コード例 #1
0
/*
 *	Routine:	cpu_machine_init
 *	Function:
 */
void
cpu_machine_init(
	void)
{
	struct per_proc_info			*proc_info;
	volatile struct per_proc_info	*mproc_info;


	proc_info = getPerProc();
	mproc_info = PerProcTable[master_cpu].ppe_vaddr;

	if (proc_info != mproc_info) {
		simple_lock(&rht_lock);
		if (rht_state & RHT_WAIT)
			thread_wakeup(&rht_state);
		rht_state &= ~(RHT_BUSY|RHT_WAIT);
		simple_unlock(&rht_lock);
	}

	PE_cpu_machine_init(proc_info->cpu_id, !(proc_info->cpu_flags & BootDone));

	if (proc_info->hibernate) {
		uint32_t	tbu, tbl;

		do {
			tbu = mftbu();
			tbl = mftb();
		} while (mftbu() != tbu);

	    proc_info->hibernate = 0;
	    hibernate_machine_init();

		// hibernate_machine_init() could take minutes and we don't want timeouts
		// to fire as soon as scheduling starts. Reset timebase so it appears
		// no time has elapsed, as it would for regular sleep.
		mttb(0);
		mttbu(tbu);
		mttb(tbl);
	}

	if (proc_info != mproc_info) {
	while (!((mproc_info->cpu_flags) & SignalReady)) 
			continue;
		cpu_sync_timebase();
	}

	ml_init_interrupt();
	if (proc_info != mproc_info)
		simple_lock(&SignalReadyLock);
	proc_info->cpu_flags |= BootDone|SignalReady;
	if (proc_info != mproc_info) {
		if (proc_info->ppXFlags & SignalReadyWait) {
			(void)hw_atomic_and(&proc_info->ppXFlags, ~SignalReadyWait);
			thread_wakeup(&proc_info->cpu_flags);
		}
		simple_unlock(&SignalReadyLock);
		pmsPark();						/* Timers should be cool now, park the power management stepper */
	}
}
コード例 #2
0
ファイル: scheduler.c プロジェクト: michalsc/AROS
/*
 * Task dispatcher. Basically it may be the same one no matter what scheduling algorithm is used
 */
void core_Dispatch(regs_t *regs)
{
    volatile struct ExecBase *SysBase = getSysBase();
    struct Task *task;

    if (SysBase)
    {
    	wrmsr(rdmsr() & ~MSR_EE);

        /*
         * Is the list of ready tasks empty? Well, increment the idle switch cound and halt CPU.
         * It should be extended by some plugin mechanism which would put CPU and whole machine
         * into some more sophisticated sleep states (ACPI?)
         */
        while (IsListEmpty(&SysBase->TaskReady))
        {
//            SysBase->IdleCount++;
            SysBase->AttnResched |= ARF_AttnSwitch;

            //D(bug("[KRN] TaskReady list empty. Sleeping for a while...\n"));
            /* Sleep almost forever ;) */

            wrmsr(rdmsr() | MSR_EE);
            asm volatile("sync");
//            wrmsr(rdmsr() | MSR_POW);
//            asm volatile("isync");

            if (SysBase->SysFlags & SFF_SoftInt)
            {
                core_Cause(SysBase);
            }
        }

        SysBase->DispCount++;

        /* Get the first task from the TaskReady list, and populate it's settings through Sysbase */
        task = (struct Task *)REMHEAD(&SysBase->TaskReady);
        SysBase->ThisTask = task;
        SysBase->Elapsed = SysBase->Quantum;
        SysBase->SysFlags &= ~0x2000;
        task->tc_State = TS_RUN;
        SysBase->IDNestCnt = task->tc_IDNestCnt;

        //D(bug("[KRN] New task = %p (%s)\n", task, task->tc_Node.ln_Name));

        /* Handle tasks's flags */
        if (task->tc_Flags & TF_EXCEPT)
            Exception();

