コード例 #1
0
/**
    Purpose
    -------
    CLATRD reduces NB rows and columns of a complex Hermitian matrix A to
    Hermitian tridiagonal form by an orthogonal similarity
    transformation Q' * A * Q, and returns the matrices V and W which are
    needed to apply the transformation to the unreduced part of A.

    If UPLO = MagmaUpper, CLATRD reduces the last NB rows and columns of a
    matrix, of which the upper triangle is supplied;
    if UPLO = MagmaLower, CLATRD reduces the first NB rows and columns of a
    matrix, of which the lower triangle is supplied.

    This is an auxiliary routine called by CHETRD.

    Arguments
    ---------
    @param[in]
    uplo    magma_uplo_t
            Specifies whether the upper or lower triangular part of the
            Hermitian matrix A is stored:
      -     = MagmaUpper: Upper triangular
      -     = MagmaLower: Lower triangular

    @param[in]
    n       INTEGER
            The order of the matrix A.

    @param[in]
    nb      INTEGER
            The number of rows and columns to be reduced.

    @param[in,out]
    A       COMPLEX array, dimension (LDA,N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the leading
            n-by-n upper triangular part of A contains the upper
            triangular part of the matrix A, and the strictly lower
            triangular part of A is not referenced.  If UPLO = MagmaLower, the
            leading n-by-n lower triangular part of A contains the lower
            triangular part of the matrix A, and the strictly upper
            triangular part of A is not referenced.
            On exit:
      -     if UPLO = MagmaUpper, the last NB columns have been reduced to
              tridiagonal form, with the diagonal elements overwriting
              the diagonal elements of A; the elements above the diagonal
              with the array TAU, represent the orthogonal matrix Q as a
              product of elementary reflectors;
      -     if UPLO = MagmaLower, the first NB columns have been reduced to
              tridiagonal form, with the diagonal elements overwriting
              the diagonal elements of A; the elements below the diagonal
              with the array TAU, represent the  orthogonal matrix Q as a
              product of elementary reflectors.
            See Further Details.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= (1,N).

    @param[out]
    e       COMPLEX array, dimension (N-1)
            If UPLO = MagmaUpper, E(n-nb:n-1) contains the superdiagonal
            elements of the last NB columns of the reduced matrix;
            if UPLO = MagmaLower, E(1:nb) contains the subdiagonal elements of
            the first NB columns of the reduced matrix.

    @param[out]
    tau     COMPLEX array, dimension (N-1)
            The scalar factors of the elementary reflectors, stored in
            TAU(n-nb:n-1) if UPLO = MagmaUpper, and in TAU(1:nb) if UPLO = MagmaLower.
            See Further Details.

    @param[out]
    W       COMPLEX array, dimension (LDW,NB)
            The n-by-nb matrix W required to update the unreduced part
            of A.

    @param[in]
    ldw     INTEGER
            The leading dimension of the array W. LDW >= max(1,N).
    
    @param
    dA      TODO: dimension (ldda, n)?
    
    @param
    ldda    TODO: ldda >= n?
    
    @param
    dW      TODO: dimension (lddw, ??)
    
    @param
    lddw    TODO: lddw >= n ??
    
    @param[in]
    queue   magma_queue_t
            Queue to execute in.

    Further Details
    ---------------
    If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary
    reflectors

        Q = H(n) H(n-1) . . . H(n-nb+1).

    Each H(i) has the form

        H(i) = I - tau * v * v'

    where tau is a complex scalar, and v is a complex vector with
    v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
    and tau in TAU(i-1).

    If UPLO = MagmaLower, the matrix Q is represented as a product of elementary
    reflectors

        Q = H(1) H(2) . . . H(nb).

    Each H(i) has the form

        H(i) = I - tau * v * v'

    where tau is a complex scalar, and v is a complex vector with
    v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
    and tau in TAU(i).

    The elements of the vectors v together form the n-by-nb matrix V
    which is needed, with W, to apply the transformation to the unreduced
    part of the matrix, using a Hermitian rank-2k update of the form:
    A := A - V*W' - W*V'.

    The contents of A on exit are illustrated by the following examples
    with n = 5 and nb = 2:

    if UPLO = MagmaUpper:                       if UPLO = MagmaLower:

        (  a   a   a   v4  v5 )              (  d                  )
        (      a   a   v4  v5 )              (  1   d              )
        (          a   1   v5 )              (  v1  1   a          )
        (              d   1  )              (  v1  v2  a   a      )
        (                  d  )              (  v1  v2  a   a   a  )

    where d denotes a diagonal element of the reduced matrix, a denotes
    an element of the original matrix that is unchanged, and vi denotes
    an element of the vector defining H(i).

