コード例 #1
0
ファイル: t2fit.C プロジェクト: mattpitkin/tempo2
void TKfit_getPulsarDesignMatrix(double *x,double *y,int n,int nf,void (*fitFuncs)(double, double [], int,pulsar *,int,int), pulsar *psr, int* ip, double **uinv,int ipsr,double ***OUT_designMatrix,double ***OUT_white_designMatrix,double** OUT_b, double** OUT_wb){

    //double precision arrays for matrix algebra.
    double **designMatrix, **white_designMatrix;
    double basisFunc[nf];
    double *b,*white_b;
    int    i,j;
    int nrows=get_blas_rows(uinv);
    int ncols=get_blas_cols(uinv);
    if (ncols!=n){
        logmsg("n=%d ncols=%d",n,ncols);
        logerr("uinv error. Either you did not use malloc_uinv() to create uinv or np!=ncols");
        exit(1);
    }

    if (nrows!=n && nrows != 1){
        logmsg("n=%d nrows=%d",n,nrows);
        logerr("uinv error. Either you did not use malloc_uinv() to create uinv or np!=nrows");
        exit(1);
    }


    // double arrays
    white_designMatrix=malloc_blas(n,nf);
    designMatrix=malloc_blas(n,nf);
    b=(double*)malloc(sizeof(double)*n);
    white_b=(double*)malloc(sizeof(double)*n);

    /* This routine has been developed from Section 15 in Numerical Recipes */

    /* Determine the design matrix - eq 15.4.4 
     * and the vector 'b' - eq 15.4.5 
     */
    for (i=0;i<n;i++)
    {
        // fitFuncs is not threadsafe!
        fitFuncs(x[i],basisFunc,nf,psr,ip[i],ipsr);
        for (j=0;j<nf;j++) designMatrix[i][j] = basisFunc[j];
        b[i] = y[i];
    }
    // Take into account the data covariance matrix

    if(nrows==1){
        // we have only diagonal elements
        for (i=0;i<n;i++){
            white_b[i]=b[i]*uinv[0][i];
            for (j=0;j<nf;j++){
                white_designMatrix[i][j] = designMatrix[i][j]*uinv[0][i];
            }
        }
    } else {
        TKmultMatrix_sq(uinv,designMatrix,n,nf,white_designMatrix);  
        TKmultMatrixVec_sq(uinv,b,n,white_b);
    }

    *OUT_designMatrix=designMatrix;
    *OUT_white_designMatrix=white_designMatrix;
    *OUT_b=b;
    *OUT_wb=white_b;
}
コード例 #2
0
ファイル: t2fit.C プロジェクト: mattpitkin/tempo2
// routine for pulsar fitting.
void TKleastSquares_single_pulsar(double *x,double *y,int n,double *outP,double *e,int nf,double **cvm, double *chisq, void (*fitFuncs)(double, double [], int,pulsar *,int, int),pulsar *psr,double tol, int *ip,char rescale_errors, double **uinv) {

    double **designMatrix, **white_designMatrix, **constraintsMatrix;
    double *b,*white_b;
    constraintsMatrix=NULL;

    TKfit_getPulsarDesignMatrix(x,y,n,nf,fitFuncs,psr,ip,uinv,0,&designMatrix,&white_designMatrix,&b,&white_b);
    if(psr->nconstraints > 0){
        logmsg("Get constraint weights");
        computeConstraintWeights(psr);
        logmsg("fill constraints matrix");
        constraintsMatrix = malloc_blas(psr->nconstraints,nf);
        for (int ic=0; ic < psr->nconstraints; ic++){
            CONSTRAINTfuncs(psr,0,nf,psr->constraints[ic],constraintsMatrix[ic]);
        }
    }

    *chisq = TKrobustConstrainedLeastSquares(b,white_b,designMatrix,white_designMatrix,constraintsMatrix,
            n,nf,psr->nconstraints,tol,rescale_errors,
            outP,e,cvm,psr->robust);
    free_blas(designMatrix); // free-TKleastSquares_svd_psr_dcm-designMatrix**
    free_blas(white_designMatrix);  // free-TKleastSquares_svd_psr_dcm-white_designMatrix**
    if(psr->nconstraints > 0) free_blas(constraintsMatrix);
    free(b);
    free(white_b);

}
コード例 #3
0
ファイル: t2fit.C プロジェクト: mattpitkin/tempo2
// same as above but without a uinv matrix.
void TKleastSquares_svd_psr(double *x,double *y,double *sig,int n,double *p,double *e,int nf,double **cvm, double *chisq, void (*fitFuncs)(double, double [], int,pulsar *,int,int),int weight,pulsar *psr,double tol, int *ip)
{
    logmsg("Warning: Deprecated method TKleastSquares_svd_psr() -> TKleastSquares_single_pulsar()");
    int i;
    double ** uinv=malloc_blas(1,n);
    if (weight==1){
        for (i=0; i<n;i++){
            uinv[0][i]=1.0/sig[i];
        }
    } else{
        for (i=0; i<n;i++){
            uinv[0][i]=1.0;
        }
    }
    TKleastSquares_single_pulsar(x,y,n,p,e,nf,cvm,chisq,fitFuncs,psr,tol,ip,(weight==0 || (weight==1 && psr->rescaleErrChisq==1)),uinv);
    free_blas(uinv);
}
コード例 #4
0
ファイル: initialise.C プロジェクト: kernsuite-debian/tempo2
void initialiseOne (pulsar *psr, int noWarnings, int fullSetup)
{


    int fail = 0;
    int i,j,k;
    char temp[100];

    psr->nobs = 0;
    //  psr->obsn = NULL;

    //  if (psr->obsn == NULL)
    psr->obsn = (observation *)malloc(sizeof(observation)*MAX_OBSN);

    if (psr->obsn == NULL)
        fail = 1;

    // Initialise the barycentre vectors:
    //
    // To the best of my knowledge, this only ever happens in
    // preProcessSimple.C, which does not get called when running Tempo2
    // through PSRchive. For reasons unknown to me, these uninitialised
    // values most commonly end up being zero (as they should be) and
    // are subsequently set later on, but once in a statistical while,
    // they will go rogue, crashing everything. For my purposes,
    // initialisation right here seems to do the trick, though a
    // substantial reanalysis of the preprocess and initialise functions
    // (and which bits belong where) is in order to make sure these
    // "glitches" don't happen with any other parameters.
    //
    // JPWV, MPIfR, 22 July 2010.
    /*  for(int obsct = 0; obsct < MAX_OBSN; obsct++ ){
        for (int vecct = 0; vecct < 6; vecct++ ){
        psr->obsn[obsct].earthMoonBary_ssb[vecct] = 0.0;
        psr->obsn[obsct].earthMoonBary_earth[vecct] = 0.0;
        psr->obsn[obsct].observatory_earth[vecct] = 0.0;
        psr->obsn[obsct].earth_ssb[vecct] = 0.0;
        }
        }*/
    if (fail)
    {
        printf("Not enough memory to allocate room for %d observations\n",MAX_OBSN);
        printf("Please decrease the value of MAX_OBSN_VAL in tempo2.h or use -nobs on the command line\n"); 
        printf("You can also decrease the number of pulsars being stored in memory using -npsr\n");
        printf("Note: 1 observation requires %f kBytes, you request %f MBytes\n",(double)sizeof(observation)/1024.0,(double)sizeof(observation)/1024.0/1024.0*MAX_OBSN);
        exit(1);
    }  /* This memory gets deallocated by destroyOne */