        /* Store the launch time */
        GetIntETask(task)->iet_private1 = mftbu();

        if (task->tc_Flags & TF_LAUNCH)
        {
            AROS_UFC1(void, task->tc_Launch,
                      AROS_UFCA(struct ExecBase *, SysBase, A6));
        }

        /* Restore the task's state */
        regs = task->tc_UnionETask.tc_ETask->et_RegFrame;

        if (SysBase->IDNestCnt < 0)
        	regs->srr1 |= MSR_EE;

        /* Copy the fpu, mmx, xmm state */
#warning FIXME: Change to the lazy saving of the FPU state!!!!
#warning TODO: No FPU support yet!!!!!!! Yay, it sucks! :-D

    }
コード例 #3
0
ファイル: emulate.c プロジェクト: AppEngine/linux-2.6
/* XXX Should probably auto-generate instruction decoding for a particular core
 * from opcode tables in the future. */
int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	u32 inst = vcpu->arch.last_inst;
	u32 ea;
	int ra;
	int rb;
	int rs;
	int rt;
	int sprn;
	enum emulation_result emulated = EMULATE_DONE;
	int advance = 1;

	/* this default type might be overwritten by subcategories */
	kvmppc_set_exit_type(vcpu, EMULATED_INST_EXITS);

	switch (get_op(inst)) {
	case OP_TRAP:
		vcpu->arch.esr |= ESR_PTR;
		kvmppc_core_queue_program(vcpu);
		advance = 0;
		break;

	case 31:
		switch (get_xop(inst)) {

		case OP_31_XOP_LWZX:
			rt = get_rt(inst);
			emulated = kvmppc_handle_load(run, vcpu, rt, 4, 1);
			break;

		case OP_31_XOP_LBZX:
			rt = get_rt(inst);
			emulated = kvmppc_handle_load(run, vcpu, rt, 1, 1);
			break;

		case OP_31_XOP_STWX:
			rs = get_rs(inst);
			emulated = kvmppc_handle_store(run, vcpu,
			                               vcpu->arch.gpr[rs],
			                               4, 1);
			break;

		case OP_31_XOP_STBX:
			rs = get_rs(inst);
			emulated = kvmppc_handle_store(run, vcpu,
			                               vcpu->arch.gpr[rs],
			                               1, 1);
			break;

		case OP_31_XOP_STBUX:
			rs = get_rs(inst);
			ra = get_ra(inst);
			rb = get_rb(inst);

			ea = vcpu->arch.gpr[rb];
			if (ra)
				ea += vcpu->arch.gpr[ra];

			emulated = kvmppc_handle_store(run, vcpu,
			                               vcpu->arch.gpr[rs],
			                               1, 1);
			vcpu->arch.gpr[rs] = ea;
			break;

		case OP_31_XOP_LHZX:
			rt = get_rt(inst);
			emulated = kvmppc_handle_load(run, vcpu, rt, 2, 1);
			break;

		case OP_31_XOP_LHZUX:
			rt = get_rt(inst);
			ra = get_ra(inst);
			rb = get_rb(inst);

			ea = vcpu->arch.gpr[rb];
			if (ra)
				ea += vcpu->arch.gpr[ra];

			emulated = kvmppc_handle_load(run, vcpu, rt, 2, 1);
			vcpu->arch.gpr[ra] = ea;
			break;

		case OP_31_XOP_MFSPR:
			sprn = get_sprn(inst);
			rt = get_rt(inst);

			switch (sprn) {
			case SPRN_SRR0:
				vcpu->arch.gpr[rt] = vcpu->arch.srr0; break;
			case SPRN_SRR1:
				vcpu->arch.gpr[rt] = vcpu->arch.srr1; break;
			case SPRN_PVR:
				vcpu->arch.gpr[rt] = vcpu->arch.pvr; break;

