コード例 #1
0
ファイル: ssytrd_mgpu.cpp プロジェクト: cjy7117/DVFS-MAGMA
extern "C" void
magma_ssyr2k_mgpu(
    magma_int_t num_gpus, magma_uplo_t uplo, magma_trans_t trans, magma_int_t nb, magma_int_t n, magma_int_t k,
    float alpha,
    float **db, magma_int_t lddb, magma_int_t offset_b,
    float beta,
    float **dc, magma_int_t lddc, magma_int_t offset,
    magma_int_t num_streams, magma_queue_t stream[][10])
{
#define dB(id, i, j)  (db[(id)]+(j)*lddb + (i)+offset_b)
#define dB1(id, i, j) (db[(id)]+(j)*lddb + (i)+offset_b)+k*lddb
#define dC(id, i, j)  (dc[(id)]+(j)*lddc + (i))

    magma_int_t i, id, ib, ii, kk, n1;
    float c_one = MAGMA_S_ONE;

    magma_device_t orig_dev;
    magma_getdevice( &orig_dev );
    magma_queue_t orig_stream;
    magmablasGetKernelStream( &orig_stream );
    
    /* diagonal update */
    for( i=0; i < n; i += nb ) {
        id = ((i+offset)/nb)%num_gpus;
        kk = (i/(nb*num_gpus))%num_streams;
        magma_setdevice(id);
        magmablasSetKernelStream(stream[id][kk]);

        ib = min(nb, n-i);
        ii = nb*((i+offset)/(nb*num_gpus));

        /* ssyr2k on diagonal block */
        trace_gpu_start( id, kk, "syr2k", "syr2k" );
        magma_ssyr2k(uplo, trans, ib, k,
                     alpha, dB1(id, i,        0 ), lddb,
                            dB(id,  i,        0 ), lddb,
                     beta,  dC(id,  i+offset,   ii), lddc);
        trace_gpu_end( id, kk );
    }

    /* off-diagonal update */
    if (uplo == MagmaUpper) {
        for( i=nb; i < n; i += nb ) {
            id = ((i+offset)/nb)%num_gpus;
            kk = (i/(nb*num_gpus))%num_streams;
            magma_setdevice(id);
            magmablasSetKernelStream(stream[id][kk]);
            
            ib = min(nb, n-i);
            ii = nb*((i+offset)/(nb*num_gpus));
            magma_sgemm(MagmaNoTrans, MagmaConjTrans, i, ib, k,
                        alpha, dB1(id, 0, 0 ), lddb,
                               dB(id,  i, 0 ), lddb,
                        c_one, dC(id,  0, ii), lddc);
        }
    }
    else {
        for( i=0; i < n-nb; i += nb ) {
            id = ((i+offset)/nb)%num_gpus;
            kk = (i/(nb*num_gpus))%num_streams;
            magma_setdevice(id);
            magmablasSetKernelStream(stream[id][kk]);
            
            ib = min(nb, n-i);
            ii = nb*((i+offset)/(nb*num_gpus));
            n1 = n-i-ib;
            
            // sgemm on off-diagonal blocks
            trace_gpu_start( id, kk, "gemm_up", "gemm_up" );
            magma_sgemm(MagmaNoTrans, MagmaConjTrans, n1, ib, k,
                        alpha, dB1(id, i+ib,        0 ), lddb,
                               dB(id,  i,           0 ), lddb,
                        c_one, dC(id,  i+offset+ib, ii), lddc);
            trace_gpu_end( id, kk );
        }
    }

    if (uplo == MagmaUpper) {
        for( i=nb; i < n; i += nb ) {
            id = ((i+offset)/nb)%num_gpus;
            kk = (i/(nb*num_gpus))%num_streams;
            magma_setdevice(id);
            magmablasSetKernelStream(stream[id][kk]);
            
            ib = min(nb, n-i);
            ii = nb*((i+offset)/(nb*num_gpus));
            magma_sgemm(MagmaNoTrans, MagmaConjTrans, i, ib, k,
                        alpha, dB( id, 0, 0 ), lddb,
                               dB1(id, i, 0 ), lddb,
                        c_one, dC(id,  0, ii), lddc);
        }
    } else {
        for( i=0; i < n-nb; i += nb ) {
            id = ((i+offset)/nb)%num_gpus;
            kk = (i/(nb*num_gpus))%num_streams;
            magma_setdevice(id);
            magmablasSetKernelStream(stream[id][kk]);
            
            ib = min(nb, n-i);
            ii = nb*((i+offset)/(nb*num_gpus));
            n1 = n-i-ib;
            
            /* sgemm on off-diagonal blocks */
            trace_gpu_start( id, kk, "gemm_up", "gemm_up" );
            magma_sgemm(MagmaNoTrans, MagmaConjTrans, n1, ib, k,
                        alpha, dB(id,  i+ib,        0 ), lddb,
                               dB1(id, i,           0 ), lddb,
                        c_one, dC(id,  i+offset+ib, ii), lddc);
            trace_gpu_end( id, kk );
        }
    }

    for( id=0; id < num_gpus; id++ ) {
        magma_setdevice(id);
        for( kk=0; kk < num_streams; kk++ ) {
            magma_queue_sync(stream[id][kk]);
        }
    }
    magma_setdevice( orig_dev );
    magmablasSetKernelStream( orig_stream );
}
コード例 #2
0
ファイル: ssytrd.cpp プロジェクト: railgun3r/gpgpu_pca
extern "C" magma_err_t
magma_ssytrd(char uplo, magma_int_t n, 
             float *a, magma_int_t lda, 
             float *d, float *e, float *tau,
             float *work, magma_int_t lwork, 
             magma_int_t *info, magma_queue_t queue)
{
/*  -- clMAGMA (version 1.0.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       April 2012

    Purpose   
    =======   
    SSYTRD reduces a real symmetric matrix A to real symmetric   
    tridiagonal form T by an orthogonal similarity transformation:   
    Q**T * A * Q = T.   

    Arguments   
    =========   
    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input/output) REAL array, dimension (LDA,N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading   
            N-by-N upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading N-by-N lower triangular part of A contains the lower   
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   
            On exit, if UPLO = 'U', the diagonal and first superdiagonal   
            of A are overwritten by the corresponding elements of the   
            tridiagonal matrix T, and the elements above the first   
            superdiagonal, with the array TAU, represent the orthogonal   
            matrix Q as a product of elementary reflectors; if UPLO   
            = 'L', the diagonal and first subdiagonal of A are over-   
            written by the corresponding elements of the tridiagonal   
            matrix T, and the elements below the first subdiagonal, with   
            the array TAU, represent the orthogonal matrix Q as a product   
            of elementary reflectors. See Further Details.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    D       (output) REAL array, dimension (N)   
            The diagonal elements of the tridiagonal matrix T:   
            D(i) = A(i,i).   

    E       (output) REAL array, dimension (N-1)   
            The off-diagonal elements of the tridiagonal matrix T:   
            E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.   

    TAU     (output) REAL array, dimension (N-1)   
            The scalar factors of the elementary reflectors (see Further   
            Details).   

    WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= 1.   
            For optimum performance LWORK >= N*NB, where NB is the   
            optimal blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   
    If UPLO = 'U', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(n-1) . . . H(2) H(1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with   
    v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in   
    A(1:i-1,i+1), and tau in TAU(i).   

    If UPLO = 'L', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(1) H(2) . . . H(n-1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),   
    and tau in TAU(i).

    The contents of A on exit are illustrated by the following examples   
    with n = 5:   

    if UPLO = 'U':                       if UPLO = 'L':   

      (  d   e   v2  v3  v4 )              (  d                  )   
      (      d   e   v3  v4 )              (  e   d              )   
      (          d   e   v4 )              (  v1  e   d          )   
      (              d   e  )              (  v1  v2  e   d      )   
      (                  d  )              (  v1  v2  v3  e   d  )   

    where d and e denote diagonal and off-diagonal elements of T, and vi   
    denotes an element of the vector defining H(i).   
    =====================================================================    */  

    char uplo_[2] = {uplo, 0};

    magma_int_t ldda = lda;
    magma_int_t nb = magma_get_ssytrd_nb(n); 

    float c_neg_one = MAGMA_S_NEG_ONE;
    float c_one     = MAGMA_S_ONE;
    float          d_one     = MAGMA_D_ONE;
    
    magma_int_t kk, nx;
    magma_int_t i, j, i_n;
    magma_int_t iinfo;
    magma_int_t ldwork, lddwork, lwkopt;
    magma_int_t lquery;

    *info = 0;
    int upper = lapackf77_lsame(uplo_, "U");
    lquery = lwork == -1;
    if (! upper && ! lapackf77_lsame(uplo_, "L")) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (lda < max(1,n)) {
        *info = -4;
    } else if (lwork < nb*n && ! lquery) {
        *info = -9;
    }

    if (*info == 0) {
      /* Determine the block size. */
      ldwork = lddwork = n;
      lwkopt = n * nb;
// ACD
//      MAGMA_S_SET2REAL( work[0], lwkopt );
      MAGMA_S_SET2REAL( work[0], (float) lwkopt );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
      return *info;

