コード例 #1
0
ファイル: testing_cunmqr_gpu.cpp プロジェクト: xulunfan/magma
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing cunmqr_gpu
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    float Cnorm, error, work[1];
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magma_int_t ione = 1;
    magma_int_t mm, m, n, k, size, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t nb, ldc, lda, lwork, lwork_max, dt_size;
    magmaFloatComplex *C, *R, *A, *hwork, *tau;
    magmaFloatComplex_ptr dC, dA, dT;
    magma_int_t status = 0;
    
    magma_opts opts;
    opts.parse_opts( argc, argv );
    
    // need slightly looser bound (60*eps instead of 30*eps) for some tests
    opts.tolerance = max( 60., opts.tolerance );
    float tol = opts.tolerance * lapackf77_slamch("E");
    
    // test all combinations of input parameters
    magma_side_t  side [] = { MagmaLeft,       MagmaRight   };
    magma_trans_t trans[] = { Magma_ConjTrans, MagmaNoTrans };

    printf("%%   M     N     K   side   trans   CPU Gflop/s (sec)   GPU Gflop/s (sec)   ||R||_F / ||QC||_F\n");
    printf("%%==============================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            m = opts.msize[itest];
            n = opts.nsize[itest];
            k = opts.ksize[itest];
            ldc = magma_roundup( m, opts.align );  // multiple of 32 by default
            // A is m x k (left) or n x k (right)
            mm = (side[iside] == MagmaLeft ? m : n);
            nb  = magma_get_cgeqrf_nb( mm, k );
            lda = magma_roundup( mm, opts.align );  // multiple of 32 by default
            gflops = FLOPS_CUNMQR( m, n, k, side[iside] ) / 1e9;
            
            if ( side[iside] == MagmaLeft && m < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=left  and m < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            if ( side[iside] == MagmaRight && n < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=right and n < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            
            if ( side[iside] == MagmaLeft ) {
                // side = left
                lwork_max = (m - k + nb)*(n + nb) + n*nb;
                dt_size = ( 2*min(m,k) + magma_roundup( max(m,n), 32) )*nb;
            }
            else {
                // side = right
                lwork_max = (n - k + nb)*(m + nb) + m*nb;
                dt_size = ( 2*min(n,k) + magma_roundup( max(m,n), 32 ) )*nb;
            }
            // this rounds it up slightly if needed to agree with lwork query below
            lwork_max = int( real( magma_cmake_lwork( lwork_max )));
            
            TESTING_MALLOC_CPU( C,     magmaFloatComplex, ldc*n );
            TESTING_MALLOC_CPU( R,     magmaFloatComplex, ldc*n );
            TESTING_MALLOC_CPU( A,     magmaFloatComplex, lda*k );
            TESTING_MALLOC_CPU( hwork, magmaFloatComplex, lwork_max );
            TESTING_MALLOC_CPU( tau,   magmaFloatComplex, k );
            
            TESTING_MALLOC_DEV( dC, magmaFloatComplex, ldc*n );
            TESTING_MALLOC_DEV( dA, magmaFloatComplex, lda*k );
            TESTING_MALLOC_DEV( dT, magmaFloatComplex, dt_size );
            
            // C is full, m x n
            size = ldc*n;
            lapackf77_clarnv( &ione, ISEED, &size, C );
            magma_csetmatrix( m, n, C, ldc, dC, ldc );
            
            // A is m x k (left) or n x k (right)
            size = lda*k;
            lapackf77_clarnv( &ione, ISEED, &size, A );
            
            // compute QR factorization to get Householder vectors in dA, tau, dT
            magma_csetmatrix( mm, k, A,  lda, dA, lda );
            magma_cgeqrf_gpu( mm, k, dA, lda, tau, dT, &info );
            magma_cgetmatrix( mm, k, dA, lda, A,  lda );
            if (info != 0) {
                printf("magma_cgeqrf_gpu returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_cunmqr( lapack_side_const( side[iside] ), lapack_trans_const( trans[itran] ),
                              &m, &n, &k,
                              A, &lda, tau, C, &ldc, hwork, &lwork_max, &info );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            if (info != 0) {
                printf("lapackf77_cunmqr returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            // query for workspace size
            lwork = -1;
            magma_cunmqr_gpu( side[iside], trans[itran],
                              m, n, k,
                              dA, lda, tau, dC, ldc, hwork, lwork, dT, nb, &info );
            if (info != 0) {
                printf("magma_cunmqr_gpu (lwork query) returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            lwork = (magma_int_t) MAGMA_C_REAL( hwork[0] );
            if ( lwork < 0 || lwork > lwork_max  ) {
                printf("Warning: optimal lwork %d > allocated lwork_max %d\n", (int) lwork, (int) lwork_max );
                lwork = lwork_max;
            }
            