    @ingroup magma_cheev_aux
    ********************************************************************/
extern "C" magma_int_t
magma_clatrd(
    magma_uplo_t uplo, magma_int_t n, magma_int_t nb,
    magmaFloatComplex *A,  magma_int_t lda,
    float *e, magmaFloatComplex *tau,
    magmaFloatComplex *W,  magma_int_t ldw,
    magmaFloatComplex *work, magma_int_t lwork,
    magmaFloatComplex_ptr dA, magma_int_t ldda,
    magmaFloatComplex_ptr dW, magma_int_t lddw,
    magma_queue_t queue )
{
    #define A(i_, j_) (A + (i_) + (j_)*lda)
    #define W(i_, j_) (W + (i_) + (j_)*ldw)
    
    #define dA(i_, j_) (dA + (i_) + (j_)*ldda)
    #define dW(i_, j_) (dW + (i_) + (j_)*lddw)

    /* Constants */
    const magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    const magmaFloatComplex c_one     = MAGMA_C_ONE;
    const magmaFloatComplex c_zero    = MAGMA_C_ZERO;
    const magma_int_t ione = 1;

    /* Local variables */
    magmaFloatComplex alpha, value;
    magma_int_t i, i_n, i_1, iw;

    /* Check arguments */
    magma_int_t info = 0;
    if ( uplo != MagmaLower && uplo != MagmaUpper ) {
        info = -1;
    } else if ( n < 0 ) {
        info = -2;
    } else if ( nb < 1 ) {
        info = -3;
    } else if ( lda < max(1,n) ) {
        info = -5;
    } else if ( ldw < max(1,n) ) {
        info = -9;
    } else if ( ldda < max(1,n) ) {
        info = -11;
    } else if ( lddw < max(1,n) ) {
        info = -13;
    }
    
    if (info != 0) {
        magma_xerbla( __func__, -(info) );
        return info;
    }
    
    /* Quick return if possible */
    if (n == 0) {
        return info;
    }

    if (uplo == MagmaUpper) {
        /* Reduce last NB columns of upper triangle */
        for (i = n-1; i >= n - nb; --i) {
            i_1 = i + 1;
            i_n = n - i - 1;
            
            iw = i - n + nb;
            if (i < n-1) {
                /* Update A(1:i,i) */
                #ifdef COMPLEX
                lapackf77_clacgv( &i_n, W(i, iw+1), &ldw );
                #endif
                blasf77_cgemv( "No transpose", &i_1, &i_n, &c_neg_one, A(0, i+1), &lda,
                               W(i, iw+1), &ldw, &c_one, A(0, i), &ione );
                #ifdef COMPLEX
                lapackf77_clacgv( &i_n, W(i, iw+1), &ldw );
                lapackf77_clacgv( &i_n, A(i, i+1),  &lda );
                #endif
                blasf77_cgemv( "No transpose", &i_1, &i_n, &c_neg_one, W(0, iw+1), &ldw,
                               A(i, i+1), &lda, &c_one, A(0, i), &ione );
                #ifdef COMPLEX
                lapackf77_clacgv( &i_n, A(i, i+1), &lda );
                #endif
            }
            if (i > 0) {
                /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */
                alpha = *A(i-1, i);
                
                lapackf77_clarfg( &i, &alpha, A(0, i), &ione, &tau[i - 1] );
                
                e[i-1] = MAGMA_C_REAL( alpha );
                *A(i-1,i) = MAGMA_C_ONE;
                
                /* Compute W(1:i-1,i) */
                // 1. Send the block reflector  A(0:n-i-1,i) to the GPU
                magma_csetvector( i, A(0, i), 1, dA(0, i), 1, queue );
                
                magma_chemv( MagmaUpper, i, c_one, dA(0, 0), ldda,
                             dA(0, i), ione, c_zero, dW(0, iw), ione, queue );
                
                // 2. Start putting the result back (asynchronously)
                magma_cgetmatrix_async( i, 1,
                                        dW(0, iw), lddw,
                                        W(0, iw),  ldw, queue );
                
                if (i < n-1) {
                    blasf77_cgemv( MagmaConjTransStr, &i, &i_n, &c_one, W(0, iw+1), &ldw,
                                   A(0, i), &ione, &c_zero, W(i+1, iw), &ione );
                }
                
                // 3. Here is where we need it // TODO find the right place
                magma_queue_sync( queue );
                
                if (i < n-1) {
                    blasf77_cgemv( "No transpose", &i, &i_n, &c_neg_one, A(0, i+1), &lda,
                                   W(i+1, iw), &ione, &c_one, W(0, iw), &ione );
                    
                    blasf77_cgemv( MagmaConjTransStr, &i, &i_n, &c_one, A(0, i+1), &lda,
                                   A(0, i), &ione, &c_zero, W(i+1, iw), &ione );
                    
                    blasf77_cgemv( "No transpose", &i, &i_n, &c_neg_one, W(0, iw+1), &ldw,
                                   W(i+1, iw), &ione, &c_one, W(0, iw), &ione );
                }
                
                blasf77_cscal( &i, &tau[i - 1], W(0, iw), &ione );
                