    /* Quick return if possible */
    if (n == 0) {
        work[0] = c_one;
        return *info;
    }

    magmaFloat_ptr da;
	size_t da_offset = 0;
    if (MAGMA_SUCCESS != magma_malloc( &da, (n*ldda + 2*n*nb )*sizeof(float))) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

	magmaFloat_ptr dwork = da;
    size_t dwork_offset = da_offset + (n)*ldda;

    if (n < 2048)
      nx = n;
    else
      nx = 512;

    if (upper) {

        /* Copy the matrix to the GPU */ 
        magma_ssetmatrix( n, n, A(0, 0), 0, lda, dA(0, 0), ldda, queue );

        /*  Reduce the upper triangle of A.   
            Columns 1:kk are handled by the unblocked method. */
        kk = n - (n - nx + nb - 1) / nb * nb;

        for (i = n - nb; i >= kk; i -= nb) 
          {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the   
               matrix W which is needed to update the unreduced part of   
               the matrix */
            
            /*   Get the current panel (no need for the 1st iteration) */
            if (i!=n-nb)
              magma_sgetmatrix( i+nb, nb, dA(0, i), ldda, A(0, i), 0, lda, queue );
            
            magma_slatrd(uplo, i+nb, nb, A(0, 0), lda, e, tau, 
                         work, ldwork, dA(0, 0), ldda, dwork, dwork_offset, lddwork, queue);

            /* Update the unreduced submatrix A(0:i-2,0:i-2), using an   
               update of the form:  A := A - V*W' - W*V' */
            magma_ssetmatrix( i + nb, nb, work, 0, ldwork, dwork, dwork_offset, lddwork, queue );

            magma_ssyr2k(magma_uplo_const(uplo), MagmaNoTrans, i, nb, c_neg_one, 
                         dA(0, i), ldda, dwork, dwork_offset,  
                         lddwork, d_one, dA(0, 0), ldda, queue);
            
            /* Copy superdiagonal elements back into A, and diagonal   
               elements into D */
            for (j = i; j < i+nb; ++j) {
                MAGMA_S_SET2REAL( *A(j-1, j), e[j - 1] );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }

          }
      
        magma_sgetmatrix( kk, kk, dA(0, 0), ldda, A(0, 0), 0, lda, queue );
      
        /*  Use unblocked code to reduce the last or only block */
        lapackf77_ssytd2(uplo_, &kk, A(0, 0), &lda, d, e, tau, &iinfo);
    } 
    else 
      {
        /* Copy the matrix to the GPU */
        if (1<=n-nx)
          magma_ssetmatrix( n, n, A(0,0), 0, lda, dA(0,0), ldda, queue );

        #ifdef FAST_SYMV
        // TODO this leaks memory from da, above
        magmaFloat_ptr dwork2;
        if (MAGMA_SUCCESS != magma_malloc( &dwork2, (n*n)*sizeof(float) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
		size_t dwork2_offset = 0;
        #endif
        /* Reduce the lower triangle of A */
        for (i = 0; i < n-nx; i += nb) 
          {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the
               matrix W which is needed to update the unreduced part of
               the matrix */

            /*   Get the current panel (no need for the 1st iteration) */
            if (i!=0)
              magma_sgetmatrix( n-i, nb, dA(i, i), ldda, A(i, i), 0, lda, queue );
            #ifdef FAST_SYMV
			// unported
            magma_slatrd2(uplo, n-i, nb, A(i, i), lda, &e[i], 
                         &tau[i], work, ldwork, 
                         dA(i, i), ldda,
                         dwork, lddwork, dwork2, n*n);
            #else
            magma_slatrd(uplo, n-i, nb, A(i, i), lda, &e[i], 
                         &tau[i], work, ldwork, 
                         dA(i, i), ldda,
                         dwork, dwork_offset, lddwork, queue);
            #endif
            /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using   
               an update of the form:  A := A - V*W' - W*V' */
            magma_ssetmatrix( n-i, nb, work, 0, ldwork, dwork, dwork_offset, lddwork, queue );

            magma_ssyr2k(MagmaLower, MagmaNoTrans, n-i-nb, nb, c_neg_one, 
                         dA(i+nb, i), ldda, 
                         dwork, (dwork_offset+nb), lddwork, d_one, 
                         dA(i+nb, i+nb), ldda, queue);
            
            /* Copy subdiagonal elements back into A, and diagonal   
               elements into D */
            for (j = i; j < i+nb; ++j) {
                MAGMA_S_SET2REAL( *A(j+1, j), e[j] );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }
          }

        #ifdef FAST_SYMV
        magma_free( dwork2 );
        #endif

        /* Use unblocked code to reduce the last or only block */
        if (1<=n-nx)
          magma_sgetmatrix( n-i, n-i, dA(i, i), ldda, A(i, i), 0, lda, queue );
        i_n = n-i;
        lapackf77_ssytrd(uplo_, &i_n, A(i, i), &lda, &d[i], &e[i],
                         &tau[i], work, &lwork, &iinfo);
        
      }
    
    magma_free( da );
// ACD
//    MAGMA_S_SET2REAL( work[0], lwkopt );
    MAGMA_S_SET2REAL( work[0], (float) lwkopt );

    return *info;
} /* magma_ssytrd */
コード例 #3
0
/**
    Purpose
    -------
    SSYTRD2_GPU reduces a real symmetric matrix A to real symmetric
    tridiagonal form T by an orthogonal similarity transformation:
    Q**H * A * Q = T.
    This version passes a workspace that is used in an optimized
    GPU matrix-vector product.

    Arguments
    ---------
    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    dA      REAL array, dimension (LDA,N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the leading
            N-by-N upper triangular part of A contains the upper
            triangular part of the matrix A, and the strictly lower
            triangular part of A is not referenced.  If UPLO = MagmaLower, the
            leading N-by-N lower triangular part of A contains the lower
            triangular part of the matrix A, and the strictly upper
            triangular part of A is not referenced.
            On exit, if UPLO = MagmaUpper, the diagonal and first superdiagonal
            of A are overwritten by the corresponding elements of the
            tridiagonal matrix T, and the elements above the first
            superdiagonal, with the array TAU, represent the orthogonal
            matrix Q as a product of elementary reflectors; if UPLO
            = MagmaLower, the diagonal and first subdiagonal of A are over-
            written by the corresponding elements of the tridiagonal
            matrix T, and the elements below the first subdiagonal, with
            the array TAU, represent the orthogonal matrix Q as a product
            of elementary reflectors. See Further Details.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    d       REAL array, dimension (N)
            The diagonal elements of the tridiagonal matrix T:
            D(i) = A(i,i).

    @param[out]
    e       REAL array, dimension (N-1)
            The off-diagonal elements of the tridiagonal matrix T:
            E(i) = A(i,i+1) if UPLO = MagmaUpper, E(i) = A(i+1,i) if UPLO = MagmaLower.

    @param[out]
    tau     REAL array, dimension (N-1)
            The scalar factors of the elementary reflectors (see Further
            Details).

    @param[out]
    wA      (workspace) REAL array, dimension (LDA,N)
            On exit the diagonal, the  upper part (UPLO=MagmaUpper)
            or the lower part (UPLO=MagmaLower) are copies of DA

    @param[in]
    ldwa    INTEGER
            The leading dimension of the array wA.  LDWA >= max(1,N).

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.  LWORK >= 1.
            For optimum performance LWORK >= N*NB, where NB is the
            optimal blocksize.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    dwork   (workspace) REAL array on the GPU, dim (MAX(1,LDWORK))

    @param[in]
    ldwork  INTEGER
            The dimension of the array DWORK.
            LDWORK >= (n*n+64-1)/64 + 2*n*nb, where nb = magma_get_ssytrd_nb(n)

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value

    Further Details
    ---------------
    If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary
    reflectors

        Q = H(n-1) . . . H(2) H(1).

    Each H(i) has the form

        H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
    A(1:i-1,i+1), and tau in TAU(i).

    If UPLO = MagmaLower, the matrix Q is represented as a product of elementary
    reflectors

        Q = H(1) H(2) . . . H(n-1).

    Each H(i) has the form

        H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
    and tau in TAU(i).

    The contents of A on exit are illustrated by the following examples
    with n = 5:

    if UPLO = MagmaUpper:                if UPLO = MagmaLower:

        (  d   e   v2  v3  v4 )              (  d                  )
        (      d   e   v3  v4 )              (  e   d              )
        (          d   e   v4 )              (  v1  e   d          )
        (              d   e  )              (  v1  v2  e   d      )
        (                  d  )              (  v1  v2  v3  e   d  )

    where d and e denote diagonal and off-diagonal elements of T, and vi
    denotes an element of the vector defining H(i).