    psr->covar = malloc_blas(MAX_FIT,MAX_FIT);

    strcpy(psr->eopc04_file,"/earth/eopc04_IAU2000.62-now");
    strcpy(psr->filterStr,"");
    strcpy(psr->passStr,"");
    strcpy(psr->fitFunc,"default");
    strcpy(psr->whiteNoiseModelFile,"NULL");
    psr->simflag=0;
    psr->nits=1;
    psr->clockFromOverride[0] = '\0';
    psr->nCompanion = 0;
    psr->bootStrap = 0;
    psr->units = SI_UNITS;
    psr->setUnits = 0;
    psr->ne_sw  = NE_SW_DEFAULT; 
    psr->nWhite = 0;  /* No whitening by default */
    psr->nQuad  = 0;  /* No quadrupolar function */
    psr->ifuncN = 0;  /* No interpolation functions by default */
    psr->clkOffsN = 0;/* No clock offsets by default */
    psr->nTelDX = 0;
    psr->nTelDY = 0;
    psr->nTelDZ = 0;
    psr->quad_ifuncN_p = 0;
    psr->quad_ifuncN_c = 0;
    psr->quad_ifunc_geom_p = 0;
    psr->quad_ifunc_geom_c = 0;
    psr->cgw_mc = 0;

    psr->timeEphemeris = IF99_TIMEEPH;
    psr->useCalceph = 0;
    psr->dilateFreq = 1;
    psr->planetShapiro = 1;
    psr->correctTroposphere = 1;
    psr->t2cMethod = T2C_IAU2000B;
    psr->fixedFormat=0;
    psr->nStorePrecision=0;
    strcpy(psr->fjumpID,"");
    strcpy(psr->deleteFileName,"NONE");
    strcpy(psr->tzrsite,"NULL");
    psr->ToAextraCovar=NULL;
    psr->dmoffsDMnum=0;
    psr->dmoffsCMnum = 0;
    psr->calcShapiro=1;
    psr->dmOffset = 0;
    psr->ipm = 1;
    psr->swm = 0;
    psr->nPhaseJump=0;
    psr->eclCoord=0;
    psr->noWarnings=noWarnings;
    psr->fitMode = 0;         /* Don't fit with errors by default (MODE 0) */
    psr->robust = 0;         /* Don't fit with robust by default (MODE 0) */
    psr->rescaleErrChisq = 1; /* Rescale parameter errors by reduced chisq  */
    strcpy(psr->name,"NOT SET");
    strcpy(psr->binaryModel,"NONE"); 
    psr->nJumps=0;
    psr->nToffset = 0;
    psr->ndmx = 0;
    psr->nconstraints = 0;
    psr->constraint_efactor = 1e15;
    psr->auto_constraints = 0;
    psr->jboFormat=0;
    // Moved from readTimfile.C (next line):
    psr->dmOffset = 0;
    for (i=0;i<MAX_JUMPS;i++)
    {
        psr->jumpVal[i] = 0.0;
        psr->jumpSAT[i] = 0;
        psr->jumpValErr[i] = 0.0;
    }
    psr->nT2efac  = 0; // Number of T2EFACs
    psr->nT2equad = 0; // Number of T2EQUADs
    psr->T2globalEfac = 1; // A global multiplying factor

    psr->nSx = 0; //number of SX parameters
    psr->nTNEF  = 0; // Number of TNEFACs
    psr->nTNEQ = 0; // Number of TNEQUADs
    psr->nTNECORR = 0; // Number of TNECORRs
    psr->TNGlobalEF=0;
    psr->TNGlobalEQ=0;
    psr->nTNSQ = 0; // Number of TNEQUADs
    psr->TNRedAmp = 0;
    psr->TNRedGam = 0;
    psr->TNRedC = 0;
    psr->TNRedFLow=0;
    psr->TNRedCorner=0.01;
    psr->TNDMAmp = 0;
    psr->TNDMGam = 0;
    psr->TNDMC = 0;
    psr->TNBandDMAmp = 0;
    psr->TNBandDMGam = 0;
    psr->TNBandDMC = 0;
    psr->nTNBandNoise = 0; //Number of band noise parameters
    psr->nTNGroupNoise = 0; // Number of TN Group Noise parameters
    psr->TNsubtractDM=0;
    psr->TNsubtractRed=0;
    psr->AverageResiduals=0;
    psr->useTNOrth = 0;
    psr->nDMEvents=0;
    psr->nTNShapeletEvents=0;
    psr->sorted=0;
    psr->detUinv=0;
    allocateMemory(psr,0);
    /*  psr->param[param_track].paramSet[0]=1;
        psr->param[param_track].val[0]=0.0;
        psr->param[param_track].prefit[0]=0.0;*/

    /* Spin-frequency parameters */
    for (j=0;j<psr->param[param_f].aSize;j++)
    {
        psr->param[param_f].val[j] = 0.0;
        sprintf(temp,"F%d (s^-%d)",j,j+1);
        strcpy(psr->param[param_f].label[j],temp);   
        sprintf(temp,"F%d",j);
        strcpy(psr->param[param_f].shortlabel[j],temp);
    }
    strcpy(psr->param[param_raj].label[0],"RAJ (rad)");
    strcpy(psr->param[param_raj].shortlabel[0],"RAJ");
    strcpy(psr->param[param_decj].label[0],"DECJ (rad)");
    strcpy(psr->param[param_decj].shortlabel[0],"DECJ");
    strcpy(psr->param[param_fddi].label[0],"FDDI"); /* Frequency dependent delay */
    strcpy(psr->param[param_fddi].shortlabel[0],"FDDI"); /* Frequency dependent delay */
    strcpy(psr->param[param_fddc].label[0],"FDDC"); /* Frequency dependent delay */
    strcpy(psr->param[param_fddc].shortlabel[0],"FDDC"); /* Frequency dependent delay */
    for (j=0; j<psr->param[param_fd].aSize; j++) 
    {
        sprintf(psr->param[param_fd].shortlabel[j],"FD%d",j+1);
        sprintf(psr->param[param_fd].label[j],"FD%d",j+1);
    }
    /* Dispersion measure and its derivative */
    for (k=0;k<psr->param[param_dm].aSize;k++)
    {
        if (k>0){
            sprintf(temp,"DM%d (cm^-3 pc yr^-%d)",k,k);
            strcpy(psr->param[param_dm].label[k],temp);
            sprintf(temp,"DM%d",k);
            strcpy(psr->param[param_dm].shortlabel[k],temp);
        }
        else
        {
            strcpy(psr->param[param_dm].label[0],"DM (cm^-3 pc)");
            strcpy(psr->param[param_dm].shortlabel[0],"DM");
        }
    }



    strcpy(psr->param[param_px].label[0],"PX (mas)");
    strcpy(psr->param[param_px].shortlabel[0],"PX");

    strcpy(psr->param[param_dm_sin1yr].label[0],"DM_S1YR (cm^-3 pc)");
    strcpy(psr->param[param_dm_sin1yr].shortlabel[0],"DM_S1YR");

