/** Purpose ------- SSYEVD_GPU computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] dA REAL array on the GPU, dimension (LDDA, N). On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower) or the upper triangle (if UPLO=MagmaUpper) of A, including the diagonal, is destroyed. @param[in] ldda INTEGER The leading dimension of the array DA. LDDA >= max(1,N). @param[out] w REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. @param wA (workspace) REAL array, dimension (LDWA, N) @param[in] ldwa INTEGER The leading dimension of the array wA. LDWA >= max(1,N). @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ). NB can be obtained through magma_get_ssytrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified description of INFO. Sven, 16 Feb 05. @ingroup magma_ssyev_driver ********************************************************************/ extern "C" magma_int_t magma_ssyevd_gpu( magma_vec_t jobz, magma_uplo_t uplo, magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda, float *w, float *wA, magma_int_t ldwa, float *work, magma_int_t lwork, #ifdef COMPLEX float *rwork, magma_int_t lrwork, #endif magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { magma_int_t ione = 1; float d__1; float eps; magma_int_t inde; float anrm; float rmin, rmax; float sigma; magma_int_t iinfo, lwmin; magma_int_t lower; magma_int_t wantz; magma_int_t indwk2, llwrk2; magma_int_t iscale; float safmin; float bignum; magma_int_t indtau; magma_int_t indwrk, liwmin; magma_int_t llwork; float smlnum; magma_int_t lquery; magmaFloat_ptr dwork; magma_int_t lddc = ldda; wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); lquery = (lwork == -1 || liwork == -1); *info = 0; if (! (wantz || (jobz == MagmaNoVec))) { *info = -1; } else if (! (lower || (uplo == MagmaUpper))) { *info = -2; } else if (n < 0) { *info = -3; } else if (ldda < max(1,n)) { *info = -5; } magma_int_t nb = magma_get_ssytrd_nb( n ); if ( n <= 1 ) { lwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( 2*n + n*nb, 1 + 6*n + 2*n*n ); liwmin = 3 + 5*n; } else { lwmin = 2*n + n*nb; liwmin = 1; } work[0] = magma_smake_lwork( lwmin ); iwork[0] = liwmin; if ((lwork < lwmin) && !lquery) { *info = -10; } else if ((liwork < liwmin) && ! lquery) { *info = -12; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } magma_queue_t queue; magma_device_t cdev; magma_getdevice( &cdev ); magma_queue_create( cdev, &queue ); /* If matrix is very small, then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { magma_int_t lda = n; float *A; magma_smalloc_cpu( &A, lda*n ); magma_sgetmatrix( n, n, dA, ldda, A, lda, queue ); lapackf77_ssyevd( lapack_vec_const(jobz), lapack_uplo_const(uplo), &n, A, &lda, w, work, &lwork, iwork, &liwork, info ); magma_ssetmatrix( n, n, A, lda, dA, ldda, queue ); magma_free_cpu( A ); magma_queue_destroy( queue ); return *info; } // ssytrd2_gpu requires ldda*ceildiv(n,64) + 2*ldda*nb // sormtr_gpu requires lddc*n // slansy requires n magma_int_t ldwork = max( ldda*magma_ceildiv(n,64) + 2*ldda*nb, lddc*n ); ldwork = max( ldwork, n ); if ( wantz ) { // sstedx requires 3n^2/2 ldwork = max( ldwork, 3*n*(n/2 + 1) ); } if (MAGMA_SUCCESS != magma_smalloc( &dwork, ldwork )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } /* Get machine constants. */ safmin = lapackf77_slamch("Safe minimum"); eps = lapackf77_slamch("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = magma_ssqrt( smlnum ); rmax = magma_ssqrt( bignum ); /* Scale matrix to allowable range, if necessary. */ anrm = magmablas_slansy( MagmaMaxNorm, uplo, n, dA, ldda, dwork, ldwork, queue ); iscale = 0; sigma = 1; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { magmablas_slascl( uplo, 0, 0, 1., sigma, n, n, dA, ldda, queue, info ); } /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */ // ssytrd work: e (n) + tau (n) + llwork (n*nb) ==> 2n + n*nb // sstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2) ==> 1 + 6n + 2n^2 inde = 0; indtau = inde + n; indwrk = indtau + n; indwk2 = indwrk + n*n; llwork = lwork - indwrk; llwrk2 = lwork - indwk2; magma_timer_t time=0; timer_start( time ); #ifdef FAST_SYMV magma_ssytrd2_gpu( uplo, n, dA, ldda, w, &work[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, dwork, ldwork, &iinfo ); #else magma_ssytrd_gpu( uplo, n, dA, ldda, w, &work[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, &iinfo ); #endif timer_stop( time ); #ifdef FAST_SYMV timer_printf( "time ssytrd2 = %6.2f\n", time ); #else timer_printf( "time ssytrd = %6.2f\n", time ); #endif /* For eigenvalues only, call SSTERF. For eigenvectors, first call SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the tridiagonal matrix, then call SORMTR to multiply it to the Householder transformations represented as Householder vectors in A. */ if (! wantz) { lapackf77_ssterf( &n, w, &work[inde], info ); } else { timer_start( time ); magma_sstedx( MagmaRangeAll, n, 0., 0., 0, 0, w, &work[inde], &work[indwrk], n, &work[indwk2], llwrk2, iwork, liwork, dwork, info ); timer_stop( time ); timer_printf( "time sstedx = %6.2f\n", time ); timer_start( time ); magma_ssetmatrix( n, n, &work[indwrk], n, dwork, lddc, queue ); magma_sormtr_gpu( MagmaLeft, uplo, MagmaNoTrans, n, n, dA, ldda, &work[indtau], dwork, lddc, wA, ldwa, &iinfo ); magma_scopymatrix( n, n, dwork, lddc, dA, ldda, queue ); timer_stop( time ); timer_printf( "time sormtr + copy = %6.2f\n", time ); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { d__1 = 1. / sigma; blasf77_sscal( &n, &d__1, w, &ione ); } work[0] = magma_smake_lwork( lwmin ); iwork[0] = liwmin; magma_queue_destroy( queue ); magma_free( dwork ); return *info; } /* magma_ssyevd_gpu */
/** Purpose ------- SSYEVDX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] dA REAL array on the GPU, dimension (LDDA, N). On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = MagmaVec, then if INFO = 0, the first m columns of A contains the required orthonormal eigenvectors of the matrix A. If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower) or the upper triangle (if UPLO=MagmaUpper) of A, including the diagonal, is destroyed. @param[in] ldda INTEGER The leading dimension of the array DA. LDDA >= max(1,N). @param[in] vl REAL @param[in] vu REAL If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] m INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1. @param[out] w REAL array, dimension (N) If INFO = 0, the required m eigenvalues in ascending order. @param wA (workspace) REAL array, dimension (LDWA, N) @param[in] ldwa INTEGER The leading dimension of the array wA. LDWA >= max(1,N). @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ). NB can be obtained through magma_get_ssytrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified description of INFO. Sven, 16 Feb 05. @ingroup magma_ssyev_driver ********************************************************************/ extern "C" magma_int_t magma_ssyevdx_gpu(magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n, float *dA, magma_int_t ldda, float vl, float vu, magma_int_t il, magma_int_t iu, magma_int_t *m, float *w, float *wA, magma_int_t ldwa, float *work, magma_int_t lwork, magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { magma_int_t ione = 1; float d__1; float