コード例 #1
0
ファイル: rtl-factoring.c プロジェクト: AhmadTux/DragonFlyBSD
static void
erase_matching_seqs (void)
{
  seq_block sb;
  matching_seq mseq;
  rtx insn;
  basic_block bb;
  rtx retlabel, saveinsn, callinsn;
  int i;

  for (sb = seq_blocks; sb; sb = sb->next_seq_block)
    {
      for (mseq = sb->matching_seqs; mseq; mseq = mseq->next_matching_seq)
        {
          insn = mseq->insn;
          bb = BLOCK_FOR_INSN (insn);

          /* Get the label after the sequence. This will be the return
             address. The label will be referenced using a symbol_ref so
             protect it from deleting.  */
          retlabel = block_label_after (insn);
          LABEL_PRESERVE_P (retlabel) = 1;

          /* Delete the insns of the sequence.  */
          for (i = 0; i < sb->length; i++)
            insn = prev_insn_in_block (insn);
          delete_basic_block (split_block_and_df_analyze (bb, insn));

          /* Emit an insn saving the return address to the link register
             before the deleted sequence.  */
          saveinsn = emit_insn_after (gen_move_insn (pattern_seqs->link_reg,
                                      gen_symbol_ref_rtx_for_label
                                      (retlabel)),
                                      BB_END (bb));
          BLOCK_FOR_INSN (saveinsn) = bb;

          /* Emit a jump to the appropriate part of the pattern sequence
             after the save insn. Also update the basic block.  */
          callinsn = emit_jump_insn_after (gen_jump (sb->label), saveinsn);
          JUMP_LABEL (callinsn) = sb->label;
          LABEL_NUSES (sb->label)++;
          BLOCK_FOR_INSN (callinsn) = bb;
          BB_END (bb) = callinsn;

          /* Maintain control flow and liveness information.  */
          SET_REGNO_REG_SET (df_get_live_out (bb),
                             REGNO (pattern_seqs->link_reg));
          emit_barrier_after (BB_END (bb));
          make_single_succ_edge (bb, BLOCK_FOR_INSN (sb->label), 0);
          IOR_REG_SET (df_get_live_out (bb),
		       df_get_live_in (BLOCK_FOR_INSN (sb->label)));

          make_edge (BLOCK_FOR_INSN (seq_blocks->label),
                     BLOCK_FOR_INSN (retlabel), EDGE_ABNORMAL);
        }
    }
}
コード例 #2
0
ファイル: tree-mudflap.c プロジェクト: ChaosJohn/gcc
static void
mf_build_check_statement_for (tree base, tree limit,
                              gimple_stmt_iterator *instr_gsi,
                              location_t location, tree dirflag)
{
  gimple_stmt_iterator gsi;
  basic_block cond_bb, then_bb, join_bb;
  edge e;
  tree cond, t, u, v;
  tree mf_base;
  tree mf_elem;
  tree mf_limit;
  gimple g;
  gimple_seq seq, stmts;

  /* We first need to split the current basic block, and start altering
     the CFG.  This allows us to insert the statements we're about to
     construct into the right basic blocks.  */

  cond_bb = gimple_bb (gsi_stmt (*instr_gsi));
  gsi = *instr_gsi;
  gsi_prev (&gsi);
  if (! gsi_end_p (gsi))
    e = split_block (cond_bb, gsi_stmt (gsi));
  else
    e = split_block_after_labels (cond_bb);
  cond_bb = e->src;
  join_bb = e->dest;

  /* A recap at this point: join_bb is the basic block at whose head
     is the gimple statement for which this check expression is being
     built.  cond_bb is the (possibly new, synthetic) basic block the
     end of which will contain the cache-lookup code, and a
     conditional that jumps to the cache-miss code or, much more
     likely, over to join_bb.  */

  /* Create the bb that contains the cache-miss fallback block (mf_check).  */
  then_bb = create_empty_bb (cond_bb);
  make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
  make_single_succ_edge (then_bb, join_bb, EDGE_FALLTHRU);