    strcpy(psr->param[param_dm_cos1yr].label[0],"DM_C1YR (cm^-3 pc)");
    strcpy(psr->param[param_dm_cos1yr].shortlabel[0],"DM_C1YR");

    strcpy(psr->param[param_daop].label[0],"AOP dist. (kpc)");
    strcpy(psr->param[param_daop].shortlabel[0],"D_AOP");
    strcpy(psr->param[param_daop].label[0],"IPERHARM");
    strcpy(psr->param[param_daop].shortlabel[0],"IPERHARM");
    strcpy(psr->param[param_pmrv].label[0],"PMRV (mas/yr)"); strcpy(psr->param[param_pmrv].shortlabel[0],"PMRV");
    for (k=0;k<psr->param[param_dmassplanet].aSize;k++)
    {
        sprintf(psr->param[param_dmassplanet].label[k], "DMASSPLANET%d (Msun)", k+1);
        sprintf(psr->param[param_dmassplanet].shortlabel[k], "DMASSPLANET%d", k+1);
    }
    strcpy(psr->param[param_tres].label[0],"TRES");
    strcpy(psr->param[param_tres].shortlabel[0],"TRES");
    strcpy(psr->param[param_ephver].label[0],"EPHVER");
    strcpy(psr->param[param_ephver].shortlabel[0],"EPHVER");
    strcpy(psr->param[param_pmra].label[0],"PMRA (mas/yr)");
    strcpy(psr->param[param_pmra].shortlabel[0],"PMRA");
    strcpy(psr->param[param_pmdec].label[0],"PMDEC (mas/yr)");
    strcpy(psr->param[param_pmdec].shortlabel[0],"PMDEC");
    strcpy(psr->param[param_posepoch].label[0],"POSEPOCH (MJD)");
    strcpy(psr->param[param_posepoch].shortlabel[0],"POSEPOCH");
    strcpy(psr->param[param_waveepoch].label[0],"WAVEEPOCH (MJD)");
    strcpy(psr->param[param_waveepoch].shortlabel[0],"WAVEEPOCH");
    strcpy(psr->param[param_waveepoch_dm].label[0],"WAVEEPOCHD (MJD)");
    strcpy(psr->param[param_waveepoch_dm].shortlabel[0],"WAVEEPOCHD");

    strcpy(psr->param[param_gwm_amp].label[0],"GWM_AMP");
    strcpy(psr->param[param_gwm_amp].shortlabel[0],"GWM_AMP");
    strcpy(psr->param[param_gwm_amp].label[1],"GWM_AMP_2");
    strcpy(psr->param[param_gwm_amp].shortlabel[1],"GWM_AMP_2");

    strcpy(psr->param[param_gwcs_amp].label[0],"GWCS_AMP1");
    strcpy(psr->param[param_gwcs_amp].shortlabel[0],"GWCS_AMP1");
    strcpy(psr->param[param_gwcs_amp].label[1],"GWCS_AMP2");
    strcpy(psr->param[param_gwcs_amp].shortlabel[1],"GWCS_AMP2");

    strcpy(psr->param[param_gwb_amp].label[0],"GWB_AMP");
    strcpy(psr->param[param_gwb_amp].shortlabel[0],"GWB_AMP");
    strcpy(psr->param[param_gwb_amp].label[1],"GWB_AMP_2");
    strcpy(psr->param[param_gwb_amp].shortlabel[1],"GWB_AMP_2");
    strcpy(psr->param[param_gwecc].label[0],"GWECC_AMP");
    strcpy(psr->param[param_gwecc].shortlabel[0],"GWECC_AMP");
    strcpy(psr->param[param_tel_dx].label[0],"TEL_DX");
    strcpy(psr->param[param_tel_dy].label[0],"TEL_DY");
    strcpy(psr->param[param_tel_dz].label[0],"TEL_DZ");
    strcpy(psr->param[param_tel_vx].label[0],"TEL_VX (km/s)");
    strcpy(psr->param[param_tel_vy].label[0],"TEL_VY (km/s)");
    strcpy(psr->param[param_tel_vz].label[0],"TEL_VZ (km/s)");
    strcpy(psr->param[param_tel_x0].label[0],"TEL_X0 (km)");
    strcpy(psr->param[param_tel_y0].label[0],"TEL_Y0 (km)");
    strcpy(psr->param[param_tel_z0].label[0],"TEL_Z0 (km)");
    strcpy(psr->param[param_tel_dx].shortlabel[0],"TEL_DX");
    strcpy(psr->param[param_tel_dy].shortlabel[0],"TEL_DY");
    strcpy(psr->param[param_tel_dz].shortlabel[0],"TEL_DZ");
    strcpy(psr->param[param_tel_vx].shortlabel[0],"TEL_VX");
    strcpy(psr->param[param_tel_vy].shortlabel[0],"TEL_VY");
    strcpy(psr->param[param_tel_vz].shortlabel[0],"TEL_VZ");
    strcpy(psr->param[param_tel_x0].shortlabel[0],"TEL_X0");
    strcpy(psr->param[param_tel_y0].shortlabel[0],"TEL_Y0");
    strcpy(psr->param[param_tel_z0].shortlabel[0],"TEL_Z0");
    strcpy(psr->param[param_ifunc].label[0],"IFUNC");
    strcpy(psr->param[param_ifunc].shortlabel[0],"IFUNC");
    strcpy(psr->param[param_df1].label[0],"DF1");
    strcpy(psr->param[param_df1].shortlabel[0],"DF1");
    strcpy(psr->param[param_clk_offs].label[0],"CLK_OFFS");
    strcpy(psr->param[param_clk_offs].shortlabel[0],"CLK_OFFS");
    strcpy(psr->param[param_quad_ifunc_p].label[0],"QIFUNC_p");
    strcpy(psr->param[param_quad_ifunc_p].shortlabel[0],"QIFUNC_p");
    strcpy(psr->param[param_quad_ifunc_c].label[0],"QIFUNC_c");
    strcpy(psr->param[param_quad_ifunc_c].shortlabel[0],"QIFUNC_c");
    strcpy(psr->param[param_pepoch].label[0],"PEPOCH (MJD)");
    strcpy(psr->param[param_pepoch].shortlabel[0],"PEPOCH");
    strcpy(psr->param[param_dmepoch].label[0],"DMEPOCH (MJD)");
    strcpy(psr->param[param_dmepoch].shortlabel[0],"DMEPOCH");
    strcpy(psr->param[param_start].label[0],"START (MJD)");
    strcpy(psr->param[param_start].shortlabel[0],"START");
    strcpy(psr->param[param_finish].label[0],"FINISH (MJD)");
    strcpy(psr->param[param_finish].shortlabel[0],"FINISH");
    strcpy(psr->param[param_track].label[0],"TRACK (MJD)");
    strcpy(psr->param[param_track].shortlabel[0],"TRACK");
    strcpy(psr->param[param_dshk].label[0],"DSHK (kpc)");
    strcpy(psr->param[param_dshk].shortlabel[0],"DSHK");

    strcpy(psr->param[param_iperharm].label[0],"IPERHARM");
    strcpy(psr->param[param_iperharm].shortlabel[0],"IPERHARM");