    @ingroup magma_ssyev_comp
    ********************************************************************/
extern "C" magma_int_t
magma_ssytrd2_gpu(
    magma_uplo_t uplo, magma_int_t n,
    magmaFloat_ptr dA, magma_int_t ldda,
    float *d, float *e, float *tau,
    float *wA,  magma_int_t ldwa,
    float *work, magma_int_t lwork,
    magmaFloat_ptr dwork, magma_int_t ldwork,
    magma_int_t *info)
{
#define  A(i, j) (wA + (j)*ldwa + (i))
#define dA(i, j) (dA + (j)*ldda + (i))

    const char* uplo_ = lapack_uplo_const( uplo );

    magma_int_t nb = magma_get_ssytrd_nb(n);

    float c_neg_one = MAGMA_S_NEG_ONE;
    float c_one     = MAGMA_S_ONE;
    float          d_one     = MAGMA_D_ONE;
    
    magma_int_t kk, nx;
    magma_int_t i, j, i_n;
    magma_int_t iinfo;
    magma_int_t ldw, lddw, lwkopt;
    magma_int_t lquery;

    *info = 0;
    int upper = (uplo == MagmaUpper);
    lquery = (lwork == -1);
    if (! upper && uplo != MagmaLower) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (ldda < max(1,n)) {
        *info = -4;
    } else if (ldwa < max(1,n)) {
        *info = -9;
    } else if (lwork < 1 && ! lquery) {
        *info = -11;
    }

    /* Determine the block size. */
    ldw = lddw = n;
    lwkopt = n * nb;
    if (*info == 0) {
        work[0] = MAGMA_S_MAKE( lwkopt, 0 );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;

    /* Quick return if possible */
    if (n == 0) {
        work[0] = c_one;
        return *info;
    }

    if (n < 1024)
        nx = n;
    else
        nx = 300;

    if (ldwork < (ldw*n+64-1)/64 + 2*ldw*nb) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    if (upper) {
        /*  Reduce the upper triangle of A.
            Columns 1:kk are handled by the unblocked method. */
        kk = n - (n - nx + nb - 1) / nb * nb;
        
        for (i = n - nb; i >= kk; i -= nb) {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the
               matrix W which is needed to update the unreduced part of
               the matrix */
            
            /*   Get the current panel */
            magma_sgetmatrix( i+nb, nb, dA(0, i), ldda, A(0, i), ldwa );
            
            magma_slatrd2(uplo, i+nb, nb, A(0, 0), ldwa, e, tau,
                          work, ldw, dA(0, 0), ldda, dwork, lddw, dwork + 2*ldw*nb, ldwork - 2*ldw*nb);
            
            /* Update the unreduced submatrix A(0:i-2,0:i-2), using an
               update of the form:  A := A - V*W' - W*V' */
            
            magma_ssetmatrix( i + nb, nb, work, ldw, dwork, lddw );
            
            magma_ssyr2k(uplo, MagmaNoTrans, i, nb, c_neg_one,
                         dA(0, i), ldda, dwork,
                         lddw, d_one, dA(0, 0), ldda);
            
            /* Copy superdiagonal elements back into A, and diagonal
               elements into D */
            for (j = i; j < i+nb; ++j) {
                *A(j-1,j) = MAGMA_S_MAKE( e[j - 1], 0 );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }
        }
        
        magma_sgetmatrix( kk, kk, dA(0, 0), ldda, A(0, 0), ldwa );
        
        /*  Use CPU code to reduce the last or only block */
        lapackf77_ssytrd(uplo_, &kk, A(0, 0), &ldwa, d, e, tau, work, &lwork, &iinfo);
        
        magma_ssetmatrix( kk, kk, A(0, 0), ldwa, dA(0, 0), ldda );
    }
    else {
        /* Reduce the lower triangle of A */
        for (i = 0; i < n-nx; i += nb) {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the
               matrix W which is needed to update the unreduced part of
               the matrix */
            
            /*   Get the current panel */
            magma_sgetmatrix( n-i, nb, dA(i, i), ldda, A(i, i), ldwa );
            
            magma_slatrd2(uplo, n-i, nb, A(i, i), ldwa, &e[i],
                          &tau[i], work, ldw,
                          dA(i, i), ldda,
                          dwork, lddw,
                          dwork + 2*ldw*nb, ldwork - 2*ldw*nb);
            
            /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using
               an update of the form:  A := A - V*W' - W*V' */
            magma_ssetmatrix( n-i, nb, work, ldw, dwork, lddw );
            
            magma_ssyr2k(MagmaLower, MagmaNoTrans, n-i-nb, nb, c_neg_one,
                         dA(i+nb, i), ldda,
                         &dwork[nb], lddw, d_one,
                         dA(i+nb, i+nb), ldda);
            
            /* Copy subdiagonal elements back into A, and diagonal
               elements into D */
            for (j = i; j < i+nb; ++j) {
                *A(j+1,j) = MAGMA_S_MAKE( e[j], 0 );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }
        }
        /* Use unblocked code to reduce the last or only block */
        magma_sgetmatrix( n-i, n-i, dA(i, i), ldda, A(i, i), ldwa );
        
        i_n = n-i;
        lapackf77_ssytrd(uplo_, &i_n, A(i, i), &ldwa, &d[i], &e[i],
                         &tau[i], work, &lwork, &iinfo);
        
        magma_ssetmatrix( n-i, n-i, A(i, i), ldwa, dA(i, i), ldda );
    }
    
    work[0] = MAGMA_S_MAKE( lwkopt, 0 );

    return *info;
} /* magma_ssytrd2_gpu */
コード例 #4
0
ファイル: ssytrd.cpp プロジェクト: cjy7117/DVFS-MAGMA
/**
    Purpose
    -------
    SSYTRD reduces a real symmetric matrix A to real symmetric
    tridiagonal form T by an orthogonal similarity transformation:
    Q**H * A * Q = T.

    Arguments
    ---------
    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       REAL array, dimension (LDA,N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the leading
            N-by-N upper triangular part of A contains the upper
            triangular part of the matrix A, and the strictly lower
            triangular part of A is not referenced.  If UPLO = MagmaLower, the
            leading N-by-N lower triangular part of A contains the lower
            triangular part of the matrix A, and the strictly upper
            triangular part of A is not referenced.
            On exit, if UPLO = MagmaUpper, the diagonal and first superdiagonal
            of A are overwritten by the corresponding elements of the
            tridiagonal matrix T, and the elements above the first
            superdiagonal, with the array TAU, represent the orthogonal
            matrix Q as a product of elementary reflectors; if UPLO
            = MagmaLower, the diagonal and first subdiagonal of A are over-
            written by the corresponding elements of the tridiagonal
            matrix T, and the elements below the first subdiagonal, with
            the array TAU, represent the orthogonal matrix Q as a product
            of elementary reflectors. See Further Details.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    d       REAL array, dimension (N)
            The diagonal elements of the tridiagonal matrix T:
            D(i) = A(i,i).

    @param[out]
    e       REAL array, dimension (N-1)
            The off-diagonal elements of the tridiagonal matrix T:
            E(i) = A(i,i+1) if UPLO = MagmaUpper, E(i) = A(i+1,i) if UPLO = MagmaLower.

    @param[out]
    tau     REAL array, dimension (N-1)
            The scalar factors of the elementary reflectors (see Further
            Details).

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.  LWORK >= N*NB, where NB is the
            optimal blocksize given by magma_get_ssytrd_nb().
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value

    Further Details
    ---------------
    If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary
    reflectors

       Q = H(n-1) . . . H(2) H(1).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
    A(1:i-1,i+1), and tau in TAU(i).

    If UPLO = MagmaLower, the matrix Q is represented as a product of elementary
    reflectors

       Q = H(1) H(2) . . . H(n-1).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
    and tau in TAU(i).

    The contents of A on exit are illustrated by the following examples
    with n = 5:

    if UPLO = MagmaUpper:                if UPLO = MagmaLower:

      (  d   e   v2  v3  v4 )              (  d                  )
      (      d   e   v3  v4 )              (  e   d              )
      (          d   e   v4 )              (  v1  e   d          )
      (              d   e  )              (  v1  v2  e   d      )
      (                  d  )              (  v1  v2  v3  e   d  )

    where d and e denote diagonal and off-diagonal elements of T, and vi
    denotes an element of the vector defining H(i).

    @ingroup magma_ssyev_comp
    ********************************************************************/
extern "C" magma_int_t
magma_ssytrd(magma_uplo_t uplo, magma_int_t n,
             float *A, magma_int_t lda,
             float *d, float *e, float *tau,
             float *work, magma_int_t lwork,
             magma_int_t *info)
{
#define  A(i, j) ( A + (j)*lda  + (i))
#define dA(i, j) (dA + (j)*ldda + (i))

    const char* uplo_ = lapack_uplo_const( uplo );

    magma_int_t ldda = lda;
    magma_int_t nb = magma_get_ssytrd_nb(n);

    float c_neg_one = MAGMA_S_NEG_ONE;
    float c_one     = MAGMA_S_ONE;
    float          d_one     = MAGMA_D_ONE;
    
    magma_int_t kk, nx;
    magma_int_t i, j, i_n;
    magma_int_t iinfo;
    magma_int_t ldwork, lddwork, lwkopt;
    magma_int_t lquery;

    *info = 0;
    int upper = (uplo == MagmaUpper);
    lquery = (lwork == -1);
    if (! upper && uplo != MagmaLower) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (lda < max(1,n)) {
        *info = -4;
    } else if (lwork < nb*n && ! lquery) {
        *info = -9;
    }

    /* Determine the block size. */
    ldwork = lddwork = n;
    lwkopt = n * nb;
    if (*info == 0) {
        work[0] = MAGMA_S_MAKE( lwkopt, 0 );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;