  /* Mark the pseudo-fallthrough edge from cond_bb to join_bb.  */
  e = find_edge (cond_bb, join_bb);
  e->flags = EDGE_FALSE_VALUE;
  e->count = cond_bb->count;
  e->probability = REG_BR_PROB_BASE;

  /* Update dominance info.  Note that bb_join's data was
     updated by split_block.  */
  if (dom_info_available_p (CDI_DOMINATORS))
    {
      set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
      set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
    }

  /* Update loop info.  */
  if (current_loops)
    add_bb_to_loop (then_bb, cond_bb->loop_father);

  /* Build our local variables.  */
  mf_elem = create_tmp_reg (mf_cache_structptr_type, "__mf_elem");
  mf_base = create_tmp_reg (mf_uintptr_type, "__mf_base");
  mf_limit = create_tmp_reg (mf_uintptr_type, "__mf_limit");

  /* Build: __mf_base = (uintptr_t) <base address expression>.  */
  seq = NULL;
  t = fold_convert_loc (location, mf_uintptr_type,
			unshare_expr (base));
  t = force_gimple_operand (t, &stmts, false, NULL_TREE);
  gimple_seq_add_seq (&seq, stmts);
  g = gimple_build_assign (mf_base, t);
  gimple_set_location (g, location);
  gimple_seq_add_stmt (&seq, g);

  /* Build: __mf_limit = (uintptr_t) <limit address expression>.  */
  t = fold_convert_loc (location, mf_uintptr_type,
			unshare_expr (limit));
  t = force_gimple_operand (t, &stmts, false, NULL_TREE);
  gimple_seq_add_seq (&seq, stmts);
  g = gimple_build_assign (mf_limit, t);
  gimple_set_location (g, location);
  gimple_seq_add_stmt (&seq, g);

  /* Build: __mf_elem = &__mf_lookup_cache [(__mf_base >> __mf_shift)
                                            & __mf_mask].  */
  t = build2 (RSHIFT_EXPR, mf_uintptr_type, mf_base,
              flag_mudflap_threads ? mf_cache_shift_decl
	       : mf_cache_shift_decl_l);
  t = build2 (BIT_AND_EXPR, mf_uintptr_type, t,
              flag_mudflap_threads ? mf_cache_mask_decl
	       : mf_cache_mask_decl_l);
  t = build4 (ARRAY_REF,
              TREE_TYPE (TREE_TYPE (mf_cache_array_decl)),
              mf_cache_array_decl, t, NULL_TREE, NULL_TREE);
  t = build1 (ADDR_EXPR, mf_cache_structptr_type, t);
  t = force_gimple_operand (t, &stmts, false, NULL_TREE);
  gimple_seq_add_seq (&seq, stmts);
  g = gimple_build_assign (mf_elem, t);
  gimple_set_location (g, location);
  gimple_seq_add_stmt (&seq, g);

  /* Quick validity check.

     if (__mf_elem->low > __mf_base
         || (__mf_elem_high < __mf_limit))
        {
          __mf_check ();
          ... and only if single-threaded:
          __mf_lookup_shift_1 = f...;
          __mf_lookup_mask_l = ...;
        }

     It is expected that this body of code is rarely executed so we mark
     the edge to the THEN clause of the conditional jump as unlikely.  */

  /* Construct t <-- '__mf_elem->low  > __mf_base'.  */
  t = build3 (COMPONENT_REF, mf_uintptr_type,
              build1 (INDIRECT_REF, mf_cache_struct_type, mf_elem),
              TYPE_FIELDS (mf_cache_struct_type), NULL_TREE);
  t = build2 (GT_EXPR, boolean_type_node, t, mf_base);

  /* Construct '__mf_elem->high < __mf_limit'.

     First build:
        1) u <--  '__mf_elem->high'
        2) v <--  '__mf_limit'.