            // cunmqr2 takes a copy of dA in CPU memory
            if ( opts.version == 2 ) {
                magma_cgetmatrix( mm, k, dA, lda, A, lda );
            }
            
            magmablasSetKernelStream( opts.queue );
            gpu_time = magma_sync_wtime( opts.queue );  // sync needed for L,N and R,T cases
            if ( opts.version == 1 ) {
                magma_cunmqr_gpu( side[iside], trans[itran],
                                  m, n, k,
                                  dA, lda, tau, dC, ldc, hwork, lwork, dT, nb, &info );
            }
            else if ( opts.version == 2 ) {
                magma_cunmqr2_gpu( side[iside], trans[itran],
                                   m, n, k,
                                   dA, lda, tau, dC, ldc, A, lda, &info );
            }
            gpu_time = magma_sync_wtime( opts.queue ) - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0) {
                printf("magma_cunmqr_gpu returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            magma_cgetmatrix( m, n, dC, ldc, R, ldc );
            
            /* =====================================================================
               compute relative error |QC_magma - QC_lapack| / |QC_lapack|
               =================================================================== */
            size = ldc*n;
            blasf77_caxpy( &size, &c_neg_one, C, &ione, R, &ione );
            Cnorm = lapackf77_clange( "Fro", &m, &n, C, &ldc, work );
            error = lapackf77_clange( "Fro", &m, &n, R, &ldc, work ) / (magma_ssqrt(m*n) * Cnorm);
            
            printf( "%5d %5d %5d   %4c   %5c   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                    (int) m, (int) n, (int) k,
                    lapacke_side_const( side[iside] ),
                    lapacke_trans_const( trans[itran] ),
                    cpu_perf, cpu_time, gpu_perf, gpu_time,
                    error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( hwork );
            TESTING_FREE_CPU( tau );
            
            TESTING_FREE_DEV( dC );
            TESTING_FREE_DEV( dA );
            TESTING_FREE_DEV( dT );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}  // end iside, itran
      printf( "\n" );
    }
    
    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}
コード例 #2
0
ファイル: cunmtr_gpu.cpp プロジェクト: XapaJIaMnu/magma
/**
    Purpose
    -------
    CUNMTR overwrites the general complex M-by-N matrix C with

                                SIDE = MagmaLeft    SIDE = MagmaRight
    TRANS = MagmaNoTrans:       Q * C               C * Q
    TRANS = Magma_ConjTrans:    Q**H * C            C * Q**H

    where Q is a complex unitary matrix of order nq, with nq = m if
    SIDE = MagmaLeft and nq = n if SIDE = MagmaRight. Q is defined as the product of
    nq-1 elementary reflectors, as returned by CHETRD:

    if UPLO = MagmaUpper, Q = H(nq-1) . . . H(2) H(1);

    if UPLO = MagmaLower, Q = H(1) H(2) . . . H(nq-1).

    Arguments
    ---------
    @param[in]
    side    magma_side_t
      -     = MagmaLeft:      apply Q or Q**H from the Left;
      -     = MagmaRight:     apply Q or Q**H from the Right.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper: Upper triangle of A contains elementary reflectors
                   from CHETRD;
      -     = MagmaLower: Lower triangle of A contains elementary reflectors
                   from CHETRD.

    @param[in]
    trans   magma_trans_t
      -     = MagmaNoTrans:    No transpose, apply Q;
      -     = Magma_ConjTrans: Conjugate transpose, apply Q**H.

    @param[in]
    m       INTEGER
            The number of rows of the matrix C. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix C. N >= 0.