    /* Telescope coordinates */

    strcpy(psr->param[param_telx].shortlabel[0],"TELX");
    strcpy(psr->param[param_telx].label[0],"TELX (lt-s)");
    for (k=1;k<psr->param[param_telx].aSize;k++)
    {
        sprintf(psr->param[param_telx].label[k], "TELX%d (lt-s)", k);
        sprintf(psr->param[param_telx].shortlabel[k], "TELX%d", k);
    }

    strcpy(psr->param[param_tely].shortlabel[0],"TELY");
    strcpy(psr->param[param_tely].label[0],"TELY (lt-s)");
    for (k=1;k<psr->param[param_tely].aSize;k++)
    {
        sprintf(psr->param[param_tely].label[k], "TELY%d (lt-s)", k);
        sprintf(psr->param[param_tely].shortlabel[k], "TELY%d", k);
    }

    strcpy(psr->param[param_telz].shortlabel[0],"TELZ");
    strcpy(psr->param[param_telz].label[0],"TELZ (lt-s)");
    for (k=1;k<psr->param[param_telz].aSize;k++)
    {
        sprintf(psr->param[param_telz].label[k], "TELZ%d (lt-s)", k);
        sprintf(psr->param[param_telz].shortlabel[k], "TELZ%d", k);
    }

    strcpy(psr->param[param_telEpoch].shortlabel[0],"TELEPOCH");
    strcpy(psr->param[param_telEpoch].label[0],"TEL EPOCH (MJD)");

    /* Glitch parameters */
    for (k=0;k<psr->param[param_glep].aSize;k++)
    {
        sprintf(temp,"GLEP_%d",k+1);
        strcpy(psr->param[param_glep].label[k],temp);
        strcpy(psr->param[param_glep].shortlabel[k],temp);
        sprintf(temp,"GLPH_%d",k+1);
        strcpy(psr->param[param_glph].label[k],temp);
        strcpy(psr->param[param_glph].shortlabel[k],temp);
        sprintf(temp,"GLF0_%d",k+1);
        strcpy(psr->param[param_glf0].label[k],temp);
        strcpy(psr->param[param_glf0].shortlabel[k],temp);
        sprintf(temp,"GLF1_%d",k+1);
        strcpy(psr->param[param_glf1].label[k],temp);
        strcpy(psr->param[param_glf1].shortlabel[k],temp);
        sprintf(temp,"GLF2_%d",k+1);
        strcpy(psr->param[param_glf2].label[k],temp);
        strcpy(psr->param[param_glf2].shortlabel[k],temp);
        sprintf(temp,"GLF0D_%d",k+1);
        strcpy(psr->param[param_glf0d].label[k],temp);
        strcpy(psr->param[param_glf0d].shortlabel[k],temp);
        sprintf(temp,"GLTD_%d",k+1);
        strcpy(psr->param[param_gltd].label[k],temp);
        strcpy(psr->param[param_gltd].shortlabel[k],temp);
        sprintf(temp,"SWITCH_%d",k+1);
        strcpy(psr->param[param_stateSwitchT].label[k],temp);
        strcpy(psr->param[param_stateSwitchT].shortlabel[k],temp);

    }
    /* Binary parameters */
    strcpy(psr->param[param_t0].label[0],"T0 (MJD)");
    strcpy(psr->param[param_t0].shortlabel[0],"T0");
    for (k=0;k<psr->param[param_fb].aSize;k++)
    {
        sprintf(temp,"FB%d",k); strcpy(psr->param[param_fb].label[k],temp);
        sprintf(temp,"FB%d",k); strcpy(psr->param[param_fb].shortlabel[k],temp);
    }
    /* Dispersion measure and its derivative */
    for (k=1;k<psr->param[param_pb].aSize;k++)
    {
        sprintf(temp,"PB_%d (d)",k+1); strcpy(psr->param[param_pb].label[k],temp);
        sprintf(temp,"PB_%d",k+1); strcpy(psr->param[param_pb].shortlabel[k],temp);

        sprintf(temp,"ECC_%d",k+1); strcpy(psr->param[param_ecc].label[k],temp);
        sprintf(temp,"ECC_%d",k+1); strcpy(psr->param[param_ecc].shortlabel[k],temp);

        sprintf(temp,"OM_%d (deg)",k+1); strcpy(psr->param[param_om].label[k],temp);
        sprintf(temp,"OM_%d",k+1); strcpy(psr->param[param_om].shortlabel[k],temp);

        sprintf(temp,"A1_%d (lt-s)",k+1); strcpy(psr->param[param_a1].label[k],temp);
        sprintf(temp,"A1_%d",k+1); strcpy(psr->param[param_a1].shortlabel[k],temp);

