void lpx_eval_b_dual(LPX *lp, double row_dual[], double col_dual[]) { int i, j, k, m, n, len, *ind; double dj, *cB, *pi, *val; if (!lpx_is_b_avail(lp)) xfault("lpx_eval_b_dual: LP basis is not available\n"); m = lpx_get_num_rows(lp); n = lpx_get_num_cols(lp); /* store zero reduced costs of basic auxiliary and structural variables and build the vector cB of objective coefficients at basic variables */ cB = xcalloc(1+m, sizeof(double)); for (i = 1; i <= m; i++) { k = lpx_get_b_info(lp, i); /* xB[i] is k-th original variable */ xassert(1 <= k && k <= m+n); if (k <= m) { row_dual[k] = 0.0; cB[i] = 0.0; } else { col_dual[k-m] = 0.0; cB[i] = lpx_get_obj_coef(lp, k-m); } } /* solve the system B'*pi = cB to compute the vector pi */ pi = cB, lpx_btran(lp, pi); /* compute reduced costs of non-basic auxiliary variables */ for (i = 1; i <= m; i++) { if (lpx_get_row_stat(lp, i) != LPX_BS) row_dual[i] = - pi[i]; } /* compute reduced costs of non-basic structural variables */ ind = xcalloc(1+m, sizeof(int)); val = xcalloc(1+m, sizeof(double)); for (j = 1; j <= n; j++) { if (lpx_get_col_stat(lp, j) != LPX_BS) { dj = lpx_get_obj_coef(lp, j); len = lpx_get_mat_col(lp, j, ind, val); for (k = 1; k <= len; k++) dj += val[k] * pi[ind[k]]; col_dual[j] = dj; } } xfree(ind); xfree(val); xfree(cB); return; }
static int mat(void *info, int k, int ndx[], double val[]) { /* this auxiliary routine obtains a required row or column of the original constraint matrix */ LPX *lp = info; int m = lpx_get_num_rows(lp); int n = lpx_get_num_cols(lp); int i, j, len; if (k > 0) { /* i-th row required */ i = +k; xassert(1 <= i && i <= m); len = lpx_get_mat_row(lp, i, ndx, val); } else { /* j-th column required */ j = -k; xassert(1 <= j && j <= n); len = lpx_get_mat_col(lp, j, ndx, val); } return len; }
int lpx_print_prob(LPX *lp, const char *fname) { XFILE *fp; int m, n, mip, i, j, len, t, type, *ndx; double coef, lb, ub, *val; char *str, name[255+1]; xprintf("lpx_write_prob: writing problem data to `%s'...\n", fname); fp = xfopen(fname, "w"); if (fp == NULL) { xprintf("lpx_write_prob: unable to create `%s' - %s\n", fname, strerror(errno)); goto fail; } m = lpx_get_num_rows(lp); n = lpx_get_num_cols(lp); mip = (lpx_get_class(lp) == LPX_MIP); str = (void *)lpx_get_prob_name(lp); xfprintf(fp, "Problem: %s\n", str == NULL ? "(unnamed)" : str); xfprintf(fp, "Class: %s\n", !mip ? "LP" : "MIP"); xfprintf(fp, "Rows: %d\n", m); if (!mip) xfprintf(fp, "Columns: %d\n", n); else xfprintf(fp, "Columns: %d (%d integer, %d binary)\n", n, lpx_get_num_int(lp), lpx_get_num_bin(lp)); xfprintf(fp, "Non-zeros: %d\n", lpx_get_num_nz(lp)); xfprintf(fp, "\n"); xfprintf(fp, "*** OBJECTIVE FUNCTION ***\n"); xfprintf(fp, "\n"); switch (lpx_get_obj_dir(lp)) { case LPX_MIN: xfprintf(fp, "Minimize:"); break; case LPX_MAX: xfprintf(fp, "Maximize:"); break; default: xassert(lp != lp); } str = (void *)lpx_get_obj_name(lp); xfprintf(fp, " %s\n", str == NULL ? "(unnamed)" : str); coef = lpx_get_obj_coef(lp, 0); if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, "(constant term)"); for (i = 1; i <= m; i++) #if 0 { coef = lpx_get_row_coef(lp, i); #else { coef = 0.0; #endif if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, row_name(lp, i, name)); } for (j = 1; j <= n; j++) { coef = lpx_get_obj_coef(lp, j); if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, col_name(lp, j, name)); } xfprintf(fp, "\n"); xfprintf(fp, "*** ROWS (CONSTRAINTS) ***\n"); ndx = xcalloc(1+n, sizeof(int)); val = xcalloc(1+n, sizeof(double)); for (i = 1; i <= m; i++) { xfprintf(fp, "\n"); xfprintf(fp, "Row %d: %s", i, row_name(lp, i, name)); lpx_get_row_bnds(lp, i, &type, &lb, &ub); switch (type) { case LPX_FR: xfprintf(fp, " free"); break; case LPX_LO: xfprintf(fp, " >= %.*g", DBL_DIG, lb); break; case LPX_UP: xfprintf(fp, " <= %.*g", DBL_DIG, ub); break; case LPX_DB: xfprintf(fp, " >= %.*g <= %.*g", DBL_DIG, lb, DBL_DIG, ub); break; case LPX_FX: xfprintf(fp, " = %.*g", DBL_DIG, lb); break; default: xassert(type != type); } xfprintf(fp, "\n"); #if 0 coef = lpx_get_row_coef(lp, i); #else coef = 0.0; #endif if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, "(objective)"); len = lpx_get_mat_row(lp, i, ndx, val); for (t = 1; t <= len; t++) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, val[t], col_name(lp, ndx[t], name)); } xfree(ndx); xfree(val); xfprintf(fp, "\n"); xfprintf(fp, "*** COLUMNS (VARIABLES) ***\n"); ndx = xcalloc(1+m, sizeof(int)); val = xcalloc(1+m, sizeof(double)); for (j = 1; j <= n; j++) { xfprintf(fp, "\n"); xfprintf(fp, "Col %d: %s", j, col_name(lp, j, name)); if (mip) { switch (lpx_get_col_kind(lp, j)) { case LPX_CV: break; case LPX_IV: xfprintf(fp, " integer"); break; default: xassert(lp != lp); } } lpx_get_col_bnds(lp, j, &type, &lb, &ub); switch (type) { case LPX_FR: xfprintf(fp, " free"); break; case LPX_LO: xfprintf(fp, " >= %.