eps; magma_int_t inde; float anrm; float rmin, rmax; float sigma; magma_int_t iinfo, lwmin; magma_int_t lower; magma_int_t wantz; magma_int_t indwk2, llwrk2; magma_int_t iscale; float safmin; float bignum; magma_int_t indtau; magma_int_t indwrk, liwmin; magma_int_t llwork; float smlnum; magma_int_t lquery; magma_int_t alleig, valeig, indeig; float *dwork; magma_int_t lddc = ldda; wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); lquery = (lwork == -1 || liwork == -1); *info = 0; if (! (wantz || (jobz == MagmaNoVec))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (lower || (uplo == MagmaUpper))) { *info = -3; } else if (n < 0) { *info = -4; } else if (ldda < max(1,n)) { *info = -6; } else if (ldwa < max(1,n)) { *info = -14; } else { if (valeig) { if (n > 0 && vu <= vl) { *info = -8; } } else if (indeig) { if (il < 1 || il > max(1,n)) { *info = -9; } else if (iu < min(n,il) || iu > n) { *info = -10; } } } magma_int_t nb = magma_get_ssytrd_nb( n ); if ( n <= 1 ) { lwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( 2*n + n*nb, 1 + 6*n + 2*n*n ); liwmin = 3 + 5*n; } else { lwmin = 2*n + n*nb; liwmin = 1; } // multiply by 1+eps (in Double!) to ensure length gets rounded up, // if it cannot be exactly represented in floating point. real_Double_t one_eps = 1. + lapackf77_slamch("Epsilon"); work[0] = lwmin * one_eps; iwork[0] = liwmin; if ((lwork < lwmin) && !lquery) { *info = -16; } else if ((liwork < liwmin) && ! lquery) { *info = -18; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif const char* jobz_ = lapack_vec_const( jobz ); const char* uplo_ = lapack_uplo_const( uplo ); float *A; magma_smalloc_cpu( &A, n*n ); magma_sgetmatrix(n, n, dA, ldda, A, n); lapackf77_ssyevd(jobz_, uplo_, &n, A, &n, w, work, &lwork, iwork, &liwork, info); magma_ssetmatrix( n, n, A, n, dA, ldda); magma_free_cpu(A); return *info; } magma_queue_t stream; magma_queue_create( &stream ); // n*lddc for ssytrd2_gpu // n for slansy magma_int_t ldwork = n*lddc; if ( wantz ) { // need 3n^2/2 for sstedx ldwork = max( ldwork, 3*n*(n/2 + 1)); } if (MAGMA_SUCCESS != magma_smalloc( &dwork, ldwork )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } /* Get machine constants. */ safmin = lapackf77_slamch("Safe minimum"); eps = lapackf77_slamch("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = magma_ssqrt(smlnum); rmax = magma_ssqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = magmablas_slansy(MagmaMaxNorm, uplo, n, dA, ldda, dwork); iscale = 0; sigma = 1; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { magmablas_slascl(uplo, 0, 0, 1., sigma, n, n, dA, ldda, info); } /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */ // ssytrd work: e (n) + tau (n) + llwork (n*nb) ==> 2n + n*nb // sstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2) ==> 1 + 6n + 2n^2 inde = 0; indtau = inde + n; indwrk = indtau + n; indwk2 = indwrk + n*n; llwork = lwork - indwrk; llwrk2 = lwork - indwk2; magma_timer_t time=0; timer_start( time ); #ifdef FAST_SYMV magma_ssytrd2_gpu(uplo, n, dA, ldda, w, &work[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, dwork, n*lddc, &iinfo); #else magma_ssytrd_gpu(uplo, n, dA, ldda, w, &work[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, &iinfo); #endif timer_stop( time ); timer_printf( "time ssytrd = %6.2f\n", time ); /* For eigenvalues only, call SSTERF. For eigenvectors, first call SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the tridiagonal matrix, then call SORMTR to multiply it to the Householder transformations represented as Householder vectors in A. */ if (! wantz) { lapackf77_ssterf(&n, w, &work[inde], info); magma_smove_eig(range, n, w, &il, &iu, vl, vu, m); } else { timer_start( time ); magma_sstedx(range, n, vl, vu, il, iu, w, &work[inde], &work[indwrk], n, &work[indwk2], llwrk2, iwork, liwork, dwork, info); timer_stop( time ); timer_printf( "time sstedx = %6.2f\n", time ); timer_start( time ); magma_smove_eig(range, n, w, &il, &iu, vl, vu, m); magma_ssetmatrix( n, *m, &work[indwrk + n* (il-1) ], n, dwork, lddc ); magma_sormtr_gpu(MagmaLeft, uplo, MagmaNoTrans, n, *m, dA, ldda, &work[indtau], dwork, lddc, wA, ldwa, &iinfo); magma_scopymatrix( n, *m, dwork, lddc, dA, ldda ); timer_stop( time ); timer_printf( "time sormtr + copy = %6.2f\n", time ); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { d__1 = 1. / sigma; blasf77_sscal(&n, &d__1, w, &ione); } work[0] = lwmin * one_eps; // round up iwork[0] = liwmin; magma_queue_destroy( stream ); magma_free( dwork ); return *info; } /* magma_ssyevd_gpu */
extern "C" magma_int_t magma_ssyevd_gpu(char jobz, char uplo, magma_int_t n, float *da, magma_int_t ldda, float *w, float *wa, magma_int_t ldwa, float *work, magma_int_t lwork, magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { /* -- MAGMA (version 1.4.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver August 2013 Purpose ======= SSYEVD_GPU computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments ========= JOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. DA (device input/output) REAL array on the GPU, dimension (LDDA, N). On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or the upper triangle (if UPLO='U') of A, including the diagonal, is destroyed. LDDA (input) INTEGER The leading dimension of the array DA. LDDA >= max(1,N). W (output) DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. WA (workspace) DOUBLE PRECISION array, dimension (LDWA, N) LDWA (input) INTEGER The leading dimension of the array WA. LDWA >= max(1,N). WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. LWORK (input) INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= 2*N + N*NB. If JOBZ = 'V' and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ). NB can be obtained through magma_get_ssytrd_nb(N). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. LIWORK (input) INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = 'N' and N > 1, LIWORK >= 1. If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i and JOBZ = 'N', then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Further Details =============== Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified description of INFO. Sven, 16 Feb 05. ===================================================================== */ char uplo_[2] = {uplo, 0}; char jobz_[2] = {jobz, 0}; magma_int_t ione = 1; float d__1; float eps; magma_int_t inde; float anrm; float rmin, rmax; float sigma; magma_int_t iinfo, lwmin; magma_int_t lower; magma_int_t wantz; magma_int_t indwk2, llwrk2; magma_int_t iscale; float safmin; float bignum; magma_int_t indtau; magma_int_t indwrk, liwmin; magma_int_t llwork; float smlnum; magma_int_t lquery; float *dwork; magma_int_t lddc = ldda; wantz = lapackf77_lsame(jobz_, MagmaVecStr); lower = lapackf77_lsame(uplo_, MagmaLowerStr); lquery = lwork == -1 || liwork == -1; *info = 0; if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) { *info = -1; } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) { *info = -2; } else if (n < 0) { *info = -3; } else if (ldda < max(1,n)) { *info = -5; } magma_int_t nb = magma_get_ssytrd_nb( n ); if ( n <= 1 ) { lwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( 2*n + n*nb, 1 + 6*n + 2*n*n ); liwmin = 3 + 5*n; } else { lwmin = 2*n + n*nb; liwmin = 1; } // multiply by 1+eps to ensure length gets rounded up, // if it cannot be exactly represented in floating point. work[0] = lwmin * (1. + lapackf77_slamch("Epsilon")); iwork[0] = liwmin; if ((lwork < lwmin) && !lquery) { *info = -10; } else if ((liwork < liwmin) && ! lquery) { *info = -12; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif char jobz_[2] = {jobz, 0}, uplo_[2] = {uplo, 0}; float *a = (float *) malloc( n * n * sizeof(float) ); magma_sgetmatrix(n, n, da, ldda, a, n); lapackf77_ssyevd(jobz_, uplo_, &n, a, &n, w, work, &lwork, iwork, &liwork, info); magma_ssetmatrix( n, n, a, n, da, ldda); free(a); return *info; } magma_queue_t stream; magma_queue_create( &stream ); // n*lddc for ssytrd2_gpu // n for slansy magma_int_t ldwork = n*lddc; if ( wantz ) { // need 3n^2/2 for sstedx ldwork = max( ldwork, 3*n*(n/2 + 1)); } if (MAGMA_SUCCESS != magma_smalloc( &dwork, ldwork )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } /* Get machine constants. */ safmin = lapackf77_slamch("Safe minimum"); eps = lapackf77_slamch("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = magma_ssqrt(smlnum); rmax = magma_ssqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = magmablas_slansy('M', uplo, n, da, ldda, dwork); iscale = 0; sigma = 1; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { magmablas_slascl(uplo, 0, 0, 1., sigma, n, n, da, ldda, info); } /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */ // ssytrd work: e (n) + tau (n) + llwork (n*nb) ==> 2n + n*nb // sstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2) ==> 1 + 6n + 2n^2 inde = 0; indtau = inde + n; indwrk = indtau + n; indwk2 = indwrk + n*n; llwork = lwork - indwrk; llwrk2 = lwork - indwk2; // #ifdef ENABLE_TIMER magma_timestr_t start, end; start = get_current_time(); #endif #ifdef FAST_SYMV magma_ssytrd2_gpu(uplo, n, da, ldda, w, &work[inde], &work[indtau], wa, ldwa, &work[indwrk], llwork, dwork, n*lddc, &iinfo); #else magma_ssytrd_gpu(uplo, n, da, ldda, w, &work[inde], &work[indtau], wa, ldwa, &work[indwrk], llwork, &iinfo); #endif #ifdef ENABLE_TIMER end = get_current_time(); #ifdef FAST_SYMV printf("time ssytrd2 = %6.2f\n", GetTimerValue(start,end)/1000.); #else printf("time ssytrd = %6.2f\n", GetTimerValue(start,end)/1000.); #endif #endif /* For eigenvalues only, call SSTERF. For eigenvectors, first call SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the tridiagonal matrix, then call SORMTR to multiply it to the Householder transformations represented as Householder vectors in A. */ if (! wantz) { lapackf77_ssterf(&n, w, &work[inde], info); } else { #ifdef ENABLE_TIMER start = get_current_time(); #endif magma_sstedx('A', n, 0., 0., 0, 0, w, &work[inde], &work[indwrk], n, &work[indwk2], llwrk2, iwork, liwork, dwork, info); #ifdef ENABLE_TIMER end = get_current_time(); printf("time sstedx = %6.2f\n", GetTimerValue(start,end)/1000.); #endif magma_ssetmatrix( n, n, &work[indwrk], n, dwork, lddc ); #ifdef ENABLE_TIMER start = get_current_time(); #endif magma_sormtr_gpu(MagmaLeft, uplo, MagmaNoTrans, n, n, da, ldda, &work[indtau], dwork, lddc, wa, ldwa, &iinfo); magma_scopymatrix( n, n, dwork, lddc, da, ldda ); #ifdef ENABLE_TIMER end = get_current_time(); printf("time sormtr + copy = %6.2f\n", GetTimerValue(start,end)/1000.); #endif } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { d__1 = 1. / sigma; blasf77_sscal(&n, &d__1, w, &ione); } work[0] = lwmin * (1. + lapackf77_slamch("Epsilon")); // round up iwork[0] = liwmin; magma_queue_destroy( stream ); magma_free( dwork ); return *info; } /* magma_ssyevd_gpu */