    /* Quick return if possible */
    if (n == 0) {
        work[0] = c_one;
        return *info;
    }

    float *dA;
    if (MAGMA_SUCCESS != magma_smalloc( &dA, n*ldda + 2*n*nb )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    float *dwork = dA + n*ldda;

    if (n < 2048)
        nx = n;
    else
        nx = 512;

    if (upper) {
        /* Copy the matrix to the GPU */
        magma_ssetmatrix( n, n, A(0, 0), lda, dA(0, 0), ldda );

        /*  Reduce the upper triangle of A.
            Columns 1:kk are handled by the unblocked method. */
        kk = n - (n - nx + nb - 1) / nb * nb;

        for (i = n - nb; i >= kk; i -= nb) {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the
               matrix W which is needed to update the unreduced part of
               the matrix */
            
            /*   Get the current panel (no need for the 1st iteration) */
            if (i != n-nb)
                magma_sgetmatrix( i+nb, nb, dA(0, i), ldda, A(0, i), lda );
            
            magma_slatrd(uplo, i+nb, nb, A(0, 0), lda, e, tau,
                         work, ldwork, dA(0, 0), ldda, dwork, lddwork);

            /* Update the unreduced submatrix A(0:i-2,0:i-2), using an
               update of the form:  A := A - V*W' - W*V' */
            magma_ssetmatrix( i + nb, nb, work, ldwork, dwork, lddwork );

            magma_ssyr2k(uplo, MagmaNoTrans, i, nb, c_neg_one,
                         dA(0, i), ldda, dwork,
                         lddwork, d_one, dA(0, 0), ldda);
            
            /* Copy superdiagonal elements back into A, and diagonal
               elements into D */
            for (j = i; j < i+nb; ++j) {
                *A(j-1,j) = MAGMA_S_MAKE( e[j - 1], 0 );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }
        }
        
        magma_sgetmatrix( kk, kk, dA(0, 0), ldda, A(0, 0), lda );
        
        /*  Use unblocked code to reduce the last or only block */
        lapackf77_ssytd2(uplo_, &kk, A(0, 0), &lda, d, e, tau, &iinfo);
    }
    else {
        /* Copy the matrix to the GPU */
        if (1 <= n-nx)
            magma_ssetmatrix( n, n, A(0,0), lda, dA(0,0), ldda );

        #ifdef FAST_HEMV
        // TODO this leaks memory from dA, above
        float *dwork2;
        if (MAGMA_SUCCESS != magma_smalloc( &dwork2, n*n )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
        #endif
        /* Reduce the lower triangle of A */
        for (i = 0; i < n-nx; i += nb) {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the
               matrix W which is needed to update the unreduced part of
               the matrix */

            /*   Get the current panel (no need for the 1st iteration) */
            if (i != 0)
                magma_sgetmatrix( n-i, nb, dA(i, i), ldda, A(i, i), lda );
            #ifdef FAST_HEMV
            magma_slatrd2(uplo, n-i, nb, A(i, i), lda, &e[i],
                         &tau[i], work, ldwork,
                         dA(i, i), ldda,
                         dwork, lddwork, dwork2, n*n);
            #else
            magma_slatrd(uplo, n-i, nb, A(i, i), lda, &e[i],
                         &tau[i], work, ldwork,
                         dA(i, i), ldda,
                         dwork, lddwork);
            #endif
            /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using
               an update of the form:  A := A - V*W' - W*V' */
            magma_ssetmatrix( n-i, nb, work, ldwork, dwork, lddwork );

            magma_ssyr2k(MagmaLower, MagmaNoTrans, n-i-nb, nb, c_neg_one,
                         dA(i+nb, i), ldda,
                         &dwork[nb], lddwork, d_one,
                         dA(i+nb, i+nb), ldda);
            
            /* Copy subdiagonal elements back into A, and diagonal
               elements into D */
            for (j = i; j < i+nb; ++j) {
                *A(j+1,j) = MAGMA_S_MAKE( e[j], 0 );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }
        }

        #ifdef FAST_HEMV
        magma_free( dwork2 );
        #endif

        /* Use unblocked code to reduce the last or only block */
        if (1 <= n-nx)
            magma_sgetmatrix( n-i, n-i, dA(i, i), ldda, A(i, i), lda );
        i_n = n-i;
        lapackf77_ssytrd(uplo_, &i_n, A(i, i), &lda, &d[i], &e[i],
                         &tau[i], work, &lwork, &iinfo);
    }
    
    magma_free( dA );
    work[0] = MAGMA_S_MAKE( lwkopt, 0 );

    return *info;
} /* magma_ssytrd */
コード例 #5
0
ファイル: testing_sblas.cpp プロジェクト: soulsheng/magma
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, t1, t2;
    float c_neg_one = MAGMA_S_NEG_ONE;
    magma_int_t ione = 1;
    const char trans[] = { 'N', 'C', 'T' };
    const char uplo[]  = { 'L', 'U' };
    const char diag[]  = { 'U', 'N' };
    const char side[]  = { 'L', 'R' };
    
    float  *A,  *B,  *C,   *C2, *LU;
    float *dA, *dB, *dC1, *dC2;
    float alpha = MAGMA_S_MAKE( 0.5, 0.1 );
    float beta  = MAGMA_S_MAKE( 0.7, 0.2 );
    float dalpha = 0.6;
    float dbeta  = 0.8;
    float work[1], error, total_error;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t m, n, k, size, maxn, ld, info;
    magma_int_t *piv;
    magma_err_t err;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    printf( "Compares magma wrapper function to cublas function; all diffs should be exactly 0.\n\n" );
    
    total_error = 0.;
    for( int i = 0; i < opts.ntest; ++i ) {
        m = opts.msize[i];
        n = opts.nsize[i];
        k = opts.ksize[i];
        printf("=========================================================================\n");
        printf( "M %d, N %d, K %d\n", (int) m, (int) n, (int) k );
        
        // allocate matrices
        // over-allocate so they can be any combination of {m,n,k} x {m,n,k}.
        maxn = max( max( m, n ), k );
        ld = maxn;
        size = maxn*maxn;
        err = magma_malloc_cpu( (void**) &piv, maxn*sizeof(magma_int_t) );  assert( err == 0 );
        err = magma_smalloc_pinned( &A,  size );  assert( err == 0 );
        err = magma_smalloc_pinned( &B,  size );  assert( err == 0 );
        err = magma_smalloc_pinned( &C,  size );  assert( err == 0 );
        err = magma_smalloc_pinned( &C2, size );  assert( err == 0 );
        err = magma_smalloc_pinned( &LU, size );  assert( err == 0 );
        err = magma_smalloc( &dA,  size );        assert( err == 0 );
        err = magma_smalloc( &dB,  size );        assert( err == 0 );
        err = magma_smalloc( &dC1, size );        assert( err == 0 );
        err = magma_smalloc( &dC2, size );        assert( err == 0 );
        
        // initialize matrices
        size = maxn*maxn;
        lapackf77_slarnv( &ione, ISEED, &size, A  );
        lapackf77_slarnv( &ione, ISEED, &size, B  );
        lapackf77_slarnv( &ione, ISEED, &size, C  );
        
        printf( "========== Level 1 BLAS ==========\n" );
        
        // ----- test SSWAP
        // swap 2nd and 3rd columns of dA, then copy to C2 and compare with A
        assert( n >= 4 );
        magma_ssetmatrix( m, n, A, ld, dA, ld );
        magma_ssetmatrix( m, n, A, ld, dB, ld );
        magma_sswap( m, dA(0,1), 1, dA(0,2), 1 );
        magma_sswap( m, dB(0,1), 1, dB(0,2), 1 );
        
        // check results, storing diff between magma and cuda calls in C2
        cublasSaxpy( ld*n, c_neg_one, dA, 1, dB, 1 );
        magma_sgetmatrix( m, n, dB, ld, C2, ld );
        error = lapackf77_slange( "F", &m, &k, C2, &ld, work );
        total_error += error;
        printf( "sswap             diff %.2g\n", error );
        
        // ----- test ISAMAX
        // get argmax of column of A
        magma_ssetmatrix( m, k, A, ld, dA, ld );
        error = 0;
        for( int j = 0; j < k; ++j ) {
            magma_int_t i1 = magma_isamax( m, dA(0,j), 1 );
            magma_int_t i2 = cublasIsamax( m, dA(0,j), 1 );
            assert( i1 == i2 );
            error += abs( i1 - i2 );
        }
        total_error += error;
        gflops = (float)m * k / 1e9;
        printf( "isamax            diff %.2g\n", error );
        printf( "\n" );
        
        printf( "========== Level 2 BLAS ==========\n" );
        
        // ----- test SGEMV
        // c = alpha*A*b + beta*c,  with A m*n; b,c m or n-vectors
        // try no-trans/trans
        for( int ia = 0; ia < 3; ++ia ) {
            magma_ssetmatrix( m, n, A,  ld, dA,  ld );
            magma_ssetvector( maxn, B, 1, dB,  1 );
            magma_ssetvector( maxn, C, 1, dC1, 1 );
            magma_ssetvector( maxn, C, 1, dC2, 1 );
            t1 = magma_sync_wtime( 0 );
            magma_sgemv( trans[ia], m, n, alpha, dA, ld, dB, 1, beta, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            t2 = magma_sync_wtime( 0 );
            cublasSgemv( trans[ia], m, n, alpha, dA, ld, dB, 1, beta, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            size = (trans[ia] == 'N' ? m : n);
            cublasSaxpy( size, c_neg_one, dC1, 1, dC2, 1 );
            magma_sgetvector( size, dC2, 1, C2, 1 );
            error = lapackf77_slange( "F", &size, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_SGEMV( m, n ) / 1e9;
            printf( "sgemv( %c )        diff %.2g,  Gflop/s %6.2f, %6.2f\n",
                    trans[ia], error, gflops/t1, gflops/t2 );
        }
        printf( "\n" );
        