*g", DBL_DIG, lb); break; case LPX_UP: xfprintf(fp, " <= %.*g", DBL_DIG, ub); break; case LPX_DB: xfprintf(fp, " >= %.*g <= %.*g", DBL_DIG, lb, DBL_DIG, ub); break; case LPX_FX: xfprintf(fp, " = %.*g", DBL_DIG, lb); break; default: xassert(type != type); } xfprintf(fp, "\n"); coef = lpx_get_obj_coef(lp, j); if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, "(objective)"); len = lpx_get_mat_col(lp, j, ndx, val); for (t = 1; t <= len; t++) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, val[t], row_name(lp, ndx[t], name)); } xfree(ndx); xfree(val); xfprintf(fp, "\n"); xfprintf(fp, "End of output\n"); xfflush(fp); if (xferror(fp)) { xprintf("lpx_write_prob: write error on `%s' - %s\n", fname, strerror(errno)); goto fail; } xfclose(fp); return 0; fail: if (fp != NULL) xfclose(fp); return 1; } #undef row_name #undef col_name /*---------------------------------------------------------------------- -- lpx_print_sol - write LP problem solution in printable format. -- -- *Synopsis* -- -- #include "glplpx.h" -- int lpx_print_sol(LPX *lp, char *fname); -- -- *Description* -- -- The routine lpx_print_sol writes the current basic solution of an LP -- problem, which is specified by the pointer lp, to a text file, whose -- name is the character string fname, in printable format. -- -- Information reported by the routine lpx_print_sol is intended mainly -- for visual analysis. -- -- *Returns* -- -- If the operation was successful, the routine returns zero. Otherwise -- the routine prints an error message and returns non-zero. */ int lpx_print_sol(LPX *lp, const char *fname) { XFILE *fp; int what, round; xprintf( "lpx_print_sol: writing LP problem solution to `%s'...\n", fname); fp = xfopen(fname, "w"); if (fp == NULL) { xprintf("lpx_print_sol: can't create `%s' - %s\n", fname, strerror(errno)); goto fail; } /* problem name */ { const char *name; name = lpx_get_prob_name(lp); if (name == NULL) name = ""; xfprintf(fp, "%-12s%s\n", "Problem:", name); } /* number of rows (auxiliary variables) */ { int nr; nr = lpx_get_num_rows(lp); xfprintf(fp, "%-12s%d\n", "Rows:", nr); } /* number of columns (structural variables) */ { int nc; nc = lpx_get_num_cols(lp); xfprintf(fp, "%-12s%d\n", "Columns:", nc); } /* number of non-zeros (constraint coefficients) */ { int nz; nz = lpx_get_num_nz(lp); xfprintf(fp, "%-12s%d\n", "Non-zeros:", nz); } /* solution status */ { int status; status = lpx_get_status(lp); xfprintf(fp, "%-12s%s\n", "Status:", status == LPX_OPT ? "OPTIMAL" : status == LPX_FEAS ? "FEASIBLE" : status == LPX_INFEAS ? "INFEASIBLE (INTERMEDIATE)" : status == LPX_NOFEAS ? "INFEASIBLE (FINAL)" : status == LPX_UNBND ? "UNBOUNDED" : status == LPX_UNDEF ? "UNDEFINED" : "???"); } /* objective function */ { char *name; int dir; double obj; name = (void *)lpx_get_obj_name(lp); dir = lpx_get_obj_dir(lp); obj = lpx_get_obj_val(lp); xfprintf(fp, "%-12s%s%s%.10g %s\n", "Objective:", name == NULL ? "" : name, name == NULL ? "" : " = ", obj, dir == LPX_MIN ? "(MINimum)" : dir == LPX_MAX ? "(MAXimum)" : "(" "???" ")"); } /* main sheet */ for (what = 1; what <= 2; what++) { int mn, ij; xfprintf(fp, "\n"); xfprintf(fp, " No. %-12s St Activity Lower bound Upp" "er bound Marginal\n", what == 1 ? " Row name" : "Column name"); xfprintf(fp, "------ ------------ -- ------------- -----------" "-- ------------- -------------\n"); mn = (what == 1 ? lpx_get_num_rows(lp) : lpx_get_num_cols(lp)); for (ij = 1; ij <= mn; ij++) { const char *name; int typx, tagx; double lb, ub, vx, dx; if (what == 1) { name = lpx_get_row_name(lp, ij); if (name == NULL) name = ""; lpx_get_row_bnds(lp, ij, &typx, &lb, &ub); round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); lpx_get_row_info(lp, ij, &tagx, &vx, &dx); lpx_set_int_parm(lp, LPX_K_ROUND, round); } else { name = lpx_get_col_name(lp, ij); if (name == NULL) name = ""; lpx_get_col_bnds(lp, ij, &typx, &lb, &ub); round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); lpx_get_col_info(lp, ij, &tagx, &vx, &dx); lpx_set_int_parm(lp, LPX_K_ROUND, round); } /* row/column ordinal number */ xfprintf(fp, "%6d ", ij); /* row column/name */ if (strlen(name) <= 12) xfprintf(fp, "%-12s ", name); else xfprintf(fp, "%s\n%20s", name, ""); /* row/column status */ xfprintf(fp, "%s ", tagx == LPX_BS ? "B " : tagx == LPX_NL ? "NL" : tagx == LPX_NU ? "NU" : tagx == LPX_NF ? "NF" : tagx == LPX_NS ? "NS" : "??"); /* row/column primal activity */ xfprintf(fp, "%13.6g ", vx); /* row/column lower bound */ if (typx == LPX_LO || typx == LPX_DB || typx == LPX_FX) xfprintf(fp, "%13.6g ", lb); else xfprintf(fp, "%13s ", ""); /* row/column upper bound */ if (typx == LPX_UP || typx == LPX_DB) xfprintf(fp, "%13.6g ", ub); else if (typx == LPX_FX) xfprintf(fp, "%13s ", "="); else xfprintf(fp, "%13s ", ""); /* row/column dual activity */ if (tagx != LPX_BS) { if (dx == 0.0) xfprintf(fp, "%13s", "< eps"); else xfprintf(fp, "%13.6g", dx); } /* end