    @param[in]
    dA      COMPLEX array, dimension
                                 (LDDA,M) if SIDE = MagmaLeft
                                 (LDDA,N) if SIDE = MagmaRight
            The vectors which define the elementary reflectors, as
            returned by CHETRD_GPU. On output the diagonal, the subdiagonal and the
            upper part (UPLO=MagmaLower) or lower part (UPLO=MagmaUpper) are destroyed.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array DA.
            LDDA >= max(1,M) if SIDE = MagmaLeft; LDDA >= max(1,N) if SIDE = MagmaRight.

    @param[in]
    tau     COMPLEX array, dimension
                                 (M-1) if SIDE = MagmaLeft
                                 (N-1) if SIDE = MagmaRight
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by CHETRD.

    @param[in,out]
    dC      COMPLEX array, dimension (LDDC,N)
            On entry, the M-by-N matrix C.
            On exit, C is overwritten by (Q*C) or (Q**H * C) or (C * Q**H) or (C*Q).

    @param[in]
    lddc    INTEGER
            The leading dimension of the array C. LDDC >= max(1,M).

    @param[in]
    wA      (workspace) COMPLEX array, dimension
                                 (LDWA,M) if SIDE = MagmaLeft
                                 (LDWA,N) if SIDE = MagmaRight
            The vectors which define the elementary reflectors, as
            returned by CHETRD_GPU.

    @param[in]
    ldwa    INTEGER
            The leading dimension of the array wA.
            LDWA >= max(1,M) if SIDE = MagmaLeft; LDWA >= max(1,N) if SIDE = MagmaRight.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value

    @ingroup magma_cheev_comp
    ********************************************************************/
extern "C" magma_int_t
magma_cunmtr_gpu(magma_side_t side, magma_uplo_t uplo, magma_trans_t trans,
                 magma_int_t m, magma_int_t n,
                 magmaFloatComplex *dA,    magma_int_t ldda,
                 magmaFloatComplex *tau,
                 magmaFloatComplex *dC,    magma_int_t lddc,
                 magmaFloatComplex *wA,    magma_int_t ldwa,
                 magma_int_t *info)
{
    #define dA(i_,j_) (dA + (i_) + (j_)*ldda)
    #define dC(i_,j_) (dC + (i_) + (j_)*lddc)
    #define wA(i_,j_) (wA + (i_) + (j_)*ldwa)
    
    magma_int_t i1, i2, mi, ni, nq, nw;
    int left, upper;
    magma_int_t iinfo;

    *info = 0;
    left   = (side == MagmaLeft);
    upper  = (uplo == MagmaUpper);

    /* NQ is the order of Q and NW is the minimum dimension of WORK */
    if (left) {
        nq = m;
        nw = n;
    } else {
        nq = n;
        nw = m;
    }
    if (! left && side != MagmaRight) {
        *info = -1;
    } else if (! upper && uplo != MagmaLower) {
        *info = -2;
    } else if (trans != MagmaNoTrans &&
               trans != Magma_ConjTrans) {
        *info = -3;
    } else if (m < 0) {
        *info = -4;
    } else if (n < 0) {
        *info = -5;
    } else if (ldda < max(1,nq)) {
        *info = -7;
    } else if (lddc < max(1,m)) {
        *info = -10;
    } else if (ldwa < max(1,nq)) {
        *info = -12;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    /* Quick return if possible */
    if (m == 0 || n == 0 || nq == 1) {
        return *info;
    }

    if (left) {
        mi = m - 1;
        ni = n;
    } else {
        mi = m;
        ni = n - 1;
    }

    if (upper) {
        magma_cunmql2_gpu(side, trans, mi, ni, nq-1, dA(0,1), ldda, tau,
                          dC, lddc, wA(0,1), ldwa, &iinfo);
    }
    else {
        /* Q was determined by a call to CHETRD with UPLO = 'L' */
        if (left) {
            i1 = 1;
            i2 = 0;
        } else {
            i1 = 0;
            i2 = 1;
        }
        magma_cunmqr2_gpu(side, trans, mi, ni, nq-1, dA(1,0), ldda, tau,
                          dC(i1,i2), lddc, wA(1,0), ldwa, &iinfo);
    }

    return *info;
} /* magma_cunmtr */