the optimal solution\n"); fprintf(fp, "and objective value may change even though the ba" "sis remains the same.\n"); fprintf(fp, "These bounds assume that all parameters remain fi" "xed except the one in\n"); fprintf(fp, "question. If more than one parameter is changed," " it is possible for the\n"); fprintf(fp, "optimal basis to change even though each paramete" "r stays within its bounds.\n"); fprintf(fp, "For more details, consult a text on linear progra" "mming.\n"); } /* Sensitivity ranges if solution was optimal */ { int status; status = lpx_get_status(lp); if (status == LPX_OPT) { int i,j,k,m,n; int dir; double max_inc, max_dec; int *index; double *val; fprintf(fp, "\nObjective Coefficient Analysis\n"); fprintf(fp, " No. Column name St Value Max incr" "ease Max decrease\n"); fprintf(fp, "------ ------------ -- ------------- ---------" "---- ------------- \n"); n = lpx_get_num_cols(lp); m = lpx_get_num_rows(lp); dir = lpx_get_obj_dir(lp); /* allocate memory for index and val arrays */ index = ucalloc(1+n+m, sizeof(int)); val = ucalloc(1+n+m, sizeof(double)); for (j = 1; j <= n; j++) { char *name; int typx, tagx; double lb, ub, vx, dx; name = lpx_get_col_name(lp, j); if (name == NULL) name = ""; lpx_get_col_bnds(lp, j, &typx, &lb, &ub); #if 0 /* 21/XII-2003 by mao */ round = lp->round, lp->round = 1; lpx_get_col_info(lp, j, &tagx, &vx, &dx); lp->round = round; #else round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); lpx_get_col_info(lp, j, &tagx, &vx, &dx); lpx_set_int_parm(lp, LPX_K_ROUND, round); #endif /* row/column ordinal number */ fprintf(fp, "%6d ", j); /* row column/name */ if (strlen(name) <= 12) fprintf(fp, "%-12s ", name); else fprintf(fp, "%s\n%20s", name, ""); /* row/column status */ fprintf(fp, "%s ", tagx == LPX_BS ? "B " : tagx == LPX_NL ? "NL" : tagx == LPX_NU ? "NU" : tagx == LPX_NF ? "NF" : tagx == LPX_NS ? "NS" : "??"); /* objective coefficient */ fprintf(fp, "%13.6g ", lpx_get_obj_coef(lp, j)); if (tagx == LPX_NL) { if (dir==LPX_MIN) { /* reduced cost must be positive */ max_inc = DBL_MAX; /* really represents infinity */ max_dec = dx; } else { /* reduced cost must be negative */ max_inc = -dx; max_dec = DBL_MAX; /* means infinity */ } } if (tagx == LPX_NU) { if (dir==LPX_MIN) { /* reduced cost must be negative */ max_inc = -dx; max_dec = DBL_MAX; } else { max_inc = DBL_MAX; max_dec = dx; } } if (tagx == LPX_NF) { /* can't change nonbasic free variables' cost */ max_inc = 0.0; max_dec = 0.0; } if (tagx == LPX_NS) { /* doesn't matter what happens to the cost */ max_inc = DBL_MAX; max_dec = DBL_MAX; } if (tagx == LPX_BS) { int len; /* We need to see how this objective coefficient affects reduced costs of other variables */ len = lpx_eval_tab_row(lp, m+j, index, val); max_inc = DBL_MAX; max_dec = DBL_MAX; for (i = 1; i <= len; i++) { /*int stat;*/ int tagx2; double vx2, dx2; double delta; if (index[i]>m) lpx_get_col_info(lp, index[i]-m, &tagx2, &vx2, &dx2); else lpx_get_row_info(lp, index[i], &tagx2, &vx2, &dx2); if (tagx2 == LPX_NL) { if (val[i] != 0.0) { delta = dx2 / val[i]; if (delta < 0 && -delta < max_inc) max_inc = -delta; else if (delta >0 && delta < max_dec) max_dec = delta; } } if (tagx2 == LPX_NU) { if (val[i] != 0.0) { delta = dx2 / val[i]; if (delta < 0 && -delta < max_inc) max_inc = -delta; else if (delta > 0 && delta < max_dec) max_dec = delta; } } if (tagx2 == LPX_NF) { if (val[i] != 0.0) { max_inc = 0.0; max_dec = 