        sprintf(temp,"T0_%d (mjd)",k+1); strcpy(psr->param[param_t0].label[k],temp);
        sprintf(temp,"T0_%d",k+1); strcpy(psr->param[param_t0].shortlabel[k],temp);
    }
    strcpy(psr->param[param_pb].label[0],"PB (d)");
    strcpy(psr->param[param_pb].shortlabel[0],"PB");
    strcpy(psr->param[param_a1].label[0],"A1 (lt-s)");
    strcpy(psr->param[param_a1].shortlabel[0],"A1");
    strcpy(psr->param[param_om].label[0],"OM (deg)");
    strcpy(psr->param[param_om].shortlabel[0],"OM");
    strcpy(psr->param[param_ecc].label[0],"ECC");
    strcpy(psr->param[param_e2dot].shortlabel[0],"E2DOT");
    strcpy(psr->param[param_e2dot].label[0],"E2DOT");
    strcpy(psr->param[param_edot].shortlabel[0],"EDOT");
    strcpy(psr->param[param_edot].label[0],"EDOT");
    strcpy(psr->param[param_ecc].shortlabel[0],"ECC");
    strcpy(psr->param[param_kom].label[0],"KOM"); 
    strcpy(psr->param[param_kom].shortlabel[0],"KOM");
    strcpy(psr->param[param_kin].label[0],"KIN"); 
    strcpy(psr->param[param_kin].shortlabel[0],"KIN");
    strcpy(psr->param[param_shapmax].label[0],"SHAPMAX"); 
    strcpy(psr->param[param_shapmax].shortlabel[0],"SHAPMAX");
    strcpy(psr->param[param_m2].label[0],"M2");
    strcpy(psr->param[param_m2].shortlabel[0],"M2");
    strcpy(psr->param[param_mtot].label[0],"MTOT");
    strcpy(psr->param[param_mtot].shortlabel[0],"MTOT");
    strcpy(psr->param[param_dr].label[0],"DR"); strcpy(psr->param[param_dr].shortlabel[0],"DR");
    strcpy(psr->param[param_dth].label[0],"DTH"); strcpy(psr->param[param_dth].shortlabel[0],"DTH");
    strcpy(psr->param[param_a0].label[0],"A0"); strcpy(psr->param[param_a0].shortlabel[0],"A0");
    strcpy(psr->param[param_b0].label[0],"B0"); strcpy(psr->param[param_b0].shortlabel[0],"B0");
    strcpy(psr->param[param_bp].label[0],"BP"); strcpy(psr->param[param_bp].shortlabel[0],"BP");
    strcpy(psr->param[param_bpp].label[0],"BPP"); strcpy(psr->param[param_bpp].shortlabel[0],"BPP");
    strcpy(psr->param[param_dtheta].label[0],"DTHETA"); 
    strcpy(psr->param[param_dtheta].shortlabel[0],"DTHETA");
    strcpy(psr->param[param_sini].label[0],"SINI");
    strcpy(psr->param[param_sini].shortlabel[0],"SINI");
    // Freire & Wex (2010; FW10) parameters:
    strcpy( psr->param[param_h3].label[0], "H3" );
    strcpy( psr->param[param_h3].shortlabel[0], "H3" );
    strcpy( psr->param[param_stig].label[0], "STIG" );
    strcpy( psr->param[param_stig].shortlabel[0], "STIG" );
    strcpy( psr->param[param_h4].label[0], "H4" );
    strcpy( psr->param[param_h4].shortlabel[0], "H4" );
    strcpy( psr->param[param_nharm].label[0], "Number of Shapiro delay harmonics" );
    strcpy( psr->param[param_nharm].shortlabel[0], "NHARM" );
    // End Freire & Wex parameters
    strcpy(psr->param[param_gamma].label[0],"GAMMA");
    strcpy(psr->param[param_gamma].shortlabel[0],"GAMMA");
    strcpy(psr->param[param_pbdot].label[0],"PBDOT");
    strcpy(psr->param[param_pbdot].shortlabel[0],"PBDOT");
    strcpy(psr->param[param_xpbdot].label[0],"XPBDOT");
    strcpy(psr->param[param_xpbdot].shortlabel[0],"XPBDOT");
    strcpy(psr->param[param_a1dot].label[0],"XDOT");
    strcpy(psr->param[param_a1dot].shortlabel[0],"XDOT");
    strcpy(psr->param[param_a2dot].label[0],"X2DOT");
    strcpy(psr->param[param_a2dot].shortlabel[0],"X2DOT");
    strcpy(psr->param[param_xomdot].label[0],"XOMDOT");
    strcpy(psr->param[param_xomdot].shortlabel[0],"XOMDOT");
    strcpy(psr->param[param_afac].label[0],"AFAC");
    strcpy(psr->param[param_afac].shortlabel[0],"AFAC");
    strcpy(psr->param[param_omdot].label[0],"OMDOT (deg/yr)");
    strcpy(psr->param[param_omdot].shortlabel[0],"OMDOT");
    strcpy(psr->param[param_om2dot].label[0],"OM2DOT(1e-20 rad/yr^2)");
    strcpy(psr->param[param_om2dot].shortlabel[0],"OM2DOT");
    strcpy(psr->param[param_orbpx].label[0],"ORBPX (kpc^-1)");
    strcpy(psr->param[param_orbpx].shortlabel[0],"ORBPX");
    strcpy(psr->param[param_tasc].label[0],"TASC (MJD)");
    strcpy(psr->param[param_tasc].shortlabel[0],"TASC");
    strcpy(psr->param[param_eps1].label[0],"EPS1");
    strcpy(psr->param[param_eps1].shortlabel[0],"EPS1");
    strcpy(psr->param[param_eps1dot].label[0],"EPS1DOT");
    strcpy(psr->param[param_eps1dot].shortlabel[0],"EPS1DOT");
    strcpy(psr->param[param_eps2].label[0],"EPS2");
    strcpy(psr->param[param_eps2].shortlabel[0],"EPS2");
    strcpy(psr->param[param_eps2dot].label[0],"EPS2DOT");
    strcpy(psr->param[param_eps2dot].shortlabel[0],"EPS2DOT");
    strcpy(psr->param[param_tzrmjd].label[0],"TZRMJD");
    strcpy(psr->param[param_tzrmjd].shortlabel[0],"TZRMJD");
    strcpy(psr->param[param_tzrfrq].label[0],"TZRFRQ (MHz)");
    strcpy(psr->param[param_tzrfrq].shortlabel[0],"TZRFRQ");
    strcpy(psr->param[param_tspan].label[0],"TSPAN (min)"); 
    strcpy(psr->param[param_tspan].shortlabel[0],"TSPAN");
    strcpy(psr->param[param_brake].label[0],"BRAKING INDEX"); 
    strcpy(psr->param[param_brake].shortlabel[0],"BRAKE");

    strcpy( psr->param[param_ne_sw].label[0], "NE_SW (cm^-3)" );
    strcpy( psr->param[param_ne_sw].shortlabel[0], "NE_SW" );

    for (k=0;k<psr->param[param_bpjep].aSize;k++)
    {
        sprintf(temp,"BPJEP_%d",k+1);
        strcpy(psr->param[param_bpjep].label[k],temp); 
        strcpy(psr->param[param_bpjep].shortlabel[k],temp);

        sprintf(temp,"BPJPH_%d",k+1);
        strcpy(psr->param[param_bpjph].label[k],temp); 
        strcpy(psr->param[param_bpjph].shortlabel[k],temp);

        sprintf(temp,"BPJA1_%d",k+1);
        strcpy(psr->param[param_bpja1].label[k],temp); 
        strcpy(psr->param[param_bpja1].shortlabel[k],temp);

        sprintf(temp,"BPJEC_%d",k+1);
        strcpy(psr->param[param_bpjec].label[k],temp); 
        strcpy(psr->param[param_bpjec].shortlabel[k],temp);

        sprintf(temp,"BPJOM_%d",k+1);
        strcpy(psr->param[param_bpjom].label[k],temp); 
        strcpy(psr->param[param_bpjom].shortlabel[k],temp);

        sprintf(temp,"BPJPB_%d",k+1);
        strcpy(psr->param[param_bpjpb].label[k],temp); 
        strcpy(psr->param[param_bpjpb].shortlabel[k],temp);


    }       

    strcpy(psr->param[param_wave_om].label[0],"WAVE_OM"); strcpy(psr->param[param_wave_om].shortlabel[0],"WAVE_OM");
    strcpy(psr->param[param_wave_dm].label[0],"WAVE_DM"); strcpy(psr->param[param_wave_dm].shortlabel[0],"WAVE_DM");
    strcpy(psr->param[param_quad_om].label[0],"QUAD_OM"); strcpy(psr->param[param_quad_om].shortlabel[0],"QUAD_OM");
    strcpy(psr->param[param_dmmodel].label[0],"DMMODEL"); strcpy(psr->param[param_dmmodel].shortlabel[0],"DMMODEL");
    strcpy(psr->param[param_gwsingle].label[0],"GW_OMEGA"); strcpy(psr->param[param_gwsingle].shortlabel[0],"GW_OMEGA");

