コード例 #1
0
////////////////////////////////////////////////////////////////////////////////
//
//  inet_firewire_pre_output
//
//   IN:	ifnet_t ifp
//   IN:	struct mbuf **m0
//   IN:	struct sockaddr dst_netaddr
//   IN:	caddr_t	route
//   OUT:	char *type
//	 OUT:	char *edst
//	 IN:	u_long dl_tag
// 
// Invoked by : 
//  Invoked by dlil.c for dlil_output=>(*proto)->dl_pre_output=> 
//  inet_firewire_pre_output=>
//
// Process a received firewire ARP/IP packet, the packet is in the mbuf 
// chain m
//
////////////////////////////////////////////////////////////////////////////////
int
inet_firewire_pre_output(
	ifnet_t						interface,
	__unused protocol_family_t	protocol_family,
	mbuf_t						*m0,
	const struct sockaddr		*dst_netaddr,
	void*						route,
	char						*type,
	char						*edst)
{
    mbuf_t m = *m0;
    errno_t	result = 0;
	    
    if ((ifnet_flags(interface) & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) 
		return ENETDOWN;
	
	// Tell firewire_frameout it's ok to loop packet unless negated below.
    mbuf_setflags(m, mbuf_flags(m) | MBUF_LOOP);

    switch (dst_netaddr->sa_family) 
	{
    	case AF_INET: 
		{
			struct sockaddr_dl	ll_dest;
			result = inet_arp_lookup(interface, (const struct sockaddr_in*)dst_netaddr,
								   &ll_dest, sizeof(ll_dest), (route_t)route, *m0);
			if (result == 0) 
			{
				bcopy(LLADDR(&ll_dest), edst, FIREWIRE_ADDR_LEN);
				*(u_int16_t*)type = htons(FWTYPE_IP);
			}
		}
		break;

        case AF_UNSPEC:
		{
            mbuf_setflags(m, mbuf_flags(m) & ~MBUF_LOOP);
            register struct firewire_header *fwh = (struct firewire_header *)dst_netaddr->sa_data;
			(void)memcpy(edst, fwh->fw_dhost, FIREWIRE_ADDR_LEN);
            *(u_short *)type = fwh->fw_type;
		}
		break;

        default:
            return EAFNOSUPPORT;
    }

	return result;
}
コード例 #2
0
UInt32 IOMbufMemoryCursor::genPhysicalSegments(mbuf_t packet, void *vector,
                                               UInt32 maxSegs, bool doCoalesce)
{
    bool doneCoalesce = false;

    if (!packet || !(mbuf_flags(packet) & MBUF_PKTHDR))
        return 0;

    if (!maxSegs)
    {
        maxSegs = maxNumSegments;
        if (!maxSegs) return 0;
    }

    if ( mbuf_next(packet) == 0 )
    {
        uintptr_t               src;
        struct IOPhysicalSegment  physSeg;

        /*
         * the packet consists of only 1 mbuf
         * so if the data buffer doesn't span a page boundary
         * we can take the simple way out
         */
        src = (uintptr_t)mbuf_data(packet);

        if ( trunc_page(src) == trunc_page(src + mbuf_len(packet) - 1) )
        {
            physSeg.location = (IOPhysicalAddress) mbuf_data_to_physical((char *)src);
            if ( physSeg.location )
            {
                physSeg.length = mbuf_len(packet);
                (*outSeg)(physSeg, vector, 0);
                return 1;
            }
            
            maxSegs = 1;
            if ( doCoalesce == false ) return 0;
        }
    }

    if ( doCoalesce == true && maxSegs == 1 )
    {
        uintptr_t               src;
        uintptr_t               dst;
        mbuf_t               m;
        mbuf_t               mnext;
        mbuf_t               out;
        UInt32                    len = 0;
        struct IOPhysicalSegment  physSeg;

        if ( mbuf_pkthdr_len(packet) > MCLBYTES ) return 0;

        m = packet;