                value = magma_cblas_cdotc( i, W(0,iw), ione, A(0,i), ione );
                alpha = tau[i - 1] * -0.5f * value;
                blasf77_caxpy( &i, &alpha, A(0, i), &ione,
                               W(0, iw), &ione );
            }
        }
    }
    else {
        /*  Reduce first NB columns of lower triangle */
        for (i = 0; i < nb; ++i) {
            /* Update A(i:n,i) */
            i_n = n - i;
            #ifdef COMPLEX
            lapackf77_clacgv( &i, W(i, 0), &ldw );
            #endif
            blasf77_cgemv( "No transpose", &i_n, &i, &c_neg_one, A(i, 0), &lda,
                           W(i, 0), &ldw, &c_one, A(i, i), &ione );
            #ifdef COMPLEX
            lapackf77_clacgv( &i, W(i, 0), &ldw );
            lapackf77_clacgv( &i, A(i, 0), &lda );
            #endif
            blasf77_cgemv( "No transpose", &i_n, &i, &c_neg_one, W(i, 0), &ldw,
                           A(i, 0), &lda, &c_one, A(i, i), &ione );
            #ifdef COMPLEX
            lapackf77_clacgv( &i, A(i, 0), &lda );
            #endif
            
            if (i < n-1) {
                /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */
                i_n = n - i - 1;
                alpha = *A(i+1, i);
                lapackf77_clarfg( &i_n, &alpha, A(min(i+2,n-1), i), &ione, &tau[i] );
                e[i] = MAGMA_C_REAL( alpha );
                *A(i+1,i) = MAGMA_C_ONE;
                
                /* Compute W(i+1:n,i) */
                // 1. Send the block reflector  A(i+1:n,i) to the GPU
                magma_csetvector( i_n, A(i+1, i), 1, dA(i+1, i), 1, queue );
                
                magma_chemv( MagmaLower, i_n, c_one, dA(i+1, i+1), ldda,
                             dA(i+1, i), ione, c_zero, dW(i+1, i), ione, queue );
                
                // 2. Start putting the result back (asynchronously)
                magma_cgetmatrix_async( i_n, 1,
                                        dW(i+1, i), lddw,
                                        W(i+1, i),  ldw, queue );
                
                blasf77_cgemv( MagmaConjTransStr, &i_n, &i, &c_one, W(i+1, 0), &ldw,
                               A(i+1, i), &ione, &c_zero, W(0, i), &ione );
                
                blasf77_cgemv( "No transpose", &i_n, &i, &c_neg_one, A(i+1, 0), &lda,
                               W(0, i), &ione, &c_zero, work, &ione );
                
                blasf77_cgemv( MagmaConjTransStr, &i_n, &i, &c_one, A(i+1, 0), &lda,
                               A(i+1, i), &ione, &c_zero, W(0, i), &ione );
                
                // 3. Here is where we need it
                magma_queue_sync( queue );
                
                if (i != 0)
                    blasf77_caxpy( &i_n, &c_one, work, &ione, W(i+1, i), &ione );
                
                blasf77_cgemv( "No transpose", &i_n, &i, &c_neg_one, W(i+1, 0), &ldw,
                               W(0, i), &ione, &c_one, W(i+1, i), &ione );
                blasf77_cscal( &i_n, &tau[i], W(i+1,i), &ione );
                
                value = magma_cblas_cdotc( i_n, W(i+1,i), ione, A(i+1,i), ione );
                alpha = tau[i] * -0.5f * value;
                blasf77_caxpy( &i_n, &alpha, A(i+1, i), &ione, W(i+1,i), &ione );
            }
        }
    }

    return info;
} /* magma_clatrd */
コード例 #2
0
ファイル: clatrd.cpp プロジェクト: EmergentOrder/magma
/**
    Purpose
    -------
    CLATRD reduces NB rows and columns of a complex Hermitian matrix A to
    Hermitian tridiagonal form by an orthogonal similarity
    transformation Q' * A * Q, and returns the matrices V and W which are
    needed to apply the transformation to the unreduced part of A.

    If UPLO = MagmaUpper, CLATRD reduces the last NB rows and columns of a
    matrix, of which the upper triangle is supplied;
    if UPLO = MagmaLower, CLATRD reduces the first NB rows and columns of a
    matrix, of which the lower triangle is supplied.

    This is an auxiliary routine called by CHETRD.

    Arguments
    ---------
    @param[in]
    uplo    magma_uplo_t
            Specifies whether the upper or lower triangular part of the
            Hermitian matrix A is stored:
      -     = MagmaUpper: Upper triangular
      -     = MagmaLower: Lower triangular

    @param[in]
    n       INTEGER
            The order of the matrix A.

    @param[in]
    nb      INTEGER
            The number of rows and columns to be reduced.

    @param[in,out]
    A       COMPLEX array, dimension (LDA,N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the leading
            n-by-n upper triangular part of A contains the upper
            triangular part of the matrix A, and the strictly lower
            triangular part of A is not referenced.  If UPLO = MagmaLower, the
            leading n-by-n lower triangular part of A contains the lower
            triangular part of the matrix A, and the strictly upper
            triangular part of A is not referenced.
            On exit:
      -     if UPLO = MagmaUpper, the last NB columns have been reduced to
              tridiagonal form, with the diagonal elements overwriting
              the diagonal elements of A; the elements above the diagonal
              with the array TAU, represent the orthogonal matrix Q as a
              product of elementary reflectors;
      -     if UPLO = MagmaLower, the first NB columns have been reduced to
              tridiagonal form, with the diagonal elements overwriting
              the diagonal elements of A; the elements below the diagonal
              with the array TAU, represent the  orthogonal matrix Q as a
              product of elementary reflectors.
            See Further Details.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= (1,N).