of line */ xfprintf(fp, "\n"); } } xfprintf(fp, "\n"); #if 1 if (lpx_get_prim_stat(lp) != LPX_P_UNDEF && lpx_get_dual_stat(lp) != LPX_D_UNDEF) { int m = lpx_get_num_rows(lp); LPXKKT kkt; xfprintf(fp, "Karush-Kuhn-Tucker optimality conditions:\n\n"); lpx_check_kkt(lp, 1, &kkt); xfprintf(fp, "KKT.PE: max.abs.err. = %.2e on row %d\n", kkt.pe_ae_max, kkt.pe_ae_row); xfprintf(fp, " max.rel.err. = %.2e on row %d\n", kkt.pe_re_max, kkt.pe_re_row); switch (kkt.pe_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " PRIMAL SOLUTION IS WRONG\n"); break; } xfprintf(fp, "\n"); xfprintf(fp, "KKT.PB: max.abs.err. = %.2e on %s %d\n", kkt.pb_ae_max, kkt.pb_ae_ind <= m ? "row" : "column", kkt.pb_ae_ind <= m ? kkt.pb_ae_ind : kkt.pb_ae_ind - m); xfprintf(fp, " max.rel.err. = %.2e on %s %d\n", kkt.pb_re_max, kkt.pb_re_ind <= m ? "row" : "column", kkt.pb_re_ind <= m ? kkt.pb_re_ind : kkt.pb_re_ind - m); switch (kkt.pb_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " PRIMAL SOLUTION IS INFEASIBLE\n"); break; } xfprintf(fp, "\n"); xfprintf(fp, "KKT.DE: max.abs.err. = %.2e on column %d\n", kkt.de_ae_max, kkt.de_ae_col); xfprintf(fp, " max.rel.err. = %.2e on column %d\n", kkt.de_re_max, kkt.de_re_col); switch (kkt.de_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " DUAL SOLUTION IS WRONG\n"); break; } xfprintf(fp, "\n"); xfprintf(fp, "KKT.DB: max.abs.err. = %.2e on %s %d\n", kkt.db_ae_max, kkt.db_ae_ind <= m ? "row" : "column", kkt.db_ae_ind <= m ? kkt.db_ae_ind : kkt.db_ae_ind - m); xfprintf(fp, " max.rel.err. = %.2e on %s %d\n", kkt.db_re_max, kkt.db_re_ind <= m ? "row" : "column", kkt.db_re_ind <= m ? kkt.db_re_ind : kkt.db_re_ind - m); switch (kkt.db_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " DUAL SOLUTION IS INFEASIBLE\n"); break; } xfprintf(fp, "\n"); } #endif #if 1 if (lpx_get_status(lp) == LPX_UNBND) { int m = lpx_get_num_rows(lp); int k = lpx_get_ray_info(lp); xfprintf(fp, "Unbounded ray: %s %d\n", k <= m ? "row" : "column", k <= m ? k : k - m); xfprintf(fp, "\n"); } #endif xfprintf(fp, "End of output\n"); xfflush(fp); if (xferror(fp)) { xprintf("lpx_print_sol: can't write to `%s' - %s\n", fname, strerror(errno)); goto fail; } xfclose(fp); return 0; fail: if (fp != NULL) xfclose(fp); return 1; }
int lpx_interior(LPX *_lp) { /* easy-to-use driver to the interior-point method */ struct dsa _dsa, *dsa = &_dsa; int ret, status; double *row_pval, *row_dval, *col_pval, *col_dval; /* initialize working area */ dsa->lp = _lp; dsa->orig_m = lpx_get_num_rows(dsa->lp); dsa->orig_n = lpx_get_num_cols(dsa->lp); dsa->ref = NULL; dsa->m = 0; dsa->n = 0; dsa->size = 0; dsa->ne = 0; dsa->ia = NULL; dsa->ja = NULL; dsa->ar = NULL; dsa->b = NULL; dsa->c = NULL; dsa->x = NULL; dsa->y = NULL; dsa->z = NULL; /* check if the problem is empty */ if (!(dsa->orig_m > 0 && dsa->orig_n > 0)) { print("lpx_interior: problem has no rows and/or columns"); ret = LPX_E_FAULT; goto done; } /* issue warning about dense columns */ if (dsa->orig_m >= 200) { int j, len, ndc = 0; for (j = 1; j <= dsa->orig_n; j++) { len = lpx_get_mat_col(dsa->lp, j, NULL, NULL); if ((double)len > 0.30 * (double)dsa->orig_m) ndc++; } if (ndc == 1) print("lpx_interior: WARNING: PROBLEM HAS ONE DENSE COLUMN") ; else if (ndc > 0) print("lpx_interior: WARNING: PROBLEM HAS %d DENSE COLUMNS", ndc); } /* determine dimension of transformed LP */ print("lpx_interior: original LP problem has %d rows and %d colum" "ns", dsa->orig_m, dsa->orig_n); calc_mn(dsa); print("lpx_interior: transformed LP problem has %d rows and %d co" "lumns", dsa->m, dsa->n); /* transform original LP to standard formulation */ dsa->ref = ucalloc(1+dsa->orig_m+dsa->orig_n, sizeof(int)); dsa->size = lpx_get_num_nz(dsa->lp); if (dsa->size < dsa->m) dsa->size = dsa->m; if (dsa->size < dsa->n) dsa->size = dsa->n; dsa->ne = 0; dsa->ia = ucalloc(1+dsa->size, sizeof(int)); dsa->ja = ucalloc(1+dsa->size, sizeof(int)); dsa->ar = ucalloc(1+dsa->size, sizeof(double)); dsa->b = ucalloc(1+dsa->m, sizeof(double)); dsa->c = ucalloc(1+dsa->n, sizeof(double)); transform(dsa); /* solve the transformed LP problem */ { int *A_ptr = ucalloc(1+dsa->m+1, sizeof(int)); int *A_ind = ucalloc(1+dsa->ne, sizeof(int)); double *A_val = ucalloc(1+dsa->ne, sizeof(double)); int i, k, pos, len; /* determine row lengths */ for (i = 1; i <= dsa->m; i++) A_ptr[i] = 0; for (k = 1; k <= dsa->ne; k++) A_ptr[dsa->ia[k]]++; /* set up row pointers */ pos = 1; for (i = 1; i <= dsa->m; i++) len = A_ptr[i], pos += len, A_ptr[i] = pos; A_ptr[dsa->m+1] = pos; insist(pos - 1 == dsa->ne); /* build the matrix */ for (k = 1; k <= dsa->ne; k++) { pos = --A_ptr[dsa->ia[k]]; A_ind[pos] = dsa->ja[k]; A_val[pos] = dsa->ar[k]; } ufree(dsa->ia), dsa->ia = NULL; ufree(dsa->ja), dsa->ja = NULL; ufree(dsa->ar), dsa->ar = NULL; dsa->x = ucalloc(1+dsa->n, sizeof(double)); dsa->y = ucalloc(1+dsa->m, sizeof(double)); dsa->z = ucalloc(1+dsa->n, sizeof(double)); ret = ipm_main(dsa->m, dsa->n, A_ptr, A_ind, A_val, dsa->b, dsa->c, dsa->x, dsa->y, dsa->z); ufree(A_ptr); ufree(A_ind); ufree(A_val); ufree(dsa->b), dsa->b = NULL; ufree(dsa->c), dsa->c = NULL; } /* analyze return code reported by the solver */ switch (ret) { case 0: /* optimal solution found */ ret = LPX_E_OK; break; case 1: /* problem has no feasible (primal or dual) solution */ ret = LPX_E_NOFEAS; break; case 2: /* no convergence */ ret = LPX_E_NOCONV; break; case 3: /* iterations limit exceeded */ ret = LPX_E_ITLIM; break; case 4: /* numerical instability on solving Newtonian system */ ret = LPX_E_INSTAB; break; default: insist(ret != ret); } /* recover solution of original LP */ row_pval = ucalloc(1+dsa->orig_m, sizeof(double)); row_dval = ucalloc(1+dsa->orig_m, sizeof(double)); col_pval = ucalloc(1+dsa->orig_n, sizeof(double)); col_dval = ucalloc(1+dsa->orig_n, sizeof(double)); restore(dsa, row_pval, row_dval, col_pval, col_dval); ufree(dsa->ref), dsa->ref = NULL; ufree(dsa->x), dsa->x = NULL; ufree(dsa->y), dsa->y = NULL; ufree(dsa->z), dsa->z = NULL; /* store solution components into the problem object */ status = (ret == LPX_E_OK ? LPX_T_OPT : LPX_T_UNDEF); lpx_put_ipt_soln(dsa->lp, status, row_pval, row_dval, col_pval, col_dval); ufree(row_pval); ufree(row_dval); ufree(col_pval); ufree(col_dval); done: /* return to the calling program */ return ret; }
static void restore(struct dsa *dsa, double row_pval[], double row_dval[], double col_pval[], double col_dval[]) { /* restore solution of original LP */ LPX *lp = dsa->lp; int orig_m = dsa->orig_m; int orig_n = dsa->orig_n; int *ref = dsa->ref; int m = dsa->m; double *x = dsa->x; double *y = dsa->y; int dir = lpx_get_obj_dir(lp); int i, j, k, type, t, len, *ind; double lb, ub, rii, sjj, temp, *val; /* compute primal values of structural variables */ for (k = 1; k <= orig_n; k++) { j = ref[orig_m+k]; type = lpx_get_col_type(lp, k); sjj = lpx_get_sjj(lp, k); lb = lpx_get_col_lb(lp, k) / sjj; ub = lpx_get_col_ub(lp, k) / sjj; switch (type) { case LPX_FR: /* source: -inf < x < +inf */ /* result: x = x' - x'', x' >= 0, x'' >= 0 */ col_pval[k] = x[j] - x[j+1]; break; case LPX_LO: /* source: lb <= x < +inf */ /* result: x = lb + x', x' >= 0 */ col_pval[k] = lb + x[j]; break; case LPX_UP: /* source: -inf < x <= ub */ /* result: x = ub - x', x' >= 0 */ col_pval[k] = ub - x[j]; break; case LPX_DB: /* source: lb <= x <= ub */ /* result: x = lb + x', x' + x'' = ub - lb */ col_pval[k] = lb + x[j]; break; case LPX_FX: /* source: x = lb */ /* result: just substitute */ col_pval[k] = lb; break; default: insist(type != type); } } /* compute primal values of auxiliary variables */ /* xR = A * xS */ ind = ucalloc(1+orig_n, sizeof(int)); val = ucalloc(1+orig_n, sizeof(double)); for (k = 1; k <= orig_m; k++) { rii = lpx_get_rii(lp, k); temp = 0.0; len = lpx_get_mat_row(lp, k, ind, val); for (t = 1; t <= len; t++) { sjj = lpx_get_sjj(lp, ind[t]); temp += (rii * val[t] * sjj) * col_pval[ind[t]]; } row_pval[k] = temp; } ufree(ind); ufree(val); /* compute dual values of auxiliary variables */ for (k = 1; k <= orig_m; k++) { type = lpx_get_row_type(lp, k); i = ref[k]; switch (type) { case LPX_FR: insist(i == 0); row_dval[k] = 0.0; break; case LPX_LO: case LPX_UP: case LPX_DB: case LPX_FX: insist(1 <= i && i <= m); row_dval[k] = (dir == LPX_MIN ? +1.0 : -1.0) * y[i]; break; default: insist(type != type); } } /* compute dual values of structural variables */ /* dS = cS - A' * (dR - cR) */ ind = ucalloc(1+orig_m, sizeof(int)); val = ucalloc(1+orig_m, sizeof(double)); for (k = 1; k <= orig_n; k++) { sjj = lpx_get_sjj(lp, k); temp = lpx_get_obj_coef(lp, k) / sjj; len = lpx_get_mat_col(lp, k, ind, val); for (t = 1; t <= len; t++) { rii = lpx_get_rii(lp, ind[t]); temp -= (rii * val[t] * sjj) * row_dval[ind[t]]; } col_dval[k] = temp; } ufree(ind); ufree(val); /* unscale solution of original LP */ for (i = 1; i <= orig_m; i++) { rii = lpx_get_rii(lp, i); row_pval[i] /= rii; row_dval[i] *= rii; } for (j = 1; j <= orig_n; j++) { sjj = lpx_get_sjj(lp, j); col_pval[j] *= sjj; col_dval[j] /= sjj; } return; }
static void transform(struct dsa *dsa) { /* transform original LP to standard formulation */ LPX *lp = dsa->lp; int orig_m = dsa->orig_m; int orig_n = dsa->orig_n; int *ref = dsa->ref; int m = dsa->m; int n = dsa->n; double *b = dsa->b; double *c = dsa->c; int i, j, k, type, t, ii, len, *ind; double lb, ub, coef, rii, sjj, *val; /* initialize components of transformed LP */ dsa->ne = 0; for (i = 1; i <= m; i++) b[i] = 0.0; c[0] = lpx_get_obj_coef(lp, 0); for (j = 1; j <= n; j++) c[j] = 0.0; /* i and j are, respectively, ordinal number of current row and ordinal number of current column in transformed LP */ i = j = 0; /* transform rows (auxiliary variables) */ for (k = 1; k <= orig_m; k++) { type = lpx_get_row_type(lp, k); rii = lpx_get_rii(lp, k); lb = lpx_get_row_lb(lp, k) * rii; ub = lpx_get_row_ub(lp, k) * rii; switch (type) { case LPX_FR: /* source: -inf < (L.F.) < +inf */ /* result: ignore free row */ ref[k] = 0; break; case LPX_LO: /* source: lb <= (L.F.) < +inf */ /* result: (L.F.) - x' = lb, x' >= 0 */ i++; j++; ref[k] = i; new_coef(dsa, i, j, -1.0); b[i] = lb; break; case LPX_UP: /* source: -inf < (L.F.) <= ub */ /* result: (L.F.) + x' = ub, x' >= 0 */ i++; j++; ref[k] = i; new_coef(dsa, i, j, +1.0); b[i] = ub; break; case LPX_DB: /* source: lb <= (L.F.) <= ub */ /* result: (L.F.) - x' = lb, x' + x'' = ub - lb */ i++; j++; ref[k] = i; new_coef(dsa, i, j, -1.0); b[i] = lb; i++; new_coef(dsa, i, j, +1.0); j++; new_coef(dsa, i, j, +1.0); b[i] = ub - lb; break; case LPX_FX: /* source: (L.F.) = lb */ /* result: (L.F.) = lb */ i++; ref[k] = i; b[i] = lb; break; default: insist(type != type); } } /* transform columns (structural variables) */ ind = ucalloc(1+orig_m, sizeof(int)); val = ucalloc(1+orig_m, sizeof(double)); for (k = 1; k <= orig_n; k++) { type = lpx_get_col_type(lp, k); sjj = lpx_get_sjj(lp, k); lb = lpx_get_col_lb(lp, k) / sjj; ub = lpx_get_col_ub(lp, k) / sjj; coef = lpx_get_obj_coef(lp, k) * sjj; len = lpx_get_mat_col(lp, k, ind, val); for (t = 1; t <= len; t++) val[t] *= (lpx_get_rii(lp, ind[t]) * sjj); switch (type) { case LPX_FR: /* source: -inf < x < +inf */ /* result: x = x' - x'', x' >= 0, x'' >= 0 */ j++; ref[orig_m+k] = j; for (t = 1; t <= len; t++) { ii = ref[ind[t]]; if (ii != 0) new_coef(dsa, ii, j, +val[t]); } c[j] = +coef; j++; for (t = 1; t <= len; t++) { ii = ref[ind[t]]; if (ii != 0) new_coef(dsa, ii, j, -val[t]); } c[j] = -coef; break; case LPX_LO: /* source: lb <= x < +inf */ /* result: x = lb + x', x' >= 0 */ j++; ref[orig_m+k] = j; for (t = 1; t <= len; t++) { ii = ref[ind[t]]; if (ii != 0) { new_coef(dsa, ii, j, val[t]); b[ii] -= val[t] * lb; } } c[j] = +coef; c[0] += c[j] * lb; break; case LPX_UP: /* source: -inf < x <= ub */ /* result: x = ub - x', x' >= 0 */ j++; ref[orig_m+k] = j; for (t = 1; t <= len; t++) { ii = ref[ind[t]]; if (ii != 0) { new_coef(dsa, ii, j, -val[t]); b[ii] -= val[t] * ub; } } c[j] = -coef; c[0] -= c[j] * ub; break; case LPX_DB: /* source: lb <= x <= ub */ /* result: x = lb + x', x' + x'' = ub - lb */ j++; ref[orig_m+k] = j; for (t = 1; t <= len; t++) { ii = ref[ind[t]]; if (ii != 0) { new_coef(dsa, ii, j, val[t]); b[ii] -= val[t] * lb; } } c[j] = +coef; c[0] += c[j] * lb; i++; new_coef(dsa, i, j, +1.0); j++; new_coef(dsa, i, j, +1.0); b[i] = ub - lb; break; case LPX_FX: /* source: x = lb */ /* result: just substitute */ ref[orig_m+k] = 0; for (t = 1; t <= len; t++) { ii = ref[ind[t]]; if (ii != 0) b[ii] -= val[t] * lb; } c[0] += coef * lb; break; default: insist(type != type); } } ufree(ind); ufree(val); /* end of transformation */ insist(i == m && j == n); /* change the objective sign in case of maximization */ if (lpx_get_obj_dir(lp) == LPX_MAX) for (j = 0; j <= n; j++) c[j] = -c[j]; return; }
void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt) { int m = lpx_get_num_rows(lp); int n = lpx_get_num_cols(lp); #if 0 /* 21/XII-2003 */ int *typx = lp->typx; double *lb = lp->lb; double *ub = lp->ub; double *rs = lp->rs; #else int typx, tagx; double lb, ub; #endif int dir = lpx_get_obj_dir(lp); #if 0 /* 21/XII-2003 */ double *coef = lp->coef; #endif #if 0 /* 22/XII-2003 */ int *A_ptr = lp->A->ptr; int *A_len = lp->A->len; int *A_ndx = lp->A->ndx; double *A_val = lp->A->val; #endif int *A_ndx; double *A_val; #if 0 /* 21/XII-2003 */ int *tagx = lp->tagx; int *posx = lp->posx; int *indx = lp->indx; double *bbar = lp->bbar; double *cbar = lp->cbar; #endif int beg, end, i, j, k, t; double cR_i, cS_j, c_k, xR_i, xS_j, x_k, dR_i, dS_j, d_k; double g_i, h_k, u_j, v_k, temp, rii, sjj; if (lpx_get_prim_stat(lp) == LPX_P_UNDEF) xfault("lpx_check_kkt: primal basic solution is undefined\n"); if (lpx_get_dual_stat(lp) == LPX_D_UNDEF) xfault("lpx_check_kkt: dual basic solution is undefined\n"); /*--------------------------------------------------------------*/ /* compute largest absolute and relative errors and corresponding row indices for the condition (KKT.PE) */ kkt->pe_ae_max = 0.0, kkt->pe_ae_row = 0; kkt->pe_re_max = 0.0, kkt->pe_re_row = 0; A_ndx = xcalloc(1+n, sizeof(int)); A_val = xcalloc(1+n, sizeof(double)); for (i = 1; i <= m; i++) { /* determine xR[i] */ #if 0 /* 21/XII-2003 */ if (tagx[i] == LPX_BS) xR_i = bbar[posx[i]]; else xR_i = spx_eval_xn_j(lp, posx[i] - m); #else lpx_get_row_info(lp, i, NULL, &xR_i, NULL); xR_i *= lpx_get_rii(lp, i); #endif /* g[i] := xR[i] */ g_i = xR_i; /* g[i] := g[i] - (i-th row of A) * xS */ beg = 1; end = lpx_get_mat_row(lp, i, A_ndx, A_val); for (t = beg; t <= end; t++) { j = m + A_ndx[t]; /* a[i,j] != 0 */ /* determine xS[j] */ #if 0 /* 21/XII-2003 */ if (tagx[j] == LPX_BS) xS_j = bbar[posx[j]]; else xS_j = spx_eval_xn_j(lp, posx[j] - m); #else