0.0; } } } } if (max_inc == -0.0) max_inc = 0.0; if (max_dec == -0.0) max_dec = 0.0; if (max_inc == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_inc < 1.0e-12 && max_inc > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_inc); if (max_dec == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_dec < 1.0e-12 && max_dec > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_dec); fprintf(fp, "\n"); } for (what = 1; what <= 2; what++) { int ij, mn; fprintf(fp, "\n"); fprintf(fp, "%s Analysis\n", what==1? "Constraint Bounds":"Variable Bounds"); fprintf(fp, " No. %12s St Value Max increase " " Max decrease\n", what==1 ? " Row name":"Column name"); fprintf(fp, "------ ------------ -- ------------- ------" "------- ------------- \n"); mn = what==1 ? m : n; for (ij = 1; ij <= mn; ij++) { char *name; int typx, tagx; double lb, ub, vx, dx; if (what==1) name = lpx_get_row_name(lp, ij); else name = lpx_get_col_name(lp, ij); if (name == NULL) name = ""; #if 0 /* 21/XII-2003 by mao */ if (what==1) { lpx_get_row_bnds(lp, ij, &typx, &lb, &ub); round = lp->round, lp->round = 1; lpx_get_row_info(lp, ij, &tagx, &vx, &dx); lp->round = round; } else { lpx_get_col_bnds(lp, ij, &typx, &lb, &ub); round = lp->round, lp->round = 1; lpx_get_col_info(lp, ij, &tagx, &vx, &dx); lp->round = round; } #else round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); if (what==1) { lpx_get_row_bnds(lp, ij, &typx, &lb, &ub); lpx_get_row_info(lp, ij, &tagx, &vx, &dx); } else { lpx_get_col_bnds(lp, ij, &typx, &lb, &ub); lpx_get_col_info(lp, ij, &tagx, &vx, &dx); } lpx_set_int_parm(lp, LPX_K_ROUND, round); #endif /* row/column ordinal number */ fprintf(fp, "%6d ", ij); /* row column/name */ if (strlen(name) <= 12) fprintf(fp, "%-12s ", name); else fprintf(fp, "%s\n%20s", name, ""); /* row/column status */ fprintf(fp, "%s ", tagx == LPX_BS ? "B " : tagx == LPX_NL ? "NL" : tagx == LPX_NU ? "NU" : tagx == LPX_NF ? "NF" : tagx == LPX_NS ? "NS" : "??"); fprintf(fp, "\n"); /* first check lower bound */ if (typx == LPX_LO || typx == LPX_DB || typx == LPX_FX) { int at_lower; at_lower = 0; if (tagx == LPX_BS || tagx == LPX_NU) { max_inc = vx - lb; max_dec = DBL_MAX; } if (tagx == LPX_NS) { max_inc = 0.0; max_dec = 0.0; if (dir == LPX_MIN && dx > 0) at_lower = 1; if (dir == LPX_MAX && dx < 0) at_lower = 1; } if (tagx == LPX_NL || at_lower == 1) { int len; /* we have to see how it affects basic variables */ len = lpx_eval_tab_col(lp, what==1?ij:ij+m, index, val); k = lpx_prim_ratio_test(lp, len, index, val, 1, 10e-7); max_inc = DBL_MAX; if (k != 0) { /*int stat;*/ int tagx2, typx2; double vx2, dx2, lb2, ub2; /*double delta;*/ double alpha; int l; for (l = 1; l <= len; l++) if (index[l] == k) alpha = val[l]; if (k>m) { lpx_get_col_info(lp, k-m, &tagx2, &vx2, &dx2); lpx_get_col_bnds(lp, k-m, &typx2, &lb2, &ub2); } else { lpx_get_row_info(lp, k, &tagx2, &vx2, &dx2); lpx_get_row_bnds(lp, k, &typx2, &lb2, &ub2); } /* Check which direction; remember this is upper bound */ if (alpha > 0) max_inc = (ub2 - vx2)/ alpha; else max_inc = (lb2 - vx2)/ alpha; } /* now check lower bound */ k = lpx_prim_ratio_test(lp, len, index, val, -1, 10e-7); max_dec = DBL_MAX; if (k != 0) { /*int stat;*/ int tagx2, typx2; double vx2, dx2, lb2, ub2; /*double delta;*/ double alpha; int l; for (l = 1; l <= len; l++) if (index[l] == k) alpha = val[l]; if (k>m) { lpx_get_col_info(lp, k-m, &tagx2, &vx2, &dx2); lpx_get_col_bnds(lp, k-m, &typx2, &lb2, &ub2); } else { lpx_get_row_info(lp, k, &tagx2, &vx2, &dx2); lpx_get_row_bnds(lp, k, &typx2, &lb2, &ub2); } /* Check which direction; remember this is lower bound */ if (alpha > 0) max_dec = (vx2 - lb2)/ alpha; else max_dec = (vx2 - ub2)/ alpha; } } /* bound */ if (typx == LPX_DB || typx == LPX_FX) { if (max_inc > ub - lb) max_inc = ub - lb; } fprintf(fp, " LOWER %13.6g ", lb); if (max_inc == -0.0) max_inc = 0.0; if (max_dec == -0.0) max_dec = 0.0; if (max_inc == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_inc < 1.0e-12 && max_inc > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_inc); if (max_dec == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_dec < 1.0e-12 && max_dec > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_dec); fprintf(fp, "\n"); } /* now check upper bound */ if (typx == LPX_UP || typx == LPX_DB || typx == LPX_FX) { int at_upper; at_upper = 0; if (tagx == LPX_BS || tagx == LPX_NL) { max_inc = DBL_MAX; max_dec = ub - vx; } if (tagx == LPX_NS) { max_inc = 0.0; max_dec = 0.0; if (dir == LPX_MIN && dx < 0) at_upper = 1; if (dir == LPX_MAX && dx > 0) at_upper = 1; } if (tagx == LPX_NU || at_upper == 1) { int len; /* we have to see how it affects basic variables */ len = lpx_eval_tab_col(lp, what==1?ij:ij+m, index, val); k = lpx_prim_ratio_test(lp, len, index, val, 1, 10e-7); max_inc = DBL_MAX; if (k != 0) { /*int stat;*/ int tagx2, typx2; double vx2, dx2, lb2, ub2; /*double delta;*/ double alpha; int l; for (l = 1; l <= len; l++) if (index[l] == k) alpha = val[l]; if (k>m) { lpx_get_col_info(lp, k-m, &tagx2, &vx2, &dx2); lpx_get_col_bnds(lp, k-m, &typx2, &lb2, &ub2); } else { lpx_get_row_info(lp, k, &tagx2, &vx2, &dx2); lpx_get_row_bnds(lp, k, &typx2, &lb2, &ub2); } /* Check which direction; remember this is upper bound */ if (alpha > 0) max_inc = (ub2 - vx2)/ alpha; else max_inc = (lb2 - vx2)/ alpha; } /* now check lower bound */ k = lpx_prim_ratio_test(lp, len, index, val, -1, 10e-7); max_dec = DBL_MAX; if (k != 0) { /*int stat;*/ int tagx2, typx2; double vx2, dx2, lb2, ub2; /*double delta;*/ double alpha; int l; for (l = 1; l <= len; l++) if (index[l] == k) alpha = val[l]; if (k>m) { lpx_get_col_info(lp, k-m, &tagx2, &vx2, &dx2); lpx_get_col_bnds(lp, k-m, &typx2, &lb2, &ub2); } else { lpx_get_row_info(lp, k, &tagx2, &vx2, &dx2); lpx_get_row_bnds(lp, k, &typx2, &lb2, &ub2); } /* Check which direction; remember this is lower bound */ if (alpha > 0) max_dec = (vx2 - lb2)/ alpha; else max_dec = (vx2 - ub2)/ alpha; } } if (typx == LPX_DB || typx == LPX_FX) { if (max_dec > ub - lb) max_dec = ub - lb; } /* bound */ fprintf(fp, " UPPER %13.6g ", ub); if (max_inc == -0.0) max_inc = 0.0; if (max_dec == -0.0) max_dec = 0.0; if (max_inc == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_inc < 1.0e-12 && max_inc > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_inc); if (max_dec == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_dec < 1.0e-12 && max_dec > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_dec); fprintf(fp, "\n"); } } } /* free the memory we used */ ufree(index); ufree(val); } else fprintf(fp, "No range information since solution is not o" "ptimal.\n"); } fprintf(fp, "\n"); fprintf(fp, "End of output\n"); fflush(fp); if (ferror(fp)) { print("lpx_print_sens_bnds: can't write to `%s' - %s", fname, strerror(errno)); goto fail; } ufclose(fp); return 0; fail: if (fp != NULL) ufclose(fp); return 1; }