    @param[out]
    e       COMPLEX array, dimension (N-1)
            If UPLO = MagmaUpper, E(n-nb:n-1) contains the superdiagonal
            elements of the last NB columns of the reduced matrix;
            if UPLO = MagmaLower, E(1:nb) contains the subdiagonal elements of
            the first NB columns of the reduced matrix.

    @param[out]
    tau     COMPLEX array, dimension (N-1)
            The scalar factors of the elementary reflectors, stored in
            TAU(n-nb:n-1) if UPLO = MagmaUpper, and in TAU(1:nb) if UPLO = MagmaLower.
            See Further Details.

    @param[out]
    W       COMPLEX array, dimension (LDW,NB)
            The n-by-nb matrix W required to update the unreduced part
            of A.

    @param[in]
    ldw     INTEGER
            The leading dimension of the array W. LDW >= max(1,N).

    Further Details
    ---------------
    If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary
    reflectors

       Q = H(n) H(n-1) . . . H(n-nb+1).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a complex scalar, and v is a complex vector with
    v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
    and tau in TAU(i-1).

    If UPLO = MagmaLower, the matrix Q is represented as a product of elementary
    reflectors

       Q = H(1) H(2) . . . H(nb).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a complex scalar, and v is a complex vector with
    v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
    and tau in TAU(i).

    The elements of the vectors v together form the n-by-nb matrix V
    which is needed, with W, to apply the transformation to the unreduced
    part of the matrix, using a Hermitian rank-2k update of the form:
    A := A - V*W' - W*V'.

    The contents of A on exit are illustrated by the following examples
    with n = 5 and nb = 2:

    if UPLO = MagmaUpper:                       if UPLO = MagmaLower:

      (  a   a   a   v4  v5 )              (  d                  )
      (      a   a   v4  v5 )              (  1   d              )
      (          a   1   v5 )              (  v1  1   a          )
      (              d   1  )              (  v1  v2  a   a      )
      (                  d  )              (  v1  v2  a   a   a  )

    where d denotes a diagonal element of the reduced matrix, a denotes
    an element of the original matrix that is unchanged, and vi denotes
    an element of the vector defining H(i).

    @ingroup magma_cheev_aux
    ********************************************************************/
extern "C" magma_int_t
magma_clatrd(magma_uplo_t uplo, magma_int_t n, magma_int_t nb,
             magmaFloatComplex *A,  magma_int_t lda,
             float *e, magmaFloatComplex *tau,
             magmaFloatComplex *W,  magma_int_t ldw,
             magmaFloatComplex *dA, magma_int_t ldda,
             magmaFloatComplex *dW, magma_int_t lddw)
{
#define A(i, j) (A + (j)*lda + (i))
#define W(i, j) (W + (j)*ldw + (i))

#define dA(i, j) (dA + (j)*ldda + (i))
#define dW(i, j) (dW + (j)*lddw + (i))

    magma_int_t i;
    
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magmaFloatComplex c_one     = MAGMA_C_ONE;
    magmaFloatComplex c_zero    = MAGMA_C_ZERO;

    magmaFloatComplex value = MAGMA_C_ZERO;
    
    magma_int_t ione = 1;

    magma_int_t i_n, i_1, iw;
    
    magmaFloatComplex alpha;
    magmaFloatComplex *f;

    if (n <= 0) {
        return 0;
    }

    magma_queue_t stream;
    magma_queue_create( &stream );
    magma_cmalloc_cpu( &f, n );
    assert( f != NULL );  // TODO return error, or allocate outside clatrd

    if (uplo == MagmaUpper) {
        /* Reduce last NB columns of upper triangle */
        for (i = n-1; i >= n - nb; --i) {
            i_1 = i + 1;
            i_n = n - i - 1;
            
            iw = i - n + nb;
            if (i < n-1) {
                /* Update A(1:i,i) */
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_clacgv(&i_n, W(i, iw+1), &ldw);
                #endif
                blasf77_cgemv("No transpose", &i_1, &i_n, &c_neg_one, A(0, i+1), &lda,
                              W(i, iw+1), &ldw, &c_one, A(0, i), &ione);
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_clacgv(&i_n, W(i, iw+1), &ldw);
                lapackf77_clacgv(&i_n, A(i, i+1), &lda);
                #endif
                blasf77_cgemv("No transpose", &i_1, &i_n, &c_neg_one, W(0, iw+1), &ldw,
                              A(i, i+1), &lda, &c_one, A(0, i), &ione);
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_clacgv(&i_n, A(i, i+1), &lda);
                #endif
            }
            if (i > 0) {
                /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */
                alpha = *A(i-1, i);
                
                lapackf77_clarfg(&i, &alpha, A(0, i), &ione, &tau[i - 1]);
                
                e[i-1] = MAGMA_C_REAL( alpha );
                *A(i-1,i) = MAGMA_C_ONE;
                
                /* Compute W(1:i-1,i) */
                // 1. Send the block reflector  A(0:n-i-1,i) to the GPU
                magma_csetvector( i, A(0, i), 1, dA(0, i), 1 );
                
                magma_chemv(MagmaUpper, i, c_one, dA(0, 0), ldda,
                            dA(0, i), ione, c_zero, dW(0, iw), ione);
                