        // ----- test SSYMV
        // c = alpha*A*b + beta*c,  with A m*m symmetric; b,c m-vectors
        // try upper/lower
        for( int iu = 0; iu < 2; ++iu ) {
            magma_ssetmatrix( m, m, A, ld, dA, ld );
            magma_ssetvector( m, B, 1, dB,  1 );
            magma_ssetvector( m, C, 1, dC1, 1 );
            magma_ssetvector( m, C, 1, dC2, 1 );
            t1 = magma_sync_wtime( 0 );
            magma_ssymv( uplo[iu], m, alpha, dA, ld, dB, 1, beta, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            t2 = magma_sync_wtime( 0 );
            cublasSsymv( uplo[iu], m, alpha, dA, ld, dB, 1, beta, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasSaxpy( m, c_neg_one, dC1, 1, dC2, 1 );
            magma_sgetvector( m, dC2, 1, C2, 1 );
            error = lapackf77_slange( "F", &m, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_SSYMV( m ) / 1e9;
            printf( "ssymv( %c )        diff %.2g,  Gflop/s %6.2f, %6.2f\n",
                    uplo[iu], error, gflops/t1, gflops/t2 );
        }
        printf( "\n" );
        
        // ----- test STRSV
        // solve A*c = c,  with A m*m triangular; c m-vector
        // try upper/lower, no-trans/trans, unit/non-unit diag
        // Factor A into LU to get well-conditioned triangles, else solve yields garbage.
        // Still can give garbage if solves aren't consistent with LU factors,
        // e.g., using unit diag for U, so copy lower triangle to upper triangle.
        // Also used for trsm later.
        lapackf77_slacpy( "Full", &maxn, &maxn, A, &ld, LU, &ld );
        lapackf77_sgetrf( &maxn, &maxn, LU, &ld, piv, &info );
        for( int j = 0; j < maxn; ++j ) {
            for( int i = 0; i < j; ++i ) {
                *LU(i,j) = *LU(j,i);
            }
        }
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            magma_ssetmatrix( m, m, LU, ld, dA, ld );
            magma_ssetvector( m, C, 1, dC1, 1 );
            magma_ssetvector( m, C, 1, dC2, 1 );
            t1 = magma_sync_wtime( 0 );
            magma_strsv( uplo[iu], trans[it], diag[id], m, dA, ld, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            t2 = magma_sync_wtime( 0 );
            cublasStrsv( uplo[iu], trans[it], diag[id], m, dA, ld, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasSaxpy( m, c_neg_one, dC1, 1, dC2, 1 );
            magma_sgetvector( m, dC2, 1, C2, 1 );
            error = lapackf77_slange( "F", &m, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_STRSM( MagmaLeft, m, 1 ) / 1e9;
            printf( "strsv( %c, %c, %c )  diff %.2g,  Gflop/s %6.2f, %6.2f\n",
                    uplo[iu], trans[it], diag[id], error, gflops/t1, gflops/t2 );
        }}}
        printf( "\n" );
        
        printf( "========== Level 3 BLAS ==========\n" );
        
        // ----- test SGEMM
        // C = alpha*A*B + beta*C,  with A m*k or k*m; B k*n or n*k; C m*n
        // try combinations of no-trans/trans
        for( int ia = 0; ia < 3; ++ia ) {
        for( int ib = 0; ib < 3; ++ib ) {
            bool nta = (trans[ia] == 'N');
            bool ntb = (trans[ib] == 'N');
            magma_ssetmatrix( (nta ? m : k), (nta ? m : k), A, ld, dA,  ld );
            magma_ssetmatrix( (ntb ? k : n), (ntb ? n : k), B, ld, dB,  ld );
            magma_ssetmatrix( m, n, C, ld, dC1, ld );
            magma_ssetmatrix( m, n, C, ld, dC2, ld );
            t1 = magma_sync_wtime( 0 );
            magma_sgemm( trans[ia], trans[ib], m, n, k, alpha, dA, ld, dB, ld, beta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            t2 = magma_sync_wtime( 0 );
            cublasSgemm( trans[ia], trans[ib], m, n, k, alpha, dA, ld, dB, ld, beta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasSaxpy( ld*n, c_neg_one, dC1, 1, dC2, 1 );
            magma_sgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_slange( "F", &m, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_SGEMM( m, n, k ) / 1e9;
            printf( "sgemm( %c, %c )     diff %.2g,  Gflop/s %6.2f, %6.2f\n",
                    trans[ia], trans[ib], error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test SSYMM
        // C = alpha*A*B + beta*C  (left)  with A m*m symmetric; B,C m*n; or
        // C = alpha*B*A + beta*C  (right) with A n*n symmetric; B,C m*n
        // try left/right, upper/lower
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
            magma_ssetmatrix( m, m, A, ld, dA,  ld );
            magma_ssetmatrix( m, n, B, ld, dB,  ld );
            magma_ssetmatrix( m, n, C, ld, dC1, ld );
            magma_ssetmatrix( m, n, C, ld, dC2, ld );
            t1 = magma_sync_wtime( 0 );
            magma_ssymm( side[is], uplo[iu], m, n, alpha, dA, ld, dB, ld, beta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            t2 = magma_sync_wtime( 0 );
            cublasSsymm( side[is], uplo[iu], m, n, alpha, dA, ld, dB, ld, beta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasSaxpy( ld*n, c_neg_one, dC1, 1, dC2, 1 );
            magma_sgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_slange( "F", &m, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_SSYMM( side[is], m, n ) / 1e9;
            printf( "ssymm( %c, %c )     diff %.2g,  Gflop/s %6.2f, %6.2f\n",
                    side[is], uplo[iu], error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test SSYRK
        // C = alpha*A*A^H + beta*C  (no-trans) with A m*k and C m*m symmetric; or
        // C = alpha*A^H*A + beta*C  (trans)    with A k*m and C m*m symmetric
        // try upper/lower, no-trans/trans
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
            magma_ssetmatrix( n, k, A, ld, dA,  ld );
            magma_ssetmatrix( n, n, C, ld, dC1, ld );
            magma_ssetmatrix( n, n, C, ld, dC2, ld );
            t1 = magma_sync_wtime( 0 );
            magma_ssyrk( uplo[iu], trans[it], n, k, dalpha, dA, ld, dbeta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            t2 = magma_sync_wtime( 0 );
            cublasSsyrk( uplo[iu], trans[it], n, k, dalpha, dA, ld, dbeta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasSaxpy( ld*n, c_neg_one, dC1, 1, dC2, 1 );
            magma_sgetmatrix( n, n, dC2, ld, C2, ld );
            error = lapackf77_slange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_SSYRK( k, n ) / 1e9;
            printf( "ssyrk( %c, %c )     diff %.2g,  Gflop/s %6.2f, %6.2f\n",
                    uplo[iu], trans[it], error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test SSYR2K
        // C = alpha*A*B^H + ^alpha*B*A^H + beta*C  (no-trans) with A,B n*k; C n*n symmetric; or
        // C = alpha*A^H*B + ^alpha*B^H*A + beta*C  (trans)    with A,B k*n; C n*n symmetric
        // try upper/lower, no-trans/trans
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
            bool nt = (trans[it] == 'N');
            magma_ssetmatrix( (nt ? n : k), (nt ? n : k), A, ld, dA,  ld );
            magma_ssetmatrix( n, n, C, ld, dC1, ld );
            magma_ssetmatrix( n, n, C, ld, dC2, ld );
            t1 = magma_sync_wtime( 0 );
            magma_ssyr2k( uplo[iu], trans[it], n, k, alpha, dA, ld, dB, ld, dbeta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            t2 = magma_sync_wtime( 0 );
            cublasSsyr2k( uplo[iu], trans[it], n, k, alpha, dA, ld, dB, ld, dbeta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasSaxpy( ld*n, c_neg_one, dC1, 1, dC2, 1 );
            magma_sgetmatrix( n, n, dC2, ld, C2, ld );
            error = lapackf77_slange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_SSYR2K( k, n ) / 1e9;
            printf( "ssyr2k( %c, %c )    diff %.2g,  Gflop/s %6.2f, %6.2f\n",
                    uplo[iu], trans[it], error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test STRMM
        // C = alpha*A*C  (left)  with A m*m triangular; C m*n; or
        // C = alpha*C*A  (right) with A n*n triangular; C m*n
        // try left/right, upper/lower, no-trans/trans, unit/non-unit
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            bool left = (side[is] == 'L');
            magma_ssetmatrix( (left ? m : n), (left ? m : n), A, ld, dA,  ld );
            magma_ssetmatrix( m, n, C, ld, dC1, ld );
            magma_ssetmatrix( m, n, C, ld, dC2, ld );
            t1 = magma_sync_wtime( 0 );
            magma_strmm( side[is], uplo[iu], trans[it], diag[id], m, n, alpha, dA, ld, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            t2 = magma_sync_wtime( 0 );
            cublasStrmm( side[is], uplo[iu], trans[it], diag[id], m, n, alpha, dA, ld, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasSaxpy( ld*n, c_neg_one, dC1, 1, dC2, 1 );
            magma_sgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_slange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_STRMM( side[is], m, n ) / 1e9;
            printf( "strmm( %c, %c )     diff %.2g,  Gflop/s %6.2f, %6.2f\n",
                    uplo[iu], trans[it], error, gflops/t1, gflops/t2 );
        }}}}
        printf( "\n" );
        