        // Allocate a non-header mbuf + cluster.
        if (mbuf_getpacket( MBUF_DONTWAIT, &out ))
			return 0;
		mbuf_setflags( out, mbuf_flags( out ) & ~MBUF_PKTHDR );
        dst = (uintptr_t)mbuf_data(out);

        do
        {
            src = (uintptr_t)mbuf_data(m);
            BCOPY( src, dst, mbuf_len(m) );
            dst += mbuf_len(m);
            len += mbuf_len(m);
        } while ( (m = mbuf_next(m)) != 0 );

        mbuf_setlen(out , len);

        dst = (uintptr_t)mbuf_data(out);
        physSeg.location = (IOPhysicalAddress) mbuf_data_to_physical((char *)dst);
        if (!physSeg.location)
        {
            mbuf_free(out);
            return 0;
        }
        physSeg.length = mbuf_len(out);
        (*outSeg)(physSeg, vector, 0);

        m = mbuf_next(packet);
        while (m != 0)
        {
            mnext = mbuf_next(m);
            mbuf_free(m);
            m = mnext;
        }

        // The initial header mbuf is preserved, its length set to zero,
        // and linked to the new packet chain.

        mbuf_setlen(packet , 0);
        mbuf_setnext(packet , out);
        mbuf_setnext(out , 0);

        return 1;
    }

    //
    // Iterate over the mbuf, translating segments were allowed.  When we
    // are not allowed to translate segments then accumulate segment
    // statistics up to kMBufDataCacheSize of mbufs.  Finally
    // if we overflow our cache just count how many segments this
    // packet represents.
    //
    UInt32 segsPerMBuf[kMBufDataCacheSize];

tryAgain:
    UInt32 curMBufIndex = 0;
    UInt32 curSegIndex  = 0;
    UInt32 lastSegCount = 0;
    mbuf_t m = packet;

    // For each mbuf in incoming packet.
    do {
        vm_size_t   mbufLen, thisLen = 0;
        uintptr_t src;

        // Step through each segment in the current mbuf
        for (mbufLen = mbuf_len(m), src = (uintptr_t)mbuf_data(m);
             mbufLen;
             src += thisLen, mbufLen -= thisLen)
        {
            // If maxSegmentSize is atleast PAGE_SIZE, then
            // thisLen = MIN(next_page(src), src + mbufLen) - src;

            thisLen = MIN(mbufLen, maxSegmentSize);
            thisLen = MIN(next_page(src), src + thisLen) - src;

            // If room left then find the current segment addr and output
            if (curSegIndex < maxSegs) {
                struct IOPhysicalSegment physSeg;

                physSeg.location = (IOPhysicalAddress) mbuf_data_to_physical((char *)src);
                if ( physSeg.location == 0 )
                {
                    return doCoalesce ?
                           genPhysicalSegments(packet, vector, 1, true) : 0;
                }
                physSeg.length = thisLen;
                (*outSeg)(physSeg, vector, curSegIndex);
            }

            // Count segments if we are coalescing. 
            curSegIndex++;
        }

        // Cache the segment count data if room is available.
        if (curMBufIndex < kMBufDataCacheSize) {
            segsPerMBuf[curMBufIndex] = curSegIndex - lastSegCount;
            lastSegCount = curSegIndex;
        }

        // Move on to next imcoming mbuf
        curMBufIndex++;
        m = mbuf_next(m);
    } while (m);

    // If we finished cleanly return number of segments found
    if (curSegIndex <= maxSegs)
        return curSegIndex;
    if (!doCoalesce)
        return 0;   // if !coalescing we've got a problem.

    // If we are coalescing and it is possible then attempt coalesce, 
    if (!doneCoalesce
    &&  (UInt) mbuf_pkthdr_len(packet) <= maxSegs * maxSegmentSize) {
        // Hmm, we have to do some coalescing.
        bool analysisRet;
            
        analysisRet = analyseSegments(packet,
                                      MIN(curMBufIndex, kMBufDataCacheSize),
                                      segsPerMBuf,
                                      curSegIndex, maxSegs);
        if (analysisRet) {
            doneCoalesce = true;
            coalesceCount++;
            goto tryAgain;
        }
    }

    assert(!doneCoalesce);  // Problem in Coalesce code.
    packetTooBigErrors++;
    return 0;
}