                // 2. Start putting the result back (asynchronously)
                magma_cgetmatrix_async( i, 1,
                                        dW(0, iw),         lddw,
                                        W(0, iw) /*test*/, ldw, stream );
                
                if (i < n-1) {
                    blasf77_cgemv(MagmaConjTransStr, &i, &i_n, &c_one, W(0, iw+1), &ldw,
                                  A(0, i), &ione, &c_zero, W(i+1, iw), &ione);
                }
                
                // 3. Here is where we need it // TODO find the right place
                magma_queue_sync( stream );
                
                if (i < n-1) {
                    blasf77_cgemv("No transpose", &i, &i_n, &c_neg_one, A(0, i+1), &lda,
                                  W(i+1, iw), &ione, &c_one, W(0, iw), &ione);
                    
                    blasf77_cgemv(MagmaConjTransStr, &i, &i_n, &c_one, A(0, i+1), &lda,
                                  A(0, i), &ione, &c_zero, W(i+1, iw), &ione);
                    
                    blasf77_cgemv("No transpose", &i, &i_n, &c_neg_one, W(0, iw+1), &ldw,
                                  W(i+1, iw), &ione, &c_one, W(0, iw), &ione);
                }
                
                blasf77_cscal(&i, &tau[i - 1], W(0, iw), &ione);
                
                #if defined(PRECISION_z) || defined(PRECISION_c)
                cblas_cdotc_sub( i, W(0,iw), ione, A(0,i), ione, &value );
                #else
                value = cblas_cdotc( i, W(0,iw), ione, A(0,i), ione );
                #endif
                alpha = tau[i - 1] * -0.5f * value;
                blasf77_caxpy(&i, &alpha, A(0, i), &ione,
                              W(0, iw), &ione);
            }
        }
    }
    else {
        /*  Reduce first NB columns of lower triangle */
        for (i = 0; i < nb; ++i) {
            /* Update A(i:n,i) */
            i_n = n - i;
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_clacgv(&i, W(i, 0), &ldw);
            #endif
            blasf77_cgemv("No transpose", &i_n, &i, &c_neg_one, A(i, 0), &lda,
                          W(i, 0), &ldw, &c_one, A(i, i), &ione);
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_clacgv(&i, W(i, 0), &ldw);
            lapackf77_clacgv(&i, A(i, 0), &lda);
            #endif
            blasf77_cgemv("No transpose", &i_n, &i, &c_neg_one, W(i, 0), &ldw,
                          A(i, 0), &lda, &c_one, A(i, i), &ione);
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_clacgv(&i, A(i, 0), &lda);
            #endif
        
            if (i < n-1) {
                /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */
                i_n = n - i - 1;
                alpha = *A(i+1, i);
                lapackf77_clarfg(&i_n, &alpha, A(min(i+2,n-1), i), &ione, &tau[i]);
                e[i] = MAGMA_C_REAL( alpha );
                *A(i+1,i) = MAGMA_C_ONE;
        
                /* Compute W(i+1:n,i) */
                // 1. Send the block reflector  A(i+1:n,i) to the GPU
                magma_csetvector( i_n, A(i+1, i), 1, dA(i+1, i), 1 );
            
                magma_chemv(MagmaLower, i_n, c_one, dA(i+1, i+1), ldda, dA(i+1, i), ione, c_zero,
                            dW(i+1, i), ione);
            
                // 2. Start putting the result back (asynchronously)
                magma_cgetmatrix_async( i_n, 1,
                                        dW(i+1, i), lddw,
                                        W(i+1, i),  ldw, stream );
        
                blasf77_cgemv(MagmaConjTransStr, &i_n, &i, &c_one, W(i+1, 0), &ldw,
                              A(i+1, i), &ione, &c_zero, W(0, i), &ione);
        
                blasf77_cgemv("No transpose", &i_n, &i, &c_neg_one, A(i+1, 0), &lda,
                              W(0, i), &ione, &c_zero, f, &ione);
                
                blasf77_cgemv(MagmaConjTransStr, &i_n, &i, &c_one, A(i+1, 0), &lda,
                              A(i+1, i), &ione, &c_zero, W(0, i), &ione);
        
                // 3. Here is where we need it
                magma_queue_sync( stream );
        
                if (i != 0)
                    blasf77_caxpy(&i_n, &c_one, f, &ione, W(i+1, i), &ione);
        
                blasf77_cgemv("No transpose", &i_n, &i, &c_neg_one, W(i+1, 0), &ldw,
                              W(0, i), &ione, &c_one, W(i+1, i), &ione);
                blasf77_cscal(&i_n, &tau[i], W(i+1,i), &ione);
                