        // ----- test STRSM
        // solve A*X = alpha*B  (left)  with A m*m triangular; B m*n; or
        // solve X*A = alpha*B  (right) with A n*n triangular; B m*n
        // try left/right, upper/lower, no-trans/trans, unit/non-unit
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            bool left = (side[is] == 'L');
            magma_ssetmatrix( (left ? m : n), (left ? m : n), LU, ld, dA,  ld );
            magma_ssetmatrix( m, n, C, ld, dC1, ld );
            magma_ssetmatrix( m, n, C, ld, dC2, ld );
            t1 = magma_sync_wtime( 0 );
            magma_strsm( side[is], uplo[iu], trans[it], diag[id], m, n, alpha, dA, ld, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            t2 = magma_sync_wtime( 0 );
            cublasStrsm( side[is], uplo[iu], trans[it], diag[id], m, n, alpha, dA, ld, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasSaxpy( ld*n, c_neg_one, dC1, 1, dC2, 1 );
            magma_sgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_slange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_STRSM( side[is], m, n ) / 1e9;
            printf( "strsm( %c, %c )     diff %.2g,  Gflop/s %6.2f, %6.2f\n",
                    uplo[iu], trans[it], error, gflops/t1, gflops/t2 );
        }}}}
        printf( "\n" );
        
        // cleanup
        magma_free_cpu( piv );
        magma_free_pinned( A  );
        magma_free_pinned( B  );
        magma_free_pinned( C  );
        magma_free_pinned( C2 );
        magma_free_pinned( LU );
        magma_free( dA  );
        magma_free( dB  );
        magma_free( dC1 );
        magma_free( dC2 );
    }
    
    if ( total_error != 0. ) {
        printf( "total error %.2g -- ought to be 0 -- some test failed (see above).\n",
                total_error );
    }
    else {
        printf( "all tests passed\n" );
    }
    
    TESTING_FINALIZE();
    return 0;
}
コード例 #6
0
ファイル: ssytrd_sy2sb.cpp プロジェクト: cjy7117/DVFS-MAGMA
extern "C" magma_int_t
magma_ssytrd_sy2sb( char uplo, magma_int_t n, magma_int_t nb,
                    float *a, magma_int_t lda, 
                    float *tau,
                    float *work, magma_int_t lwork,
                    float *dT,
                    magma_int_t threads, magma_int_t *info)
{
/*  -- MAGMA (version 1.3.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       November 2012

    Purpose   
    =======   
    SSYTRD_HE2HB reduces a real symmetric matrix A to real symmetric   
    band-diagonal form T by an orthogonal similarity transformation:   
    Q**T * A * Q = T.   
    This version stores the triangular matrices T used in the accumulated
    Householder transformations (I - V T V').

    Arguments   
    =========   
    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input/output) REAL array, dimension (LDA,N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading   
            N-by-N upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading N-by-N lower triangular part of A contains the lower   
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   
            On exit, if UPLO = 'U', the Upper band-diagonal of A is 
            overwritten by the corresponding elements of the   
            band-diagonal matrix T, and the elements above the band   
            diagonal, with the array TAU, represent the orthogonal   
            matrix Q as a product of elementary reflectors; if UPLO   
            = 'L', the the Lower band-diagonal of A is overwritten by 
            the corresponding elements of the band-diagonal   
            matrix T, and the elements below the band-diagonal, with   
            the array TAU, represent the orthogonal matrix Q as a product   
            of elementary reflectors. See Further Details.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    TAU     (output) REAL array, dimension (N-1)   
            The scalar factors of the elementary reflectors (see Further   
            Details).   

    WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= 1.   
            For optimum performance LWORK >= N*NB, where NB is the   
            optimal blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    dT      (output) REAL array on the GPU, dimension N*NB, 
            where NB is the optimal blocksize.
            On exit dT holds the upper triangular matrices T from the 
            accumulated Householder transformations (I - V T V') used
            in the factorization. The nb x nb matrices T are ordered 
            consecutively in memory one after another.

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   
    If UPLO = 'U', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(n-1) . . . H(2) H(1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with   
    v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in   
    A(1:i-1,i+1), and tau in TAU(i).   

    If UPLO = 'L', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(1) H(2) . . . H(n-1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),   
    and tau in TAU(i).

    The contents of A on exit are illustrated by the following examples   
    with n = 5:   

    if UPLO = 'U':                       if UPLO = 'L':   

      (  d   e   v2  v3  v4 )              (  d                  )   
      (      d   e   v3  v4 )              (  e   d              )   
      (          d   e   v4 )              (  v1  e   d          )   
      (              d   e  )              (  v1  v2  e   d      )   
      (                  d  )              (  v1  v2  v3  e   d  )   

    where d and e denote diagonal and off-diagonal elements of T, and vi   
    denotes an element of the vector defining H(i).   
    =====================================================================    */

    #define a_ref(a_1,a_2)  ( a  + ((a_2)-1)*( lda) + (a_1)-1)
    #define da_ref(a_1,a_2) (da  + ((a_2)-1)*(ldda) + (a_1)-1)
    #define tau_ref(a_1)    (tau + (a_1)-1)
    #define t_ref(a_1)      (dT  + ((a_1)-1)*(lddt))

    char uplo_[2] = {uplo, 0};

    int ldda = ((n+31)/32)*32;
    int lddt = nb;
   
    float c_neg_one  = MAGMA_S_NEG_ONE;
    float c_neg_half = MAGMA_S_NEG_HALF;
    float c_one  = MAGMA_S_ONE ;
    float c_zero = MAGMA_S_ZERO;
    float  d_one = MAGMA_D_ONE;

    magma_int_t pm, pn, indi, indj, pk;
    magma_int_t pm_old=0, pn_old=0, indi_old=0, indj_old=0;

    int i;
    int lwkopt;
    int lquery;

    *info = 0;
    int upper = lapackf77_lsame(uplo_, "U");
    lquery = lwork == -1;
    if (! upper && ! lapackf77_lsame(uplo_, "L")) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (lda < max(1,n)) {
        *info = -4;
    } else if (lwork < 1 && ! lquery) {
        *info = -9;
    }

    if (*info == 0) {
      /* Determine the block size. */
      lwkopt = n * nb;
      MAGMA_S_SET2REAL( work[0], lwkopt );
    }

    if (*info != 0)
      return *info;
    else if (lquery)
      return *info;

    /* Quick return if possible */
    if (n == 0) {
        work[0] = c_one;
        return *info;
    }

    float *da;
    if (MAGMA_SUCCESS != magma_smalloc( &da, (n + 2*nb)*ldda )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    magma_int_t mklth = min(threads,12);
#if defined(USEMKL)
    mkl_set_num_threads(mklth);
#endif
#if defined(USEACML)
    omp_set_num_threads(mklth);
#endif


    /* Use the first panel of da as work space */
    float *dwork = da+n*ldda;
    float *dW    = dwork + nb*ldda;

    #ifdef TRACING
    char buf[80];
    #endif
    cudaStream_t stream[3];
    magma_queue_create( &stream[0] );
    magma_queue_create( &stream[1] );
    stream[2] = 0;  // default stream
    
    trace_init( 1, 1, 3, stream );

    float *hT = work + lwork - nb*nb;
    lwork -= nb*nb;
    memset( hT, 0, nb*nb*sizeof(float));

    magmablasSetKernelStream( stream[0] );
    cudaEvent_t Pupdate_event;
    cudaEventCreateWithFlags(&Pupdate_event,cudaEventDisableTiming);
    //cudaEventCreate(&Pupdate_event);


    if (upper) {
      printf("SSYTRD_HE2HB is not yet implemented for upper matrix storage. Exit.\n");
      exit(1);

    }else {
        /* Copy the matrix to the GPU */
        if (1 <= n-nb){
            trace_gpu_start( 0, 0, "set", "set A" );
            magma_ssetmatrix_async( (n-nb), (n-nb),
                                    a_ref(nb+1, nb+1),  lda,
                                    da_ref(nb+1, nb+1), ldda, stream[0] );
            trace_gpu_end( 0, 0 );
        }

        /* Reduce the lower triangle of A */
        for (i = 1; i <= n-nb; i += nb) 
        {
             indi = i+nb;
             indj = i;
             pm   = n - i - nb + 1;
             //pn   = min(i+nb-1, n-nb) -i + 1;
             pn   = nb;
             