lpx_get_col_info(lp, j-m, NULL, &xS_j, NULL); xS_j /= lpx_get_sjj(lp, j-m); #endif /* g[i] := g[i] - a[i,j] * xS[j] */ rii = lpx_get_rii(lp, i); sjj = lpx_get_sjj(lp, j-m); g_i -= (rii * A_val[t] * sjj) * xS_j; } /* unscale xR[i] and g[i] (if required) */ if (!scaled) { rii = lpx_get_rii(lp, i); xR_i /= rii, g_i /= rii; } /* determine absolute error */ temp = fabs(g_i); if (kkt->pe_ae_max < temp) kkt->pe_ae_max = temp, kkt->pe_ae_row = i; /* determine relative error */ temp /= (1.0 + fabs(xR_i)); if (kkt->pe_re_max < temp) kkt->pe_re_max = temp, kkt->pe_re_row = i; } xfree(A_ndx); xfree(A_val); /* estimate the solution quality */ if (kkt->pe_re_max <= 1e-9) kkt->pe_quality = 'H'; else if (kkt->pe_re_max <= 1e-6) kkt->pe_quality = 'M'; else if (kkt->pe_re_max <= 1e-3) kkt->pe_quality = 'L'; else kkt->pe_quality = '?'; /*--------------------------------------------------------------*/ /* compute largest absolute and relative errors and corresponding variable indices for the condition (KKT.PB) */ kkt->pb_ae_max = 0.0, kkt->pb_ae_ind = 0; kkt->pb_re_max = 0.0, kkt->pb_re_ind = 0; for (k = 1; k <= m+n; k++) { /* determine x[k] */ if (k <= m) { lpx_get_row_bnds(lp, k, &typx, &lb, &ub); rii = lpx_get_rii(lp, k); lb *= rii; ub *= rii; lpx_get_row_info(lp, k, &tagx, &x_k, NULL); x_k *= rii; } else { lpx_get_col_bnds(lp, k-m, &typx, &lb, &ub); sjj = lpx_get_sjj(lp, k-m); lb /= sjj; ub /= sjj; lpx_get_col_info(lp, k-m, &tagx, &x_k, NULL); x_k /= sjj; } /* skip non-basic variable */ if (tagx != LPX_BS) continue; /* compute h[k] */ h_k = 0.0; switch (typx) { case LPX_FR: break; case LPX_LO: if (x_k < lb) h_k = x_k - lb; break; case LPX_UP: if (x_k > ub) h_k = x_k - ub; break; case LPX_DB: case LPX_FX: if (x_k < lb) h_k = x_k - lb; if (x_k > ub) h_k = x_k - ub; break; default: xassert(typx != typx); } /* unscale x[k] and h[k] (if required) */ if (!scaled) { if (k <= m) { rii = lpx_get_rii(lp, k); x_k /= rii, h_k /= rii; } else { sjj = lpx_get_sjj(lp, k-m); x_k *= sjj, h_k *= sjj; } } /* determine absolute error */ temp = fabs(h_k); if (kkt->pb_ae_max < temp) kkt->pb_ae_max = temp, kkt->pb_ae_ind = k; /* determine relative error */ temp /= (1.0 + fabs(x_k)); if (kkt->pb_re_max < temp) kkt->pb_re_max = temp, kkt->pb_re_ind = k; } /* estimate the solution quality */ if (kkt->pb_re_max <= 1e-9) kkt->pb_quality = 'H'; else if (kkt->pb_re_max <= 1e-6) kkt->pb_quality = 'M'; else if (kkt->pb_re_max <= 1e-3) kkt->pb_quality = 'L'; else kkt->pb_quality = '?'; /*--------------------------------------------------------------*/ /* compute largest absolute and relative errors and corresponding column indices for the condition (KKT.DE) */ kkt->de_ae_max = 0.0, kkt->de_ae_col = 0; kkt->de_re_max = 0.0, kkt->de_re_col = 0; A_ndx = xcalloc(1+m, sizeof(int)); A_val = xcalloc(1+m, sizeof(double)); for (j = m+1; j <= m+n; j++) { /* determine cS[j] */ #if 0 /* 21/XII-2003 */ cS_j = coef[j]; #else sjj = lpx_get_sjj(lp, j-m); cS_j = lpx_get_obj_coef(lp, j-m) * sjj; #endif /* determine dS[j] */ #if 0 /* 21/XII-2003 */ if (tagx[j] == LPX_BS) dS_j = 0.0; else dS_j = cbar[posx[j] - m]; #else lpx_get_col_info(lp, j-m, NULL, NULL, &dS_j); dS_j *= sjj; #endif /* u[j] := dS[j] - cS[j] */ u_j = dS_j - cS_j; /* u[j] := u[j] + (j-th column of A) * (dR - cR) */ beg = 1; end = lpx_get_mat_col(lp, j-m, A_ndx, A_val); for (t = beg; t <= end; t++) { i = A_ndx[t]; /* a[i,j] != 0 */ /* determine cR[i] */ #if 0 /* 21/XII-2003 */ cR_i = coef[i]; #else cR_i = 0.0; #endif /* determine dR[i] */ #if 0 /* 21/XII-2003 */ if (tagx[i] == LPX_BS) dR_i = 0.0; else dR_i = cbar[posx[i] - m]; #else lpx_get_row_info(lp, i, NULL, NULL, &dR_i); rii = lpx_get_rii(lp, i); dR_i /= rii; #endif /* u[j] := u[j] + a[i,j] * (dR[i] - cR[i]) */ rii = lpx_get_rii(lp, i); sjj = lpx_get_sjj(lp, j-m); u_j += (rii * A_val[t] * sjj) * (dR_i - cR_i); } /* unscale cS[j], dS[j], and u[j] (if required) */ if (!scaled) { sjj = lpx_get_sjj(lp, j-m); cS_j /= sjj, dS_j /= sjj, u_j /= sjj; } /* determine absolute error */ temp = fabs(u_j); if (kkt->de_ae_max < temp) kkt->de_ae_max = temp, kkt->de_ae_col = j - m; /* determine relative error */ temp /= (1.0 + fabs(dS_j - cS_j)); if (kkt->de_re_max < temp) kkt->de_re_max = temp, kkt->de_re_col = j - m; } xfree(A_ndx); xfree(A_val); /* estimate the solution quality */ if (kkt->de_re_max <= 1e-9) kkt->de_quality = 'H'; else if (kkt->de_re_max <= 1e-6) kkt->de_quality = 'M'; else if (kkt->de_re_max <= 1e-3) kkt->de_quality = 'L'; else kkt->de_quality = '?'; /*--------------------------------------------------------------*/ /* compute largest absolute and relative errors and corresponding variable indices for the condition (KKT.DB) */ kkt->db_ae_max = 0.0, kkt->db_ae_ind = 0; kkt->db_re_max = 0.0, kkt->db_re_ind = 0; for (k = 1; k <= m+n; k++) { /* determine c[k] */ #if 0 /* 21/XII-2003 */ c_k = coef[k]; #else if (k <= m) c_k = 0.0; else { sjj = lpx_get_sjj(lp, k-m); c_k = lpx_get_obj_coef(lp, k-m) / sjj; } #endif /* determine d[k] */ #if 0 /* 21/XII-2003 */ d_k = cbar[j-m]; #else if (k <= m) { lpx_get_row_info(lp, k, &tagx, NULL, &d_k); rii = lpx_get_rii(lp, k); d_k /= rii; } else { lpx_get_col_info(lp, k-m, &tagx, NULL, &d_k); sjj = lpx_get_sjj(lp, k-m); d_k *= sjj; } #endif /* skip basic variable */ if (tagx == LPX_BS) continue; /* compute v[k] */ v_k = 0.0; switch (tagx) { case LPX_NL: switch (dir) { case LPX_MIN: if (d_k < 0.0) v_k = d_k; break; case LPX_MAX: if (d_k > 0.0) v_k = d_k; break; default: xassert(dir != dir); } break; case LPX_NU: switch (dir) { case LPX_MIN: if (d_k > 0.0) v_k = d_k; break; case LPX_MAX: if (d_k < 0.0) v_k = d_k; break; default: xassert(dir != dir); } break; case LPX_NF: v_k = d_k; break; case LPX_NS: break; default: xassert(tagx != tagx); } /* unscale c[k], d[k], and v[k] (if required) */ if (!scaled) { if (k <= m) { rii = lpx_get_rii(lp, k); c_k *= rii, d_k *= rii, v_k *= rii; } else { sjj = lpx_get_sjj(lp, k-m); c_k /= sjj, d_k /= sjj, v_k /= sjj; } } /* determine absolute error */ temp = fabs(v_k); if (kkt->db_ae_max < temp) kkt->db_ae_max = temp, kkt->db_ae_ind = k; /* determine relative error */ temp /= (1.0 + fabs(d_k - c_k)); if (kkt->db_re_max < temp) kkt->db_re_max = temp, kkt->db_re_ind = k; } /* estimate the solution quality */ if (kkt->db_re_max <= 1e-9) kkt->db_quality = 'H'; else if (kkt->db_re_max <= 1e-6) kkt->db_quality = 'M'; else if (kkt->db_re_max <= 1e-3) kkt->db_quality = 'L'; else kkt->db_quality = '?'; /* complementary slackness is always satisfied by definition for any basic solution, so not checked */ kkt->cs_ae_max = 0.0, kkt->cs_ae_ind = 0; kkt->cs_re_max = 0.0, kkt->cs_re_ind = 0; kkt->cs_quality = 'H'; return; }
static int mat(void *info, int k, int ndx[]) { /* this auxiliary routine returns the pattern of a given row or a given column of the augmented constraint matrix A~ = (I|-A), in which columns of fixed variables are implicitly cleared */ LPX *lp = info; int m = lpx_get_num_rows(lp); int n = lpx_get_num_cols(lp); int typx, i, j, lll, len = 0; if (k > 0) { /* the pattern of the i-th row is required */ i = +k; xassert(1 <= i && i <= m); #if 0 /* 22/XII-2003 */ /* if the auxiliary variable x[i] is non-fixed, include its element (placed in the i-th column) in the pattern */ lpx_get_row_bnds(lp, i, &typx, NULL, NULL); if (typx != LPX_FX) ndx[++len] = i; /* include in the pattern elements placed in columns, which correspond to non-fixed structural varables */ i_beg = aa_ptr[i]; i_end = i_beg + aa_len[i] - 1; for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) { j = m + sv_ndx[i_ptr]; lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL); if (typx != LPX_FX) ndx[++len] = j; } #else lll = lpx_get_mat_row(lp, i, ndx, NULL); for (k = 1; k <= lll; k++) { lpx_get_col_bnds(lp, ndx[k], &typx, NULL, NULL); if (typx != LPX_FX) ndx[++len] = m + ndx[k]; } lpx_get_row_bnds(lp, i, &typx, NULL, NULL); if (typx != LPX_FX) ndx[++len] = i; #endif } else { /* the pattern of the j-th column is required */ j = -k; xassert(1 <= j && j <= m+n); /* if the (auxiliary or structural) variable x[j] is fixed, the pattern of its column is empty */ if (j <= m) lpx_get_row_bnds(lp, j, &typx, NULL, NULL); else lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL); if (typx != LPX_FX) { if (j <= m) { /* x[j] is non-fixed auxiliary variable */ ndx[++len] = j; } else { /* x[j] is non-fixed structural variables */ #if 0 /* 22/XII-2003 */ j_beg = aa_ptr[j]; j_end = j_beg + aa_len[j] - 1; for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++) ndx[++len] = sv_ndx[j_ptr]; #else len = lpx_get_mat_col(lp, j-m, ndx, NULL); #endif } } } /* return the length of the row/column pattern */ return len; }
void ipp_load_orig(IPP *ipp, LPX *orig) { IPPROW **row; IPPCOL *col; int i, j, k, type, len, *ind; double lb, ub, *val; /* save some information about the original problem */ ipp->orig_m = lpx_get_num_rows(orig); ipp->orig_n = lpx_get_num_cols(orig); ipp->orig_nnz = lpx_get_num_nz(orig); ipp->orig_dir = lpx_get_obj_dir(orig); /* allocate working arrays */ row = xcalloc(1+ipp->orig_m, sizeof(IPPROW *)); ind = xcalloc(1+ipp->orig_m, sizeof(int)); val = xcalloc(1+ipp->orig_m, sizeof(double)); /* copy rows of the original problem into the workspace */ for (i = 1; i <= ipp->orig_m; i++) { type = lpx_get_row_type(orig, i); if (type == LPX_FR || type == LPX_UP) lb = -DBL_MAX; else lb = lpx_get_row_lb(orig, i); if (type == LPX_FR || type == LPX_LO) ub = +DBL_MAX; else ub = lpx_get_row_ub(orig, i); row[i] = ipp_add_row(ipp, lb, ub); } /* copy columns of the original problem into the workspace; each column created in the workspace is assigned a reference number which is its ordinal number in the original problem */ for (j = 1; j <= ipp->orig_n; j++) { type = lpx_get_col_type(orig, j); if (type == LPX_FR || type == LPX_UP) lb = -DBL_MAX; else