    /* Piecewise-constant DM variation (DMX) */
    for (k=0;k<psr->param[param_dmx].aSize;k++) 
    {
        sprintf(temp,"DMX_%04d (cm^-3 pc)",k+1);
        strcpy(psr->param[param_dmx].label[k],temp);
        sprintf(temp,"DMX_%04d",k+1);
        strcpy(psr->param[param_dmx].shortlabel[k],temp);

        sprintf(temp,"DMXR1_%04d (MJD)",k+1);
        strcpy(psr->param[param_dmxr1].label[k],temp);
        sprintf(temp,"DMXR1_%04d",k+1);
        strcpy(psr->param[param_dmxr1].shortlabel[k],temp);

        sprintf(temp,"DMXR2_%04d (MJD)",k+1);
        strcpy(psr->param[param_dmxr2].label[k],temp);
        sprintf(temp,"DMXR2_%04d",k+1);
        strcpy(psr->param[param_dmxr2].shortlabel[k],temp);
    }

        for (k=0;k<psr->param[param_sx].aSize;k++)
    {
        sprintf(temp,"SX_%04d (cm^-3 pc)",k+1);
        strcpy(psr->param[param_sx].label[k],temp);
        sprintf(temp,"SX_%04d",k+1);
        strcpy(psr->param[param_sx].shortlabel[k],temp);


        sprintf(temp,"SXR1_%04d (MJD)",k+1);
        strcpy(psr->param[param_sxr1].label[k],temp);
        sprintf(temp,"SXR1_%04d",k+1);
        strcpy(psr->param[param_sxr1].shortlabel[k],temp);

        sprintf(temp,"SXR2_%04d (MJD)",k+1);
        strcpy(psr->param[param_sxr2].label[k],temp);
        sprintf(temp,"SXR2_%04d",k+1);
        strcpy(psr->param[param_sxr2].shortlabel[k],temp);


        sprintf(temp,"SXER_%04d (MJD)",k+1);
        strcpy(psr->param[param_sxer].label[k],temp);
        sprintf(temp,"SXER_%04d",k+1);
        strcpy(psr->param[param_sxer].shortlabel[k],temp);
      }
        for (k=0; k < MAX_PARAMS; ++k){
            psr->constraint_special[k]=0;
        }


}
コード例 #5
0
ファイル: t2fit.C プロジェクト: mattpitkin/tempo2
void TKleastSquares_global_pulsar(double **x,double **y,int *n,
        double *outP,double *e,int* nf, int nglobal,double **cvm, double *chisq, void (*fitFuncs)(double, double [], int,pulsar *,int,int),pulsar *psr,double tol, int **ip,char rescale_errors, double ***uinv, int npsr) {

    double **designMatrix, **white_designMatrix;
    double **constraintsMatrix;
    double **psr_DM, **psr_wDM;
    double *b,*white_b, *psr_b,*psr_wb;
    int ipsr;
    int totalFit=0;
    int totalObs=0;
    int totalConstraints=0;
    int i,j;
    int off_r=0;
    int off_f=0;
    int off_c=0;

    for (ipsr=0; ipsr < npsr; ipsr++){
        totalFit+=nf[ipsr];
        totalObs+=n[ipsr];
        totalConstraints+=psr[ipsr].nconstraints;
    }
    totalFit+=nglobal;

    white_designMatrix=malloc_blas(totalObs,totalFit);
    designMatrix=malloc_blas(totalObs,totalFit);
    constraintsMatrix=malloc_blas(totalConstraints,totalFit);
    b=(double*)calloc(totalObs,sizeof(double));
    white_b=(double*)calloc(totalObs,sizeof(double));

    for (ipsr=0; ipsr < npsr; ipsr++){
        logdbg("Getting design matrix / whitened residuals for psr %d    off_r=%d off_f=%d nglobal=%d",ipsr,off_r,off_f,nglobal);
        TKfit_getPulsarDesignMatrix(x[ipsr],y[ipsr],n[ipsr],nf[ipsr]+nglobal,fitFuncs,psr,ip[ipsr],uinv[ipsr],ipsr,&psr_DM,&psr_wDM,&psr_b,&psr_wb);

        // the global fit parameters
        for(i=0; i < n[ipsr]; i++){
            for(j=0; j < nglobal; j++){
                designMatrix[i+off_r][j] = psr_DM[i][j];
                white_designMatrix[i+off_r][j] = psr_wDM[i][j];
            }
        }
        // the regular fit parameters
        for(i=0; i < n[ipsr]; i++){
            for(j=0; j < nf[ipsr]; j++){
                designMatrix[i+off_r][j+off_f+nglobal] = psr_DM[i][j+nglobal];
                white_designMatrix[i+off_r][j+off_f+nglobal] = psr_wDM[i][j+nglobal];
            }
        }
        // the residuals
        for(i=0; i < n[ipsr]; i++){
            b[i+off_r] = psr_b[i];
            white_b[i+off_r] = psr_wb[i];
        }

        if(psr[ipsr].nconstraints > 0){
            logmsg("Get constraint weights");
            computeConstraintWeights(psr+ipsr);
            logmsg("fill constraints matrix");
            for (int ic=0; ic < psr[ipsr].nconstraints; ic++){
                CONSTRAINTfuncs(psr,ipsr,nf[ipsr],psr->constraints[ic],constraintsMatrix[ic+off_c]+off_f);
            }
        }



        // increment the offset.
        off_r += n[ipsr];
        off_f += nf[ipsr];
        off_c += psr[ipsr].nconstraints;

        // free temp matricies.
        free_blas(psr_DM);
        free_blas(psr_wDM);
        free(psr_b);
        free(psr_wb);
    }


    // go ahead and do the fit!

    *chisq = TKrobustConstrainedLeastSquares(b,white_b,designMatrix,white_designMatrix,
            constraintsMatrix,
            totalObs,totalFit,totalConstraints,tol,rescale_errors,
            outP,e,cvm,psr[0].robust);

    free_blas(designMatrix); // free-TKleastSquares_svd_psr_dcm-designMatrix**
    free_blas(white_designMatrix);  // free-TKleastSquares_svd_psr_dcm-white_designMatrix**
    free_blas(constraintsMatrix);  // free-TKleastSquares_svd_psr_dcm-white_designMatrix**
    free(b);
    free(white_b);

}
コード例 #6
0
ファイル: t2fit.C プロジェクト: mattpitkin/tempo2
void t2Fit(pulsar *psr,unsigned int npsr, const char *covarFuncFile){

    // if we have a model for the data covariance function, then use it.
    // Otherwise we we will just whiten using the error bars.
    bool haveCovar = (covarFuncFile!=NULL && strcmp(covarFuncFile,"NULL"));

    /**
     * Find out if there are any global parameters and what they are...
     */
    FitInfo global_fitinfo;
    t2Fit_fillGlobalFitInfo(psr,npsr,global_fitinfo);
    logdbg("Nglobal parameters = %d",global_fitinfo.nParams);

    // If we had any global parameters (or constraints) then we need to do a global fit
    // otherwise we can do a fit for each pulsar individually, which is quicker
    // and saves memory.
    bool doGlobalFit = (global_fitinfo.nParams > 0) || (global_fitinfo.nConstraints > 0);

    unsigned long long totalGlobalData=0; // the number of data points across all pulsars
    unsigned int gParams=global_fitinfo.nParams; // the number of global fit parameters
    unsigned int gConstraints=global_fitinfo.nConstraints; // the number of global constraints

    unsigned long long totalGlobalParams=gParams;
    unsigned long long totalGlobalConstraints=gConstraints;

    double** gUinvs[MAX_PSR]; // whitening matrix for each pulsar
    double* gX[MAX_PSR]; // "x" values for each pulsar
    double* gY[MAX_PSR]; // "y" values for each pulsar
    double* gW[MAX_PSR]; // whitened "y" values for each pulsar
    double** gDM[MAX_PSR]; // design matrix for each pulsar
    double** gWDM[MAX_PSR]; // whitened design matrix for each pulsar
    double** gCM[MAX_PSR]; // constraints matrix for each pulsar
    unsigned int gNdata[MAX_PSR]; // number of data points for each pulsar (size of x and y)

    logmsg("NEW fit routine. GlobalFit=%s",doGlobalFit ? "true" : "false");

    /**
     * However we are going to do the fit, we want to loop over all the pulsars
     * to get the input data and design matricies etc.
     */
    for (size_t ipsr=0; ipsr < npsr; ipsr++) {

        double *psr_x   = (double*)malloc(sizeof(double)*psr[ipsr].nobs);
        double *psr_y   = (double*)malloc(sizeof(double)*psr[ipsr].nobs);
        double *psr_white_y   = (double*)malloc(sizeof(double)*psr[ipsr].nobs);
        double *psr_e   = (double*)malloc(sizeof(double)*psr[ipsr].nobs);
        int *psr_toaidx = (int*)malloc(sizeof(int)*psr[ipsr].nobs); // mapping from fit data to observation number
        double** uinv; // the whitening matrix.