     Then build 'u <-- (u < v).  */

  u = build3 (COMPONENT_REF, mf_uintptr_type,
              build1 (INDIRECT_REF, mf_cache_struct_type, mf_elem),
              DECL_CHAIN (TYPE_FIELDS (mf_cache_struct_type)), NULL_TREE);

  v = mf_limit;

  u = build2 (LT_EXPR, boolean_type_node, u, v);

  /* Build the composed conditional: t <-- 't || u'.  Then store the
     result of the evaluation of 't' in a temporary variable which we
     can use as the condition for the conditional jump.  */
  t = build2 (TRUTH_OR_EXPR, boolean_type_node, t, u);
  t = force_gimple_operand (t, &stmts, false, NULL_TREE);
  gimple_seq_add_seq (&seq, stmts);
  cond = create_tmp_reg (boolean_type_node, "__mf_unlikely_cond");
  g = gimple_build_assign  (cond, t);
  gimple_set_location (g, location);
  gimple_seq_add_stmt (&seq, g);

  /* Build the conditional jump.  'cond' is just a temporary so we can
     simply build a void COND_EXPR.  We do need labels in both arms though.  */
  g = gimple_build_cond (NE_EXPR, cond, boolean_false_node, NULL_TREE,
			 NULL_TREE);
  gimple_set_location (g, location);
  gimple_seq_add_stmt (&seq, g);

  /* At this point, after so much hard work, we have only constructed
     the conditional jump,

     if (__mf_elem->low > __mf_base
         || (__mf_elem_high < __mf_limit))

     The lowered GIMPLE tree representing this code is in the statement
     list starting at 'head'.

     We can insert this now in the current basic block, i.e. the one that
     the statement we're instrumenting was originally in.  */
  gsi = gsi_last_bb (cond_bb);
  gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);

  /*  Now build up the body of the cache-miss handling:

     __mf_check();
     refresh *_l vars.

     This is the body of the conditional.  */

  seq = NULL;
  /* u is a string, so it is already a gimple value.  */
  u = mf_file_function_line_tree (location);
  /* NB: we pass the overall [base..limit] range to mf_check.  */
  v = fold_build2_loc (location, PLUS_EXPR, mf_uintptr_type,
		   fold_build2_loc (location,
				MINUS_EXPR, mf_uintptr_type, mf_limit, mf_base),
		   build_int_cst (mf_uintptr_type, 1));
  v = force_gimple_operand (v, &stmts, true, NULL_TREE);
  gimple_seq_add_seq (&seq, stmts);
  g = gimple_build_call (mf_check_fndecl, 4, mf_base, v, dirflag, u);
  gimple_seq_add_stmt (&seq, g);

  if (! flag_mudflap_threads)
    {
      if (stmt_ends_bb_p (g))
	{
	  gsi = gsi_start_bb (then_bb);
	  gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
	  e = split_block (then_bb, g);
	  then_bb = e->dest;
	  seq = NULL;
	}

      g = gimple_build_assign (mf_cache_shift_decl_l, mf_cache_shift_decl);
      gimple_seq_add_stmt (&seq, g);

      g = gimple_build_assign (mf_cache_mask_decl_l, mf_cache_mask_decl);
      gimple_seq_add_stmt (&seq, g);
    }

  /* Insert the check code in the THEN block.  */
  gsi = gsi_start_bb (then_bb);
  gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);

  *instr_gsi = gsi_start_bb (join_bb);
}
コード例 #3
0
ファイル: ubsan.c プロジェクト: acoxepochlabs/gcc
void
ubsan_expand_null_ifn (gimple_stmt_iterator gsi)
{
  gimple stmt = gsi_stmt (gsi);
  location_t loc = gimple_location (stmt);
  gcc_assert (gimple_call_num_args (stmt) == 2);
  tree ptr = gimple_call_arg (stmt, 0);
  tree ckind = gimple_call_arg (stmt, 1);

  basic_block cur_bb = gsi_bb (gsi);

  /* Split the original block holding the pointer dereference.  */
  edge e = split_block (cur_bb, stmt);