                #if defined(PRECISION_z) || defined(PRECISION_c)
                cblas_cdotc_sub( i_n, W(i+1,i), ione, A(i+1,i), ione, &value );
                #else
                value = cblas_cdotc( i_n, W(i+1,i), ione, A(i+1,i), ione );
                #endif
                alpha = tau[i] * -0.5f * value;
                blasf77_caxpy(&i_n, &alpha, A(i+1, i), &ione, W(i+1,i), &ione);
            }
        }
    }

    magma_free_cpu( f );
    magma_queue_destroy( stream );

    return 0;
} /* magma_clatrd */
コード例 #3
0
ファイル: testing_blas_c.cpp プロジェクト: cjy7117/FT-MAGMA
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, t1, t2;
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magma_int_t ione = 1;
    magma_trans_t trans[] = { MagmaNoTrans, MagmaConjTrans, MagmaTrans };
    magma_uplo_t  uplo [] = { MagmaLower, MagmaUpper };
    magma_diag_t  diag [] = { MagmaUnit, MagmaNonUnit };
    magma_side_t  side [] = { MagmaLeft, MagmaRight };
    
    magmaFloatComplex  *A,  *B,  *C,   *C2, *LU;
    magmaFloatComplex_ptr dA, dB, dC1, dC2;
    magmaFloatComplex alpha = MAGMA_C_MAKE( 0.5, 0.1 );
    magmaFloatComplex beta  = MAGMA_C_MAKE( 0.7, 0.2 );
    float dalpha = 0.6;
    float dbeta  = 0.8;
    float work[1], error, total_error;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t m, n, k, size, maxn, ld, info;
    magma_int_t *piv;
    magma_int_t err;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    printf( "Compares magma wrapper function to cublas function; all diffs should be exactly 0.\n\n" );
    
    total_error = 0.;
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        m = opts.msize[itest];
        n = opts.nsize[itest];
        k = opts.ksize[itest];
        printf("=========================================================================\n");
        printf( "m=%d, n=%d, k=%d\n", (int) m, (int) n, (int) k );
        
        // allocate matrices
        // over-allocate so they can be any combination of {m,n,k} x {m,n,k}.
        maxn = max( max( m, n ), k );
        ld = max( 1, maxn );
        size = ld*maxn;
        err = magma_malloc_cpu( (void**) &piv, maxn*sizeof(magma_int_t) );  assert( err == 0 );
        err = magma_cmalloc_pinned( &A,  size );  assert( err == 0 );
        err = magma_cmalloc_pinned( &B,  size );  assert( err == 0 );
        err = magma_cmalloc_pinned( &C,  size );  assert( err == 0 );
        err = magma_cmalloc_pinned( &C2, size );  assert( err == 0 );
        err = magma_cmalloc_pinned( &LU, size );  assert( err == 0 );
        err = magma_cmalloc( &dA,  size );        assert( err == 0 );
        err = magma_cmalloc( &dB,  size );        assert( err == 0 );
        err = magma_cmalloc( &dC1, size );        assert( err == 0 );
        err = magma_cmalloc( &dC2, size );        assert( err == 0 );
        
        // initialize matrices
        size = maxn*maxn;
        lapackf77_clarnv( &ione, ISEED, &size, A  );
        lapackf77_clarnv( &ione, ISEED, &size, B  );
        lapackf77_clarnv( &ione, ISEED, &size, C  );
        
        printf( "========== Level 1 BLAS ==========\n" );
        
        // ----- test CSWAP
        // swap columns 2 and 3 of dA, then copy to C2 and compare with A
        if ( n >= 3 ) {
            magma_csetmatrix( m, n, A, ld, dA, ld );
            magma_csetmatrix( m, n, A, ld, dB, ld );
            magma_cswap( m, dA(0,1), 1, dA(0,2), 1 );
            magma_cswap( m, dB(0,1), 1, dB(0,2), 1 );
            
            // check results, storing diff between magma and cuda calls in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dA, 1, dB, 1 );
            magma_cgetmatrix( m, n, dB, ld, C2, ld );
            error = lapackf77_clange( "F", &m, &k, C2, &ld, work );
            total_error += error;
            printf( "cswap             diff %.2g\n", error );
        }
        else {
            printf( "cswap skipped for n < 3\n" );
        }
        
        // ----- test ICAMAX
        // get argmax of column of A
        magma_csetmatrix( m, k, A, ld, dA, ld );
        error = 0;
        for( int j = 0; j < k; ++j ) {
            magma_int_t i1 = magma_icamax( m, dA(0,j), 1 );
            int i2;  // NOT magma_int_t, for cublas
            cublasIcamax( opts.handle, m, dA(0,j), 1, &i2 );
            // todo need sync here?
            assert( i1 == i2 );
            error += abs( i1 - i2 );
        }
        total_error += error;
        gflops = (float)m * k / 1e9;
        printf( "icamax            diff %.2g\n", error );
        printf( "\n" );
        
        printf( "========== Level 2 BLAS ==========\n" );
        