             /*   Get the current panel (no need for the 1st iteration) */
             if (i > 1 ){
                 // spanel_to_q copy the upper oof diagonal part of 
                 // the matrix to work to be restored later. acctually
                 //  the zero's and one's putted are not used this is only
                 //   because we don't have a function that copy only the
                 //    upper part of A to be restored after copying the 
                 //    lookahead panel that has been computted from GPU to CPU. 
                 spanel_to_q(MagmaUpper, pn-1, a_ref(i, i+1), lda, work);

                 trace_gpu_start( 0, 1, "get", "get panel" );
                 //magma_queue_sync( stream[0] );
                 cudaStreamWaitEvent(stream[1], Pupdate_event, 0);
                 magma_sgetmatrix_async( (pm+pn), pn,
                                         da_ref( i, i), ldda,
                                         a_ref ( i, i), lda, stream[1] );
                 trace_gpu_end( 0, 1 );

                 trace_gpu_start( 0, 2, "syr2k", "syr2k" );
                 magma_ssyr2k(MagmaLower, MagmaNoTrans, pm_old-pn_old, pn_old, c_neg_one,
                      da_ref(indi_old+pn_old, indj_old), ldda,
                      dW + pn_old           , pm_old, d_one,
                      da_ref(indi_old+pn_old, indi_old+pn_old), ldda);
                 trace_gpu_end( 0, 2 );

                 trace_cpu_start( 0, "sync", "sync on 1" );
                 magma_queue_sync( stream[1] );
                 trace_cpu_end( 0 );
                 sq_to_panel(MagmaUpper, pn-1, a_ref(i, i+1), lda, work);
             }

             /* ==========================================================
                QR factorization on a panel starting nb off of the diagonal.
                Prepare the V and T matrices. 
                ==========================================================  */
             #ifdef TRACING
             snprintf( buf, sizeof(buf), "panel %d", i );
             #endif
             trace_cpu_start( 0, "geqrf", buf );
             lapackf77_sgeqrf(&pm, &pn, a_ref(indi, indj), &lda, 
                        tau_ref(i), work, &lwork, info);
             
             /* Form the matrix T */
                         pk=min(pm,pn);
             lapackf77_slarft( MagmaForwardStr, MagmaColumnwiseStr,
                           &pm, &pk, a_ref(indi, indj), &lda,
                           tau_ref(i), hT, &nb);

             /* Prepare V - put 0s in the upper triangular part of the panel
                (and 1s on the diagonal), temporaly storing the original in work */
             spanel_to_q(MagmaUpper, pk, a_ref(indi, indj), lda, work);
             trace_cpu_end( 0 );

             /* Send V from the CPU to the GPU */
             trace_gpu_start( 0, 0, "set", "set V and T" );
             magma_ssetmatrix_async( pm, pk,
                                     a_ref(indi, indj),  lda,
                                     da_ref(indi, indj), ldda, stream[0] );

             /* Send the triangular factor T to the GPU */
             magma_ssetmatrix_async( pk, pk,
                                     hT,       nb,
                                     t_ref(i), lddt, stream[0] );
             trace_gpu_end( 0, 0 );
             
             /* ==========================================================
                Compute W:
                1. X = A (V T)
                2. W = X - 0.5* V * (T' * (V' * X)) 
                ==========================================================  */
             /* dwork = V T */
             trace_cpu_start( 0, "sync", "sync on 0" );
             // this sync is done here to be sure that the copy has been finished
             // because below we made a restore sq_to_panel and this restore need
             // to ensure that the copy has been finished. we did it here to allow
             // overlapp of restore with next gemm and symm.
             magma_queue_sync( stream[0] );
             trace_cpu_end( 0 );
             
             trace_gpu_start( 0, 2, "gemm", "work = V*T" );
             magma_sgemm(MagmaNoTrans, MagmaNoTrans, pm, pk, pk,
                         c_one, da_ref(indi, indj), ldda, 
                         t_ref(i), lddt,
                         c_zero, dwork, pm);
             trace_gpu_end( 0, 2 );
             
             /* dW = X = A*V*T. dW = A*dwork */ 
             trace_gpu_start( 0, 2, "symm", "X = A*work" );
             magma_ssymm(MagmaLeft, uplo, pm, pk,
                         c_one, da_ref(indi, indi), ldda,
                         dwork, pm,
                         c_zero, dW, pm);
             trace_gpu_end( 0, 2 );
             /* restore the panel */
             sq_to_panel(MagmaUpper, pk, a_ref(indi, indj), lda, work);
             
             /* dwork = V*T already ==> dwork' = T'*V'
              * compute T'*V'*X ==> dwork'*W ==>
              * dwork + pm*nb = ((T' * V') * X) = dwork' * X = dwork' * W */
             trace_gpu_start( 0, 2, "gemm", "work = T'*V'*X" );
             magma_sgemm(MagmaTrans, MagmaNoTrans, pk, pk, pm,
                         c_one, dwork, pm, 
                         dW, pm,
                         c_zero, dwork + pm*nb, nb);
             trace_gpu_end( 0, 2 );
             
             /* W = X - 0.5 * V * T'*V'*X
              *   = X - 0.5 * V * (dwork + pm*nb) = W - 0.5 * V * (dwork + pm*nb) */
             trace_gpu_start( 0, 2, "gemm", "W = X - 0.5*V*(T'*V'*X)" );
             magma_sgemm(MagmaNoTrans, MagmaNoTrans, pm, pk, pk,
                         c_neg_half, da_ref(indi, indj), ldda,
                         dwork + pm*nb, nb, 
                         c_one,     dW, pm);
             trace_gpu_end( 0, 2 );

             /* ==========================================================
                Update the unreduced submatrix A(i+ib:n,i+ib:n), using   
                an update of the form:  A := A - V*W' - W*V' 
                ==========================================================  */
             if (i + nb <= n-nb){
                 /* There would be next iteration;
                    do lookahead - update the next panel */
                 trace_gpu_start( 0, 2, "gemm", "gemm 4 next panel left" );
                 magma_sgemm(MagmaNoTrans, MagmaTrans, pm, pn, pn, c_neg_one,
                             da_ref(indi, indj), ldda,
                             dW                , pm, c_one,
                             da_ref(indi, indi), ldda);
                 trace_gpu_end( 0, 2 );
             
                 trace_gpu_start( 0, 2, "gemm", "gemm 5 next panel right" );
                 magma_sgemm(MagmaNoTrans, MagmaTrans, pm, pn, pn, c_neg_one,
                             dW                , pm,
                             da_ref(indi, indj), ldda, c_one,
                             da_ref(indi, indi), ldda);
                 trace_gpu_end( 0, 2 );
                 cudaEventRecord(Pupdate_event, stream[0]);
             }
             else {
                 /* no look-ahead as this is last iteration */
                 trace_gpu_start( 0, 2, "syr2k", "syr2k last iteration" );
                 magma_ssyr2k(MagmaLower, MagmaNoTrans, pk, pk, c_neg_one,
                              da_ref(indi, indj), ldda,
                              dW                , pm, d_one,
                              da_ref(indi, indi), ldda);
                 trace_gpu_end( 0, 2 );
             }
             
             indi_old = indi;
             indj_old = indj;
             pm_old   = pm;
             pn_old   = pn;
        }  // end loop for(i)

        /* Send the last block to the CPU */
        pk = min(pm,pn);
        if (1 <= n-nb){
            spanel_to_q(MagmaUpper, pk-1, a_ref(n-pk+1, n-pk+2), lda, work);
            trace_gpu_start( 0, 2, "get", "get last block" );
            magma_sgetmatrix( pk, pk,
                              da_ref(n-pk+1, n-pk+1), ldda,
                              a_ref(n-pk+1, n-pk+1),  lda );
            trace_gpu_end( 0, 2 );
            sq_to_panel(MagmaUpper, pk-1, a_ref(n-pk+1, n-pk+2), lda, work);
        }
    }// end of LOWER
    
    trace_finalize( "ssytrd_sy2sb.svg", "trace.css" );

    cudaEventDestroy(Pupdate_event);
    magma_queue_destroy( stream[0] );
    magma_queue_destroy( stream[1] );
    magma_free( da );
    MAGMA_S_SET2REAL( work[0], lwkopt );
    magmablasSetKernelStream( 0 );
    
#if defined(USEMKL)
    mkl_set_num_threads(1);
#endif
#if defined(USEACML)
    omp_set_num_threads(1);
#endif
    

    return *info;
} /* ssytrd_sy2sb_ */
コード例 #7
0
ファイル: ssytrd2_gpu.cpp プロジェクト: xulunfan/magma
/**
    Purpose
    -------
    SSYTRD2_GPU reduces a real symmetric matrix A to real symmetric
    tridiagonal form T by an orthogonal similarity transformation:
    Q**H * A * Q = T.
    This version passes a workspace that is used in an optimized
    GPU matrix-vector product.