  /* Get a hold on the 'condition block', the 'then block' and the
     'else block'.  */
  basic_block cond_bb = e->src;
  basic_block fallthru_bb = e->dest;
  basic_block then_bb = create_empty_bb (cond_bb);
  add_bb_to_loop (then_bb, cond_bb->loop_father);
  loops_state_set (LOOPS_NEED_FIXUP);

  /* Make an edge coming from the 'cond block' into the 'then block';
     this edge is unlikely taken, so set up the probability accordingly.  */
  e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
  e->probability = PROB_VERY_UNLIKELY;

  /* Connect 'then block' with the 'else block'.  This is needed
     as the ubsan routines we call in the 'then block' are not noreturn.
     The 'then block' only has one outcoming edge.  */
  make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);

  /* Set up the fallthrough basic block.  */
  e = find_edge (cond_bb, fallthru_bb);
  e->flags = EDGE_FALSE_VALUE;
  e->count = cond_bb->count;
  e->probability = REG_BR_PROB_BASE - PROB_VERY_UNLIKELY;

  /* Update dominance info for the newly created then_bb; note that
     fallthru_bb's dominance info has already been updated by
     split_bock.  */
  if (dom_info_available_p (CDI_DOMINATORS))
    set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);

  /* Put the ubsan builtin call into the newly created BB.  */
  gimple g;
  if (flag_sanitize_undefined_trap_on_error)
    g = gimple_build_call (builtin_decl_implicit (BUILT_IN_TRAP), 0);
  else
    {
      enum built_in_function bcode
	= flag_sanitize_recover
	  ? BUILT_IN_UBSAN_HANDLE_TYPE_MISMATCH
	  : BUILT_IN_UBSAN_HANDLE_TYPE_MISMATCH_ABORT;
      tree fn = builtin_decl_implicit (bcode);
      const struct ubsan_mismatch_data m
	= { build_zero_cst (pointer_sized_int_node), ckind };
      tree data
	= ubsan_create_data ("__ubsan_null_data", &loc, &m,
			     ubsan_type_descriptor (TREE_TYPE (ptr),
						    UBSAN_PRINT_POINTER),
			     NULL_TREE);
      data = build_fold_addr_expr_loc (loc, data);
      g = gimple_build_call (fn, 2, data,
			     build_zero_cst (pointer_sized_int_node));
    }
  gimple_set_location (g, loc);
  gimple_stmt_iterator gsi2 = gsi_start_bb (then_bb);
  gsi_insert_after (&gsi2, g, GSI_NEW_STMT);

  /* Unlink the UBSAN_NULLs vops before replacing it.  */
  unlink_stmt_vdef (stmt);

  g = gimple_build_cond (EQ_EXPR, ptr, build_int_cst (TREE_TYPE (ptr), 0),
			 NULL_TREE, NULL_TREE);
  gimple_set_location (g, loc);

  /* Replace the UBSAN_NULL with a GIMPLE_COND stmt.  */
  gsi_replace (&gsi, g, false);
}
コード例 #4
0
ファイル: tree-mudflap.c プロジェクト: 0mp/freebsd
static void
mf_build_check_statement_for (tree base, tree limit,
                              block_stmt_iterator *instr_bsi,
                              location_t *locus, tree dirflag)
{
  tree_stmt_iterator head, tsi;
  block_stmt_iterator bsi;
  basic_block cond_bb, then_bb, join_bb;
  edge e;
  tree cond, t, u, v;
  tree mf_base;
  tree mf_elem;
  tree mf_limit;

  /* We first need to split the current basic block, and start altering
     the CFG.  This allows us to insert the statements we're about to
     construct into the right basic blocks.  */

  cond_bb = bb_for_stmt (bsi_stmt (*instr_bsi));
  bsi = *instr_bsi;
  bsi_prev (&bsi);
  if (! bsi_end_p (bsi))
    e = split_block (cond_bb, bsi_stmt (bsi));
  else
    e = split_block_after_labels (cond_bb);
  cond_bb = e->src;
  join_bb = e->dest;