        // ----- test CGEMV
        // c = alpha*A*b + beta*c,  with A m*n; b,c m or n-vectors
        // try no-trans/trans
        for( int ia = 0; ia < 3; ++ia ) {
            magma_csetmatrix( m, n, A,  ld, dA,  ld );
            magma_csetvector( maxn, B, 1, dB,  1 );
            magma_csetvector( maxn, C, 1, dC1, 1 );
            magma_csetvector( maxn, C, 1, dC2, 1 );
            
            t1 = magma_sync_wtime( 0 );
            magma_cgemv( trans[ia], m, n, alpha, dA, ld, dB, 1, beta, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasCgemv( opts.handle, cublas_trans_const(trans[ia]),
                         m, n, &alpha, dA, ld, dB, 1, &beta, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            size = (trans[ia] == MagmaNoTrans ? m : n);
            cublasCaxpy( opts.handle, size, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetvector( size, dC2, 1, C2, 1 );
            error = lapackf77_clange( "F", &size, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CGEMV( m, n ) / 1e9;
            printf( "cgemv( %c )        diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_trans_const(trans[ia]), error, gflops/t1, gflops/t2 );
        }
        printf( "\n" );
        
        // ----- test CHEMV
        // c = alpha*A*b + beta*c,  with A m*m symmetric; b,c m-vectors
        // try upper/lower
        for( int iu = 0; iu < 2; ++iu ) {
            magma_csetmatrix( m, m, A, ld, dA, ld );
            magma_csetvector( m, B, 1, dB,  1 );
            magma_csetvector( m, C, 1, dC1, 1 );
            magma_csetvector( m, C, 1, dC2, 1 );
            
            t1 = magma_sync_wtime( 0 );
            magma_chemv( uplo[iu], m, alpha, dA, ld, dB, 1, beta, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasChemv( opts.handle, cublas_uplo_const(uplo[iu]),
                         m, &alpha, dA, ld, dB, 1, &beta, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, m, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetvector( m, dC2, 1, C2, 1 );
            error = lapackf77_clange( "F", &m, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CHEMV( m ) / 1e9;
            printf( "chemv( %c )        diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), error, gflops/t1, gflops/t2 );
        }
        printf( "\n" );
        
        // ----- test CTRSV
        // solve A*c = c,  with A m*m triangular; c m-vector
        // try upper/lower, no-trans/trans, unit/non-unit diag
        // Factor A into LU to get well-conditioned triangles, else solve yields garbage.
        // Still can give garbage if solves aren't consistent with LU factors,
        // e.g., using unit diag for U, so copy lower triangle to upper triangle.
        // Also used for trsm later.
        lapackf77_clacpy( "Full", &maxn, &maxn, A, &ld, LU, &ld );
        lapackf77_cgetrf( &maxn, &maxn, LU, &ld, piv, &info );
        for( int j = 0; j < maxn; ++j ) {
            for( int i = 0; i < j; ++i ) {
                *LU(i,j) = *LU(j,i);
            }
        }
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            magma_csetmatrix( m, m, LU, ld, dA, ld );
            magma_csetvector( m, C, 1, dC1, 1 );
            magma_csetvector( m, C, 1, dC2, 1 );
            
            t1 = magma_sync_wtime( 0 );
            magma_ctrsv( uplo[iu], trans[it], diag[id], m, dA, ld, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasCtrsv( opts.handle, cublas_uplo_const(uplo[iu]), cublas_trans_const(trans[it]),
                         cublas_diag_const(diag[id]), m, dA, ld, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, m, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetvector( m, dC2, 1, C2, 1 );
            error = lapackf77_clange( "F", &m, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CTRSM( MagmaLeft, m, 1 ) / 1e9;
            printf( "ctrsv( %c, %c, %c )  diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]), lapacke_diag_const(diag[id]),
                    error, gflops/t1, gflops/t2 );
        }}}
        printf( "\n" );
        
        printf( "========== Level 3 BLAS ==========\n" );
        