        /**
         * Working out which data contributes to the fit is done in this routine.
         * Basically gets values for all observations within START and FINISH which are
         * not deleted.
         *
         * returns the number of data points.
         */
        const unsigned int psr_ndata = t2Fit_getFitData(psr+ipsr,psr_x,psr_y,psr_e,psr_toaidx);
        assert(psr_ndata > 0u);
        psr[ipsr].nFit = psr_ndata; // pulsar.nFit is the number of data points used in the fit.

        /**
         * Now we work out which parameters are being fit for, how many parameters,
         * and determine the gradient functions for the design matrix and the update functions
         * which update the pulsar struct.
         */
        t2Fit_fillFitInfo(psr+ipsr,psr[ipsr].fitinfo,global_fitinfo);


        /**
         * The whitening matrix behaves diferently if we have a covariance matrix.
         * If we have a covariance matrix, uinv is an ndata x ndata triangular matrix.
         * Otherwise, it only has diagonal elements, so we efficiently store it as 
         * a 1-d ndata array.
         */
        if (haveCovar) {
            // ToAs must be sorted for covariance function code
            sortToAs(psr+ipsr);

            // malloc_uinv does a blas-compatible allocation of a 2-d array.
            uinv = malloc_uinv(psr_ndata);
            psr[ipsr].fitMode=1; // Note: forcing this to 1 as the Cholesky fit is a weighted fit
            logmsg("Doing a FULL COVARIANCE MATRIX fit");
        } else {
            // Here the whitening matrix is just a diagonal
            // weighting matrix. Store diagonal matrix as 1xN
            // so that types match later.
            uinv=malloc_blas(1,psr_ndata); 
            if(psr[ipsr].fitMode == 0){
                // if we are doing an unweighted fit then we should set the errors to 1.0
                // to give uniform weighting.
                logdbg("Doing an UNWEIGHTED fit");
                for (unsigned int i=0; i < psr_ndata; i++){
                    psr_e[i]=1.0;
                }
            } else {
                logdbg("Doing a WEIGHTED fit");
            }
        }
        assert(uinv!=NULL);

        /**
         * Now we form the whitening matrix, uinv.
         * Note that getCholeskyMatrix() is clever enough to see that we 
         * have created a 1 x ndata matrix if we have only diagonal elements.
         */
        getCholeskyMatrix(uinv,covarFuncFile,psr+ipsr,
                psr_x,psr_y,psr_e,
                psr_ndata,0,psr_toaidx);

        logtchk("got Uinv");

        // define some convinience variables
        const unsigned nParams=psr[ipsr].fitinfo.nParams;
        const unsigned nConstraints=psr[ipsr].fitinfo.nConstraints;


        /**
         * The design matrix is the matrix of gradients for the least-squares.
         * If the design matrix is M, parameters p, and data d, we are solving
         * M.p = d
         * It is ndata x nparams in size. We also allocate the whitened DM here.
         */
        double** designMatrix = malloc_blas(psr_ndata,nParams);
        double** white_designMatrix = malloc_blas(psr_ndata,nParams);
        for (unsigned int idata =0; idata < psr_ndata; ++idata){
            // t2Fit_buildDesignMatrix is a replacement for the old FITfuncs routine.
            // it fills one row of the design matrix.
            t2Fit_buildDesignMatrix(psr,ipsr,psr_x[idata], psr_toaidx[idata], designMatrix[idata]);
        }


        logtchk("made design matrix");

        /**
         * The constraints matrix is similar to the design matrix, but here we are solving:
         * B.p = 0
         * Where B is the constraints matrix and p is the parameters. we solve both this
         * and the DM equation set simultaniously. TKleastSquares will do this for us.
         *
         * If there are no constraints we leave it as NULL, which is detected in TKfit as
         * no constraints anyway.
         */
        double** constraintsMatrix =NULL;
        if(psr[ipsr].fitinfo.nConstraints > 0){

            computeConstraintWeights(psr+ipsr);
            constraintsMatrix = malloc_blas(nConstraints,nParams);
            for (unsigned int iconstraint =0; iconstraint < nConstraints; ++iconstraint){
                // similar to t2Fit_buildDesignMatrix, t2Fit_buildConstraintsMatrix
                // creates one row of the constraints matrix.
                t2Fit_buildConstraintsMatrix(psr, ipsr, iconstraint, constraintsMatrix[iconstraint]);
            }
        }

        logtchk("made constraints matrix");

        /**
         * Now we multiply the design matrix and the data vector by the whitening matrix.
         * If we just have variances (uinv is diagonal) then we do it traditionally, otherwise
         * we use TKmultMatrix as this is usually backed by LAPACK and so is fast :)
         */
        if(haveCovar){
            TKmultMatrixVec(uinv,psr_y,psr_ndata,psr_ndata,psr_white_y);
            TKmultMatrix_sq(uinv,designMatrix,psr_ndata,nParams,white_designMatrix);
        } else {
            for(unsigned i=0;i<psr_ndata;++i){
                psr_white_y[i]=psr_y[i]*uinv[0][i];
                for(unsigned j=0;j<nParams;++j){
                    white_designMatrix[i][j] = designMatrix[i][j]*uinv[0][i];
                }
            }
        }

        free_blas(uinv);
        free(psr_e);
        free(psr_toaidx);

        logtchk("done whitening");
        /*
         * Now - if we are going to do a global fit, we store all the above for later
         *       otherwise
         */
        if (doGlobalFit){
            // we are going to do a global fit, so need to store the values for later
            gX[ipsr] = psr_x;
            gY[ipsr] = psr_y;
            gW[ipsr] = psr_white_y;
            gDM[ipsr] = designMatrix;
            gWDM[ipsr] = white_designMatrix;
            gCM[ipsr] = constraintsMatrix;
            gNdata[ipsr] = psr_ndata;
            totalGlobalData += psr_ndata;
            totalGlobalParams += nParams - gParams;
            totalGlobalConstraints += nConstraints - gConstraints;
        } else {
            // NOT GLOBAL
            // so do one fit at a time...

            double chisq; // the post-fit chi-squared

            // allocate memory for the output of TKleastSquares
            double* parameterEstimates = (double*)malloc(sizeof(double)*nParams);
            double* errorEstimates = (double*)malloc(sizeof(double)*nParams);

