コード例 #1
0
template <class DATA> void
Statistics<DATA>::update
  (
  )
  const
  {
  matrix_set_scaled(m_mean,1.0/m_counter,m_sum);
  if (m_counter<2)
    {
    matrix_set_scalar(m_variance,0);
    }
  else
    {
    for (int i=0;i<m_variance.rows();++i)
      m_variance(i) = sqrt(1.0/(m_counter-1) * 
        (m_squared_sum(i) - SQR(m_mean(i))*m_counter));
    }
  m_changed = false;
  }
コード例 #2
0
/*Rueckgabe 0 - inc, 1 - inc_err, 2 - abs, 3 - abs_err, 4-8 reserviert*/
double *m_fit(dataset *dat, fit_conf *conf, double inclin, double absol) {
	double *vari, *res, vsum, v_sq_x, v_x, v_xy, v_sq_y, v_y, v_sq, rez_d,
			chi_sq;
	int k;

	/*Ansetzen der Varianzgewichtung fuer gegebenes inclin */

	vari = m_variance(dat, conf, inclin);
	if (vari == NULL)
		return NULL;
	res = malloc(9 * sizeof(double));
	if (res == NULL) {
		free(vari);
		return NULL;
	}

	/*ausrechnen der Summen */
	v_sq = 0; /* 1/sigma_i^2*/
	vsum = 0; /* Summe 1/sigma_i^2*/
	v_sq_x = 0; /*x^2 / v_sq*/
	v_x = 0; /*x / v_sq*/
	v_xy = 0; /*xy / v_sq*/
	v_sq_y = 0; /*y^2 / v_sq*/
	v_y = 0; /*y / v_sq*/
	chi_sq = 0; /* Guete des Fits */

	for (k = conf->start; k < conf->start + conf->len; ++k) {
		v_sq = vari[k];
		vsum += 1. / v_sq;
		v_sq_x += pow(dat->data[dat->x][k], 2) / v_sq;
		v_x += dat->data[dat->x][k] / v_sq;
		v_xy += (dat->data[dat->x][k] * dat->data[dat->y][k]) / v_sq;
		v_sq_y += pow(dat->data[dat->y][k], 2) / v_sq;
		v_y += dat->data[dat->y][k] / v_sq;
		chi_sq += pow(
				dat->data[dat->y][k] - inclin * dat->data[dat->x][k] - absol, 2)
				/ v_sq;
	}
	chi_sq /= conf->len - 2;
	/*Steigungsberechnung */
	rez_d = vsum * v_sq_x - pow(v_x, 2);
	rez_d = 1. / rez_d;
	res[0] = vsum * v_xy - v_x * v_y;
	res[0] *= rez_d;

	/*Fehler der Steigung */
	res[1] = rez_d * vsum;
	res[1] = sqrt(res[1]);

	/*Absolutes Glied*/
	res[2] = v_y - (res[0] * v_x);
	res[2] /= vsum;/*Varianzgemittelte Mittelwerte*/

	/*Fehler Absolutes Glied*/
	res[3] = res[1] * v_x / vsum;
	res[3] = sqrt(res[3]);
	/* hier muss evtl. noch gegausst werden! */

	/* Korellationskoeffizient -> wird in uebergeorndeter Funktion berechnet*/
	res[4] = 0;
	/* reserviert fuer Abbruchinformationen */
	res[5] = 0;
	/* reserviert fuer Anzahl Iterationen */
	res[6] = 0;
	/* reserviert fuer letzte Aenderung*/
	res[7] = 0;
	/* chi_sq Guete des Fits */
	res[8] = chi_sq;

	free(vari);
	return res;
}