        // ----- test CGEMM
        // C = alpha*A*B + beta*C,  with A m*k or k*m; B k*n or n*k; C m*n
        // try combinations of no-trans/trans
        for( int ia = 0; ia < 3; ++ia ) {
        for( int ib = 0; ib < 3; ++ib ) {
            bool nta = (trans[ia] == MagmaNoTrans);
            bool ntb = (trans[ib] == MagmaNoTrans);
            magma_csetmatrix( (nta ? m : k), (nta ? m : k), A, ld, dA,  ld );
            magma_csetmatrix( (ntb ? k : n), (ntb ? n : k), B, ld, dB,  ld );
            magma_csetmatrix( m, n, C, ld, dC1, ld );
            magma_csetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_cgemm( trans[ia], trans[ib], m, n, k, alpha, dA, ld, dB, ld, beta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasCgemm( opts.handle, cublas_trans_const(trans[ia]), cublas_trans_const(trans[ib]),
                         m, n, k, &alpha, dA, ld, dB, ld, &beta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_clange( "F", &m, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CGEMM( m, n, k ) / 1e9;
            printf( "cgemm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_trans_const(trans[ia]), lapacke_trans_const(trans[ib]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test CHEMM
        // C = alpha*A*B + beta*C  (left)  with A m*m symmetric; B,C m*n; or
        // C = alpha*B*A + beta*C  (right) with A n*n symmetric; B,C m*n
        // try left/right, upper/lower
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
            magma_csetmatrix( m, m, A, ld, dA,  ld );
            magma_csetmatrix( m, n, B, ld, dB,  ld );
            magma_csetmatrix( m, n, C, ld, dC1, ld );
            magma_csetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_chemm( side[is], uplo[iu], m, n, alpha, dA, ld, dB, ld, beta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasChemm( opts.handle, cublas_side_const(side[is]), cublas_uplo_const(uplo[iu]),
                         m, n, &alpha, dA, ld, dB, ld, &beta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_clange( "F", &m, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CHEMM( side[is], m, n ) / 1e9;
            printf( "chemm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_side_const(side[is]), lapacke_uplo_const(uplo[iu]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test CHERK
        // C = alpha*A*A^H + beta*C  (no-trans) with A m*k and C m*m symmetric; or
        // C = alpha*A^H*A + beta*C  (trans)    with A k*m and C m*m symmetric
        // try upper/lower, no-trans/trans
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
            magma_csetmatrix( n, k, A, ld, dA,  ld );
            magma_csetmatrix( n, n, C, ld, dC1, ld );
            magma_csetmatrix( n, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_cherk( uplo[iu], trans[it], n, k, dalpha, dA, ld, dbeta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasCherk( opts.handle, cublas_uplo_const(uplo[iu]), cublas_trans_const(trans[it]),
                         n, k, &dalpha, dA, ld, &dbeta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetmatrix( n, n, dC2, ld, C2, ld );
            error = lapackf77_clange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CHERK( k, n ) / 1e9;
            printf( "cherk( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test CHER2K
        // C = alpha*A*B^H + ^alpha*B*A^H + beta*C  (no-trans) with A,B n*k; C n*n symmetric; or
        // C = alpha*A^H*B + ^alpha*B^H*A + beta*C  (trans)    with A,B k*n; C n*n symmetric
        // try upper/lower, no-trans/trans
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
            bool nt = (trans[it] == MagmaNoTrans);
            magma_csetmatrix( (nt ? n : k), (nt ? n : k), A, ld, dA,  ld );
            magma_csetmatrix( n, n, C, ld, dC1, ld );
            magma_csetmatrix( n, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_cher2k( uplo[iu], trans[it], n, k, alpha, dA, ld, dB, ld, dbeta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasCher2k( opts.handle, cublas_uplo_const(uplo[iu]), cublas_trans_const(trans[it]),
                          n, k, &alpha, dA, ld, dB, ld, &dbeta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetmatrix( n, n, dC2, ld, C2, ld );
            error = lapackf77_clange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CHER2K( k, n ) / 1e9;
            printf( "cher2k( %c, %c )    diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test CTRMM
        // C = alpha*A*C  (left)  with A m*m triangular; C m*n; or
        // C = alpha*C*A  (right) with A n*n triangular; C m*n
        // try left/right, upper/lower, no-trans/trans, unit/non-unit
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            bool left = (side[is] == MagmaLeft);
            magma_csetmatrix( (left ? m : n), (left ? m : n), A, ld, dA,  ld );
            magma_csetmatrix( m, n, C, ld, dC1, ld );
            magma_csetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_ctrmm( side[is], uplo[iu], trans[it], diag[id], m, n, alpha, dA, ld, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            // note cublas does trmm out-of-place (i.e., adds output matrix C),
            // but allows C=B to do in-place.
            t2 = magma_sync_wtime( 0 );
            cublasCtrmm( opts.handle, cublas_side_const(side[is]), cublas_uplo_const(uplo[iu]),
                         cublas_trans_const(trans[it]), cublas_diag_const(diag[id]),
                         m, n, &alpha, dA, ld, dC2, ld, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_clange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CTRMM( side[is], m, n ) / 1e9;
            printf( "ctrmm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}}}
        printf( "\n" );
        
        // ----- test CTRSM
        // solve A*X = alpha*B  (left)  with A m*m triangular; B m*n; or
        // solve X*A = alpha*B  (right) with A n*n triangular; B m*n
        // try left/right, upper/lower, no-trans/trans, unit/non-unit
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            bool left = (side[is] == MagmaLeft);
            magma_csetmatrix( (left ? m : n), (left ? m : n), LU, ld, dA,  ld );
            magma_csetmatrix( m, n, C, ld, dC1, ld );
            magma_csetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_ctrsm( side[is], uplo[iu], trans[it], diag[id], m, n, alpha, dA, ld, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasCtrsm( opts.handle, cublas_side_const(side[is]), cublas_uplo_const(uplo[iu]),
                         cublas_trans_const(trans[it]), cublas_diag_const(diag[id]),
                         m, n, &alpha, dA, ld, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_clange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CTRSM( side[is], m, n ) / 1e9;
            printf( "ctrsm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}}}
        printf( "\n" );
        
        // cleanup
        magma_free_cpu( piv );
        magma_free_pinned( A  );
        magma_free_pinned( B  );
        magma_free_pinned( C  );
        magma_free_pinned( C2 );
        magma_free_pinned( LU );
        magma_free( dA  );
        magma_free( dB  );
        magma_free( dC1 );
        magma_free( dC2 );
        fflush( stdout );
    }
    
    if ( total_error != 0. ) {
        printf( "total error %.2g -- ought to be 0 -- some test failed (see above).\n",
                total_error );
    }
    else {
        printf( "all tests passed\n" );
    }
    
    TESTING_FINALIZE();
    
    int status = (total_error != 0.);
    return status;
}