lb = lpx_get_col_lb(orig, j); if (type == LPX_FR || type == LPX_LO) ub = +DBL_MAX; else ub = lpx_get_col_ub(orig, j); col = ipp_add_col(ipp, lpx_get_col_kind(orig, j) == LPX_IV, lb, ub, lpx_get_obj_coef(orig, j)); len = lpx_get_mat_col(orig, j, ind, val); for (k = 1; k <= len; k++) ipp_add_aij(ipp, row[ind[k]], col, val[k]); } /* copy the constant term of the original objective function */ ipp->c0 = lpx_get_obj_coef(orig, 0); /* if the original problem is maximization, change the sign of the objective function, because the transformed problem to be processed by the presolver must be minimization */ if (ipp->orig_dir == LPX_MAX) { for (col = ipp->col_ptr; col != NULL; col = col->next) col->c = - col->c; ipp->c0 = - ipp->c0; } /* free working arrays */ xfree(row); xfree(ind); xfree(val); return; }
void lpx_eval_b_prim(LPX *lp, double row_prim[], double col_prim[]) { int i, j, k, m, n, stat, len, *ind; double xN, *NxN, *xB, *val; if (!lpx_is_b_avail(lp)) xfault("lpx_eval_b_prim: LP basis is not available\n"); m = lpx_get_num_rows(lp); n = lpx_get_num_cols(lp); /* store values of non-basic auxiliary and structural variables and compute the right-hand side vector (-N*xN) */ NxN = xcalloc(1+m, sizeof(double)); for (i = 1; i <= m; i++) NxN[i] = 0.0; /* walk through auxiliary variables */ for (i = 1; i <= m; i++) { /* obtain status of i-th auxiliary variable */ stat = lpx_get_row_stat(lp, i); /* if it is basic, skip it */ if (stat == LPX_BS) continue; /* i-th auxiliary variable is non-basic; get its value */ switch (stat) { case LPX_NL: xN = lpx_get_row_lb(lp, i); break; case LPX_NU: xN = lpx_get_row_ub(lp, i); break; case LPX_NF: xN = 0.0; break; case LPX_NS: xN = lpx_get_row_lb(lp, i); break; default: xassert(lp != lp); } /* store the value of non-basic auxiliary variable */ row_prim[i] = xN; /* and add corresponding term to the right-hand side vector */ NxN[i] -= xN; } /* walk through structural variables */ ind = xcalloc(1+m, sizeof(int)); val = xcalloc(1+m, sizeof(double)); for (j = 1; j <= n; j++) { /* obtain status of j-th structural variable */ stat = lpx_get_col_stat(lp, j); /* if it basic, skip it */ if (stat == LPX_BS) continue; /* j-th structural variable is non-basic; get its value */ switch (stat) { case LPX_NL: xN = lpx_get_col_lb(lp, j); break; case LPX_NU: xN = lpx_get_col_ub(lp, j); break; case LPX_NF: xN = 0.0; break; case LPX_NS: xN = lpx_get_col_lb(lp, j); break; default: xassert(lp != lp); } /* store the value of non-basic structural variable */ col_prim[j] = xN; /* and add corresponding term to the right-hand side vector */ if (xN != 0.0) { len = lpx_get_mat_col(lp, j, ind, val); for (k = 1; k <= len; k++) NxN[ind[k]] += val[k] * xN; } } xfree(ind); xfree(val); /* solve the system B*xB = (-N*xN) to compute the vector xB */ xB = NxN, lpx_ftran(lp, xB); /* store values of basic auxiliary and structural variables */ for (i = 1; i <= m; i++) { k = lpx_get_b_info(lp, i); xassert(1 <= k && k <= m+n); if (k <= m) row_prim[k] = xB[i]; else col_prim[k-m] = xB[i]; } xfree(NxN); return; }
int lpx_transform_row(LPX *lp, int len, int ind[], double val[]) { int i, j, k, m, n, t, lll, *iii; double alfa, *a, *aB, *rho, *vvv; if (!lpx_is_b_avail(lp)) xfault("lpx_transform_row: LP basis is not available\n"); m = lpx_get_num_rows(lp); n = lpx_get_num_cols(lp); /* unpack the row to be transformed to the array a */ a = xcalloc(1+n, sizeof(double)); for (j = 1; j <= n; j++) a[j] = 0.0; if (!(0 <= len && len <= n)) xfault("lpx_transform_row: len = %d; invalid row length\n", len); for (t = 1; t <= len; t++) { j = ind[t]; if (!(1 <= j && j <= n)) xfault("lpx_transform_row: ind[%d] = %d; column index out o" "f range\n", t, j); if (val[t] == 0.0) xfault("lpx_transform_row: val[%d] = 0; zero coefficient no" "t allowed\n", t); if (a[j] != 0.0) xfault("lpx_transform_row: ind[%d] = %d; duplicate column i" "ndices not allowed\n", t, j); a[j] = val[t]; } /* construct the vector aB */ aB = xcalloc(1+m, sizeof(double)); for (i = 1; i <= m; i++) { k = lpx_get_b_info(lp, i); /* xB[i] is k-th original variable */ xassert(1 <= k && k <= m+n); aB[i] = (k <= m ? 0.0 : a[k-m]); } /* solve the system B'*rho = aB to compute the vector rho */ rho = aB, lpx_btran(lp, rho); /* compute coefficients at non-basic auxiliary variables */ len = 0; for (i = 1; i <= m; i++) { if (lpx_get_row_stat(lp, i) != LPX_BS) { alfa = - rho[i]; if (alfa != 0.0) { len++; ind[len] = i; val[len] = alfa; } } } /* compute coefficients at non-basic structural variables */ iii = xcalloc(1+m, sizeof(int)); vvv = xcalloc(1+m, sizeof(double)); for (j = 1; j <= n; j++) { if (lpx_get_col_stat(lp, j) != LPX_BS) { alfa = a[j]; lll = lpx_get_mat_col(lp, j, iii, vvv); for (t = 1; t <= lll; t++) alfa += vvv[t] * rho[iii[t]]; if (alfa != 0.0) { len++; ind[len] = m+j; val[len] = alfa; } } } xassert(len <= n); xfree(iii); xfree(vvv); xfree(aB); xfree(a); return len; }