  /* A recap at this point: join_bb is the basic block at whose head
     is the gimple statement for which this check expression is being
     built.  cond_bb is the (possibly new, synthetic) basic block the
     end of which will contain the cache-lookup code, and a
     conditional that jumps to the cache-miss code or, much more
     likely, over to join_bb.  */

  /* Create the bb that contains the cache-miss fallback block (mf_check).  */
  then_bb = create_empty_bb (cond_bb);
  make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
  make_single_succ_edge (then_bb, join_bb, EDGE_FALLTHRU);

  /* Mark the pseudo-fallthrough edge from cond_bb to join_bb.  */
  e = find_edge (cond_bb, join_bb);
  e->flags = EDGE_FALSE_VALUE;
  e->count = cond_bb->count;
  e->probability = REG_BR_PROB_BASE;

  /* Update dominance info.  Note that bb_join's data was
     updated by split_block.  */
  if (dom_info_available_p (CDI_DOMINATORS))
    {
      set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
      set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
    }

  /* Build our local variables.  */
  mf_elem = create_tmp_var (mf_cache_structptr_type, "__mf_elem");
  mf_base = create_tmp_var (mf_uintptr_type, "__mf_base");
  mf_limit = create_tmp_var (mf_uintptr_type, "__mf_limit");

  /* Build: __mf_base = (uintptr_t) <base address expression>.  */
  t = build2 (MODIFY_EXPR, void_type_node, mf_base,
              convert (mf_uintptr_type, unshare_expr (base)));
  SET_EXPR_LOCUS (t, locus);
  gimplify_to_stmt_list (&t);
  head = tsi_start (t);
  tsi = tsi_last (t);

  /* Build: __mf_limit = (uintptr_t) <limit address expression>.  */
  t = build2 (MODIFY_EXPR, void_type_node, mf_limit,
              convert (mf_uintptr_type, unshare_expr (limit)));
  SET_EXPR_LOCUS (t, locus);
  gimplify_to_stmt_list (&t);
  tsi_link_after (&tsi, t, TSI_CONTINUE_LINKING);

  /* Build: __mf_elem = &__mf_lookup_cache [(__mf_base >> __mf_shift)
                                            & __mf_mask].  */
  t = build2 (RSHIFT_EXPR, mf_uintptr_type, mf_base,
              (flag_mudflap_threads ? mf_cache_shift_decl : mf_cache_shift_decl_l));
  t = build2 (BIT_AND_EXPR, mf_uintptr_type, t,
              (flag_mudflap_threads ? mf_cache_mask_decl : mf_cache_mask_decl_l));
  t = build4 (ARRAY_REF,
              TREE_TYPE (TREE_TYPE (mf_cache_array_decl)),
              mf_cache_array_decl, t, NULL_TREE, NULL_TREE);
  t = build1 (ADDR_EXPR, mf_cache_structptr_type, t);
  t = build2 (MODIFY_EXPR, void_type_node, mf_elem, t);
  SET_EXPR_LOCUS (t, locus);
  gimplify_to_stmt_list (&t);
  tsi_link_after (&tsi, t, TSI_CONTINUE_LINKING);

  /* Quick validity check.

     if (__mf_elem->low > __mf_base
         || (__mf_elem_high < __mf_limit))
        {
          __mf_check ();
          ... and only if single-threaded:
          __mf_lookup_shift_1 = f...;
          __mf_lookup_mask_l = ...;
        }

     It is expected that this body of code is rarely executed so we mark
     the edge to the THEN clause of the conditional jump as unlikely.  */

  /* Construct t <-- '__mf_elem->low  > __mf_base'.  */
  t = build3 (COMPONENT_REF, mf_uintptr_type,
              build1 (INDIRECT_REF, mf_cache_struct_type, mf_elem),
              TYPE_FIELDS (mf_cache_struct_type), NULL_TREE);
  t = build2 (GT_EXPR, boolean_type_node, t, mf_base);

  /* Construct '__mf_elem->high < __mf_limit'.

