コード例 #1
0
ファイル: alignerExhaustive.cpp プロジェクト: Malfoy/BGREAT
uint Aligner::checkEndExhaustive(const string& read, pair<kmer, uint>& overlap, vector<uNumber>& path, uint errors){
	string readLeft(read.substr(overlap.second+k-1)),unitig;
	vector<uNumber> path2keep;
	if(readLeft.empty()){
		path.push_back(0);
		return 0;
	}
	auto rangeUnitigs(getBegin(overlap.first));
	uint minMiss(errors+1),indiceMinMiss(9);
	bool ended(false);
	int offset(-2);
	if(partial & rangeUnitigs.empty()){
		//if(!path.empty()){
			return 0;
		//}
	}

	for(uint i(0); i<rangeUnitigs.size(); ++i){
		unitig=(rangeUnitigs[i].first);
		if(unitig.size()-k+1>=readLeft.size()){
			uint miss(missmatchNumber(unitig.substr(k-1,readLeft.size()),readLeft, errors));
			if(miss<minMiss){
				minMiss=miss;
				indiceMinMiss=i;
				ended=true;
				offset=readLeft.size()+k-1;
			}
		}else{
			uint miss(missmatchNumber(unitig.substr(k-1),readLeft.substr(0,unitig.size()-k+1), errors));
			if(miss<minMiss){
				kmer overlapNum(str2num(unitig.substr(unitig.size()-k+1,k-1)));
				vector<uNumber> possiblePath;
				miss+=mapOnRightEndExhaustive(read, possiblePath, {overlapNum,overlap.second+(unitig.size()-k+1)},errors-miss);
				if(miss<minMiss){
					path2keep=possiblePath;
					minMiss=miss;
					indiceMinMiss=i;
					ended=false;
				}
			}
		}
	}

	if(minMiss<=errors){
		if(ended){
			path.push_back(rangeUnitigs[indiceMinMiss].second);
			path.push_back(offset);
		}else{
			path.push_back(rangeUnitigs[indiceMinMiss].second);
			path.insert(path.end(), path2keep.begin(),path2keep.end());
		}
	}
	return minMiss;
}
コード例 #2
0
uint Aligner::mapOnRightEndExhaustive(const string &read, vector<uNumber>& path, const pair<kmer, uint>& overlap , uint errors){
	string unitig,readLeft(read.substr(overlap.second+k-1));
	vector<uNumber> path2keep;
	if(readLeft.empty()){path.push_back(0);return 0;}
	auto rangeUnitigs(getBegin(overlap.first));
	uint miniMiss(errors+1), miniMissIndice(9);
	bool ended(false);

	for(uint i(0); i<rangeUnitigs.size(); ++i){
		unitig=(rangeUnitigs[i].first);
		//case the rest of the read is too small
		if(readLeft.size()<= unitig.size()-k+1){
			uint miss(missmatchNumber(unitig.substr(k-1,readLeft.size()), readLeft, errors));
			if(miss<miniMiss){
				miniMiss=miss;
				miniMissIndice=i;
				ended=true;
			}
		}else{
			//case the read is big enough we want to recover a true overlap
			uint miss(missmatchNumber(unitig.substr(k-1), readLeft.substr(0,unitig.size()-k+1), errors));
			if(miss<miniMiss){
				kmer overlapNum(str2num(unitig.substr(unitig.size()-k+1,k-1)));
				vector<uNumber> possiblePath;
				miss+=mapOnRightEndExhaustive(read , possiblePath, {overlapNum,overlap.second+(unitig.size()-k+1)}, errors-miss);
				if(miss<miniMiss){
					path2keep=possiblePath;
					miniMiss=miss;
					miniMissIndice=i;
					ended=false;
				}
			}
		}
	}

	if(miniMiss<=errors){
		if(ended){
			path.push_back(rangeUnitigs[miniMissIndice].second);
			path.push_back(readLeft.size()+k-1);
		}else{
			path.push_back(rangeUnitigs[miniMissIndice].second);
			path.insert(path.end(), path2keep.begin(),path2keep.end());
		}
		successMR++;
	}
	return miniMiss;
}