    Arguments
    ---------
    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    dA      REAL array on the GPU, dimension (LDDA,N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the leading
            N-by-N upper triangular part of A contains the upper
            triangular part of the matrix A, and the strictly lower
            triangular part of A is not referenced.  If UPLO = MagmaLower, the
            leading N-by-N lower triangular part of A contains the lower
            triangular part of the matrix A, and the strictly upper
            triangular part of A is not referenced.
            On exit, if UPLO = MagmaUpper, the diagonal and first superdiagonal
            of A are overwritten by the corresponding elements of the
            tridiagonal matrix T, and the elements above the first
            superdiagonal, with the array TAU, represent the orthogonal
            matrix Q as a product of elementary reflectors; if UPLO
            = MagmaLower, the diagonal and first subdiagonal of A are over-
            written by the corresponding elements of the tridiagonal
            matrix T, and the elements below the first subdiagonal, with
            the array TAU, represent the orthogonal matrix Q as a product
            of elementary reflectors. See Further Details.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array A.  LDDA >= max(1,N).

    @param[out]
    d       REAL array, dimension (N)
            The diagonal elements of the tridiagonal matrix T:
            D(i) = A(i,i).

    @param[out]
    e       REAL array, dimension (N-1)
            The off-diagonal elements of the tridiagonal matrix T:
            E(i) = A(i,i+1) if UPLO = MagmaUpper, E(i) = A(i+1,i) if UPLO = MagmaLower.

    @param[out]
    tau     REAL array, dimension (N-1)
            The scalar factors of the elementary reflectors (see Further
            Details).

    @param[out]
    A       (workspace) REAL array, dimension (LDA,N)
            On exit the diagonal, the  upper part (if uplo=MagmaUpper)
            or the lower part (if uplo=MagmaLower) are copies of DA

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.  LWORK >= N*NB, where NB is the
            optimal blocksize given by magma_get_ssytrd_nb().
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    dwork   (workspace) REAL array on the GPU, dim (MAX(1,LDWORK))

    @param[in]
    ldwork  INTEGER
            The dimension of the array DWORK.
            LDWORK >= ldda*ceil(n/64) + 2*ldda*nb, where nb = magma_get_ssytrd_nb(n),
            and 64 is for the blocksize of magmablas_ssymv.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value

    Further Details
    ---------------
    If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary
    reflectors

        Q = H(n-1) . . . H(2) H(1).

    Each H(i) has the form

        H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
    A(1:i-1,i+1), and tau in TAU(i).

    If UPLO = MagmaLower, the matrix Q is represented as a product of elementary
    reflectors

        Q = H(1) H(2) . . . H(n-1).

    Each H(i) has the form

        H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
    and tau in TAU(i).

    The contents of A on exit are illustrated by the following examples
    with n = 5:

    if UPLO = MagmaUpper:                if UPLO = MagmaLower:

        (  d   e   v2  v3  v4 )              (  d                  )
        (      d   e   v3  v4 )              (  e   d              )
        (          d   e   v4 )              (  v1  e   d          )
        (              d   e  )              (  v1  v2  e   d      )
        (                  d  )              (  v1  v2  v3  e   d  )

    where d and e denote diagonal and off-diagonal elements of T, and vi
    denotes an element of the vector defining H(i).

    @ingroup magma_ssyev_comp
    ********************************************************************/
extern "C" magma_int_t
magma_ssytrd2_gpu(
    magma_uplo_t uplo, magma_int_t n,
    magmaFloat_ptr dA, magma_int_t ldda,
    float *d, float *e, float *tau,
    float *A,  magma_int_t lda,
    float *work, magma_int_t lwork,
    magmaFloat_ptr dwork, magma_int_t ldwork,
    magma_int_t *info)
{
    #define  A(i_, j_) ( A + (i_) + (j_)*lda )
    #define dA(i_, j_) (dA + (i_) + (j_)*ldda)

    /* Constants */
    const float c_zero    = MAGMA_S_ZERO;
    const float c_neg_one = MAGMA_S_NEG_ONE;
    const float c_one     = MAGMA_S_ONE;
    const float             d_one     = MAGMA_D_ONE;
    
    /* Local variables */
    const char* uplo_ = lapack_uplo_const( uplo );

    magma_int_t nb = magma_get_ssytrd_nb( n );

    magma_int_t kk, nx;
    magma_int_t i, j, i_n;
    magma_int_t iinfo;
    magma_int_t ldw, lddw, lwkopt;
    magma_int_t lquery;

    *info = 0;
    bool upper = (uplo == MagmaUpper);
    lquery = (lwork == -1);
    if (! upper && uplo != MagmaLower) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (ldda < max(1,n)) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -9;
    } else if (lwork < nb*n && ! lquery) {
        *info = -11;
    } else if (ldwork < ldda*magma_ceildiv(n,64) + 2*ldda*nb) {
        *info = -13;
    }

    /* Determine the block size. */
    ldw = n;
    lddw = ldda;  // hopefully ldda is rounded up to multiple of 32; ldwork is in terms of ldda, so lddw can't be > ldda.
    lwkopt = n * nb;
    if (*info == 0) {
        work[0] = magma_smake_lwork( lwkopt );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;

    /* Quick return if possible */
    if (n == 0) {
        work[0] = c_one;
        return *info;
    }

    // nx <= n is required
    // use LAPACK for n < 3000, otherwise switch at 512
    if (n < 3000)
        nx = n;
    else
        nx = 512;

    float *work2;
    if (MAGMA_SUCCESS != magma_smalloc_cpu( &work2, n )) {
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }

    magma_queue_t queue = NULL;
    magma_device_t cdev;
    magma_getdevice( &cdev );
    magma_queue_create( cdev, &queue );

    // clear out dwork in case it has NANs (used as y in ssymv)
    // rest of dwork (used as work in magmablas_ssymv) doesn't need to be cleared
    magmablas_slaset( MagmaFull, n, nb, c_zero, c_zero, dwork, lddw, queue );

    if (upper) {
        /* Reduce the upper triangle of A.
           Columns 1:kk are handled by the unblocked method. */
        kk = n - magma_roundup( n - nx, nb );
        
        for (i = n - nb; i >= kk; i -= nb) {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the
               matrix W which is needed to update the unreduced part of
               the matrix */
            
            /* Get the current panel */
            magma_sgetmatrix( i+nb, nb, dA(0, i), ldda, A(0, i), lda, queue );
            
            magma_slatrd2( uplo, i+nb, nb, A(0, 0), lda, e, tau,
                           work, ldw, work2, n, dA(0, 0), ldda, dwork, lddw,
                           dwork + 2*lddw*nb, ldwork - 2*lddw*nb, queue );
            
            /* Update the unreduced submatrix A(0:i-2,0:i-2), using an
               update of the form:  A := A - V*W' - W*V' */
            magma_ssetmatrix( i + nb, nb, work, ldw, dwork, lddw, queue );
            
            magma_ssyr2k( uplo, MagmaNoTrans, i, nb, c_neg_one,
                          dA(0, i), ldda, dwork, lddw,
                          d_one, dA(0, 0), ldda, queue );
            
            /* Copy superdiagonal elements back into A, and diagonal
               elements into D */
            for (j = i; j < i+nb; ++j) {
                *A(j-1,j) = MAGMA_S_MAKE( e[j - 1], 0 );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }
        }
        
        magma_sgetmatrix( kk, kk, dA(0, 0), ldda, A(0, 0), lda, queue );
        
        /* Use CPU code to reduce the last or only block */
        lapackf77_ssytrd( uplo_, &kk, A(0, 0), &lda, d, e, tau, work, &lwork, &iinfo );
        
        magma_ssetmatrix( kk, kk, A(0, 0), lda, dA(0, 0), ldda, queue );
    }
    else {
        /* Reduce the lower triangle of A */
        for (i = 0; i < n-nx; i += nb) {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the
               matrix W which is needed to update the unreduced part of
               the matrix */
            
            /* Get the current panel */
            magma_sgetmatrix( n-i, nb, dA(i, i), ldda, A(i, i), lda, queue );
            
            magma_slatrd2( uplo, n-i, nb, A(i, i), lda, &e[i], &tau[i],
                           work, ldw, work2, n, dA(i, i), ldda, dwork, lddw,
                           dwork + 2*lddw*nb, ldwork - 2*lddw*nb, queue );
            
            /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using
               an update of the form:  A := A - V*W' - W*V' */
            magma_ssetmatrix( n-i, nb, work, ldw, dwork, lddw, queue );
            
            // cublas 6.5 crashes here if lddw % 32 != 0, e.g., N=250.
            magma_ssyr2k( MagmaLower, MagmaNoTrans, n-i-nb, nb, c_neg_one,
                          dA(i+nb, i), ldda, &dwork[nb], lddw,
                          d_one, dA(i+nb, i+nb), ldda, queue );

            /* Copy subdiagonal elements back into A, and diagonal
               elements into D */
            for (j = i; j < i+nb; ++j) {
                *A(j+1,j) = MAGMA_S_MAKE( e[j], 0 );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }
        }
        
        /* Use CPU code to reduce the last or only block */
        magma_sgetmatrix( n-i, n-i, dA(i, i), ldda, A(i, i), lda, queue );
        
        i_n = n-i;
        lapackf77_ssytrd( uplo_, &i_n, A(i, i), &lda, &d[i], &e[i],
                          &tau[i], work, &lwork, &iinfo );
        
        magma_ssetmatrix( n-i, n-i, A(i, i), lda, dA(i, i), ldda, queue );
    }
    
    magma_free_cpu( work2 );
    magma_queue_destroy( queue );
    
    work[0] = magma_smake_lwork( lwkopt );

    return *info;
} /* magma_ssytrd2_gpu */