            /*
             * Call TKleastSquares, or in fact, TKrobustConstrainedLeastSquares,
             * since we might want robust fitting and/or constraints/
             *
             * The arguments here are explained in TKfit.C
             *
             */
            chisq = TKrobustConstrainedLeastSquares(psr_y,psr_white_y,
                    designMatrix,white_designMatrix,constraintsMatrix,
                    psr_ndata,nParams,nConstraints,
                    T2_SVD_TOL,1,parameterEstimates,errorEstimates,psr[ipsr].covar,
                    psr[ipsr].robust);

            // update the pulsar struct as appropriate
            psr[ipsr].fitChisq = chisq;
            psr[ipsr].fitNfree = psr_ndata + nConstraints - nParams;

            logdbg("Updating the parameters");
            logtchk("updating the parameter values");
            /*
             * This routine calls the appropriate update functions to apply the result of the fit
             * to the origianal (non-linearised) pulsar parameters.
             */
            t2Fit_updateParameters(psr,ipsr,parameterEstimates,errorEstimates);
            logtchk("complete updating the parameter values");
            logdbg("Completed updating the parameters");

            /*
             * If we are not doing a global fit, we can clean up the memory for this pulsar.
             * Might make a difference for very large datasets.
             */
            logdbg("Free fit memory");
            free(parameterEstimates);
            free(errorEstimates);
            free_blas(designMatrix);
            free_blas(white_designMatrix);
            if (constraintsMatrix) free_blas(constraintsMatrix);
            free(psr_x);
            free(psr_y);
            free(psr_white_y);
        }
    }
    if (doGlobalFit){

        const unsigned int nobs = totalGlobalData;
        double** designMatrix = malloc_blas(nobs,totalGlobalParams);
        double** white_designMatrix = malloc_blas(nobs,totalGlobalParams);

        double** constraintsMatrix = malloc_blas(totalGlobalConstraints,totalGlobalParams);

        double *y   = (double*)malloc(sizeof(double)*nobs);
        double *white_y   = (double*)malloc(sizeof(double)*nobs);

        unsigned int off_f = gParams; // leave space for globals
        unsigned int off_r = 0;
        unsigned int off_c = gConstraints;

        logdbg("Building matricies for global fit... npsr=%u",npsr);
        logdbg("nobs=%u, totalGlobalParams=%u, totalGlobalConstraints=%u",nobs,totalGlobalParams,totalGlobalConstraints);
        logwarn("This mode is not supported yet!!!");


        for (unsigned int ipsr = 0; ipsr < npsr ; ++ipsr){
            unsigned int nLocal = psr[ipsr].fitinfo.nParams-gParams;
            logdbg("ipsr=%u, off_r = %u, off_c=%u, off_f=%u, nlocal=%u",
                    ipsr,off_r,off_c,off_f,nLocal);

            // the fit parameters
            for(unsigned int i=0; i < gNdata[ipsr]; i++){

                // the global params (they go first)
                for(unsigned int g= 0; g < gParams; g++){
                    unsigned int j = g+nLocal;
                    if(ipsr==0 && i==0 && writeResiduals){
                        logmsg("Row %d = %s %s(%d)",g,"global",label_str[global_fitinfo.paramIndex[g]],global_fitinfo.paramCounters[g]);
                    }
                    designMatrix[i+off_r][g] = gDM[ipsr][i][j];
                    white_designMatrix[i+off_r][g] = gWDM[ipsr][i][j];
                }

                for(unsigned int j=0; j < nLocal; j++){
                    if(i==0 && writeResiduals){
                        logmsg("Row %d = %s %s(%d)",j+off_f,psr[ipsr].name,label_str[psr[ipsr].fitinfo.paramIndex[j]],psr[ipsr].fitinfo.paramCounters[j]);
                    }
                    designMatrix[i+off_r][j+off_f] = gDM[ipsr][i][j];
                    white_designMatrix[i+off_r][j+off_f] = gWDM[ipsr][i][j];
                }
            }
            // the data
            for(unsigned int i=0; i < gNdata[ipsr]; ++i){
                y[i+off_r] = gY[ipsr][i];
                white_y[i+off_r] = gW[ipsr][i];
            }

            for(unsigned int i=0; i < psr[ipsr].fitinfo.nConstraints; i++){
                for(unsigned int j=0; j < nLocal; j++){
                    constraintsMatrix[i+off_c][j+off_f] = gCM[ipsr][i][j];
                }

                // the global params (they go first)
                for(unsigned int g= 0; g < gParams; g++){
                    unsigned int j = g+nLocal;
                    constraintsMatrix[i+off_c][g] = gCM[ipsr][i][j];
                }

            }

            off_r += gNdata[ipsr];
            off_f += nLocal;
            off_c += psr[ipsr].fitinfo.nConstraints;

            free(gY[ipsr]);
            free(gW[ipsr]);
            free_blas(gDM[ipsr]);
            if (gCM[ipsr]) free_blas(gCM[ipsr]);
            free_blas(gWDM[ipsr]);
        }

        double chisq; // the post-fit chi-squared

        double* parameterEstimates = (double*)malloc(sizeof(double)*totalGlobalParams);
        double* errorEstimates = (double*)malloc(sizeof(double)*totalGlobalParams);
        chisq = TKrobustConstrainedLeastSquares(y,white_y,
                designMatrix,white_designMatrix,constraintsMatrix,
                nobs,totalGlobalParams,totalGlobalConstraints,
                T2_SVD_TOL,1,parameterEstimates,errorEstimates,psr[0].covar,
                psr[0].robust);
        // for now the CVM ends up in psr[0].covar.

        int off_p = gParams;
        for (unsigned int ipsr = 0; ipsr < npsr ; ++ipsr){
            // update the pulsar struct as appropriate
            psr[ipsr].fitChisq = chisq;
            psr[ipsr].fitNfree = nobs + totalGlobalConstraints - totalGlobalParams;

            

            double* psr_parameterEstimates = (double*)malloc(sizeof(double)*psr[ipsr].fitinfo.nParams);
            double* psr_errorEstimates = (double*)malloc(sizeof(double)*psr[ipsr].fitinfo.nParams);
            const unsigned np = psr[ipsr].fitinfo.nParams-gParams;

            /* extract the fit output for the individual pulsars. 
             * I.e. detangle the global fit
             * Notice: Globals go at the end of the individual pulsar arrays.
             */
            for (unsigned i = 0; i < np; ++i){
                psr_parameterEstimates[i] = parameterEstimates[off_p];
                psr_errorEstimates[i] = errorEstimates[off_p];
                ++off_p;
            }

            for (unsigned i = 0; i < gParams; ++i){
                psr_parameterEstimates[i+np] = parameterEstimates[i];
                psr_errorEstimates[i] = errorEstimates[off_p];
            }

            logdbg("Updating the parameters");
            logtchk("updating the parameter values");

            /*
             * This routine calls the appropriate update functions to apply the result of the fit
             * to the origianal (non-linearised) pulsar parameters.
             */
            t2Fit_updateParameters(psr,ipsr,psr_parameterEstimates,psr_errorEstimates);
            logtchk("complete updating the parameter values");
            logdbg("Completed updating the parameters");
            free(psr_parameterEstimates);
            free(psr_errorEstimates);
        }
        free(parameterEstimates);
        free(errorEstimates);
        free(white_y);
        free(y);
        free_blas(designMatrix);
        free_blas(white_designMatrix);
        free_blas(constraintsMatrix);


    }
}