     First build:
        1) u <--  '__mf_elem->high'
        2) v <--  '__mf_limit'.

     Then build 'u <-- (u < v).  */

  u = build3 (COMPONENT_REF, mf_uintptr_type,
              build1 (INDIRECT_REF, mf_cache_struct_type, mf_elem),
              TREE_CHAIN (TYPE_FIELDS (mf_cache_struct_type)), NULL_TREE);

  v = mf_limit;

  u = build2 (LT_EXPR, boolean_type_node, u, v);

  /* Build the composed conditional: t <-- 't || u'.  Then store the
     result of the evaluation of 't' in a temporary variable which we
     can use as the condition for the conditional jump.  */
  t = build2 (TRUTH_OR_EXPR, boolean_type_node, t, u);
  cond = create_tmp_var (boolean_type_node, "__mf_unlikely_cond");
  t = build2 (MODIFY_EXPR, boolean_type_node, cond, t);
  gimplify_to_stmt_list (&t);
  tsi_link_after (&tsi, t, TSI_CONTINUE_LINKING);

  /* Build the conditional jump.  'cond' is just a temporary so we can
     simply build a void COND_EXPR.  We do need labels in both arms though.  */
  t = build3 (COND_EXPR, void_type_node, cond,
              build1 (GOTO_EXPR, void_type_node, tree_block_label (then_bb)),
              build1 (GOTO_EXPR, void_type_node, tree_block_label (join_bb)));
  SET_EXPR_LOCUS (t, locus);
  tsi_link_after (&tsi, t, TSI_CONTINUE_LINKING);

  /* At this point, after so much hard work, we have only constructed
     the conditional jump,

     if (__mf_elem->low > __mf_base
         || (__mf_elem_high < __mf_limit))

     The lowered GIMPLE tree representing this code is in the statement
     list starting at 'head'.

     We can insert this now in the current basic block, i.e. the one that
     the statement we're instrumenting was originally in.  */
  bsi = bsi_last (cond_bb);
  for (tsi = head; ! tsi_end_p (tsi); tsi_next (&tsi))
    bsi_insert_after (&bsi, tsi_stmt (tsi), BSI_CONTINUE_LINKING);

  /*  Now build up the body of the cache-miss handling:

     __mf_check();
     refresh *_l vars.

     This is the body of the conditional.  */
  
  u = tree_cons (NULL_TREE,
                 mf_file_function_line_tree (locus == NULL ? UNKNOWN_LOCATION
                                             : *locus),
                 NULL_TREE);
  u = tree_cons (NULL_TREE, dirflag, u);
  /* NB: we pass the overall [base..limit] range to mf_check.  */
  u = tree_cons (NULL_TREE, 
                 fold_build2 (PLUS_EXPR, integer_type_node,
			      fold_build2 (MINUS_EXPR, mf_uintptr_type, mf_limit, mf_base),
			      integer_one_node),
                 u);
  u = tree_cons (NULL_TREE, mf_base, u);
  t = build_function_call_expr (mf_check_fndecl, u);
  gimplify_to_stmt_list (&t);
  head = tsi_start (t);
  tsi = tsi_last (t);

  if (! flag_mudflap_threads)
    {
      t = build2 (MODIFY_EXPR, void_type_node,
                  mf_cache_shift_decl_l, mf_cache_shift_decl);
      tsi_link_after (&tsi, t, TSI_CONTINUE_LINKING);

      t = build2 (MODIFY_EXPR, void_type_node,
                  mf_cache_mask_decl_l, mf_cache_mask_decl);
      tsi_link_after (&tsi, t, TSI_CONTINUE_LINKING);
    }

  /* Insert the check code in the THEN block.  */
  bsi = bsi_start (then_bb);
  for (tsi = head; ! tsi_end_p (tsi); tsi_next (&tsi))
    bsi_insert_after (&bsi, tsi_stmt (tsi), BSI_CONTINUE_LINKING);

  *instr_bsi = bsi_start (join_bb);
  bsi_next (instr_bsi);
}