			/* Note: mftb and TBRL/TBWL are user-accessible, so
			 * the guest can always access the real TB anyways.
			 * In fact, we probably will never see these traps. */
			case SPRN_TBWL:
				vcpu->arch.gpr[rt] = mftbl(); break;
			case SPRN_TBWU:
				vcpu->arch.gpr[rt] = mftbu(); break;

			case SPRN_SPRG0:
				vcpu->arch.gpr[rt] = vcpu->arch.sprg0; break;
			case SPRN_SPRG1:
				vcpu->arch.gpr[rt] = vcpu->arch.sprg1; break;
			case SPRN_SPRG2:
				vcpu->arch.gpr[rt] = vcpu->arch.sprg2; break;
			case SPRN_SPRG3:
				vcpu->arch.gpr[rt] = vcpu->arch.sprg3; break;
			/* Note: SPRG4-7 are user-readable, so we don't get
			 * a trap. */

			default:
				emulated = kvmppc_core_emulate_mfspr(vcpu, sprn, rt);
				if (emulated == EMULATE_FAIL) {
					printk("mfspr: unknown spr %x\n", sprn);
					vcpu->arch.gpr[rt] = 0;
				}
				break;
			}
			break;

		case OP_31_XOP_STHX:
			rs = get_rs(inst);
			ra = get_ra(inst);
			rb = get_rb(inst);

			emulated = kvmppc_handle_store(run, vcpu,
			                               vcpu->arch.gpr[rs],
			                               2, 1);
			break;

		case OP_31_XOP_STHUX:
			rs = get_rs(inst);
			ra = get_ra(inst);
			rb = get_rb(inst);

			ea = vcpu->arch.gpr[rb];
			if (ra)
				ea += vcpu->arch.gpr[ra];

			emulated = kvmppc_handle_store(run, vcpu,
			                               vcpu->arch.gpr[rs],
			                               2, 1);
			vcpu->arch.gpr[ra] = ea;
			break;

		case OP_31_XOP_MTSPR:
			sprn = get_sprn(inst);
			rs = get_rs(inst);
			switch (sprn) {
			case SPRN_SRR0:
				vcpu->arch.srr0 = vcpu->arch.gpr[rs]; break;
			case SPRN_SRR1:
				vcpu->arch.srr1 = vcpu->arch.gpr[rs]; break;

			/* XXX We need to context-switch the timebase for
			 * watchdog and FIT. */
			case SPRN_TBWL: break;
			case SPRN_TBWU: break;

			case SPRN_DEC:
				vcpu->arch.dec = vcpu->arch.gpr[rs];
				kvmppc_emulate_dec(vcpu);
				break;

			case SPRN_SPRG0:
				vcpu->arch.sprg0 = vcpu->arch.gpr[rs]; break;
			case SPRN_SPRG1:
				vcpu->arch.sprg1 = vcpu->arch.gpr[rs]; break;
			case SPRN_SPRG2:
				vcpu->arch.sprg2 = vcpu->arch.gpr[rs]; break;
			case SPRN_SPRG3:
				vcpu->arch.sprg3 = vcpu->arch.gpr[rs]; break;

			default:
				emulated = kvmppc_core_emulate_mtspr(vcpu, sprn, rs);
				if (emulated == EMULATE_FAIL)
					printk("mtspr: unknown spr %x\n", sprn);
				break;
			}
			break;

		case OP_31_XOP_DCBI:
			/* Do nothing. The guest is performing dcbi because
			 * hardware DMA is not snooped by the dcache, but
			 * emulated DMA either goes through the dcache as
			 * normal writes, or the host kernel has handled dcache
			 * coherence. */
			break;

		case OP_31_XOP_LWBRX:
			rt = get_rt(inst);
			emulated = kvmppc_handle_load(run, vcpu, rt, 4, 0);
			break;

		case OP_31_XOP_TLBSYNC:
			break;

		case OP_31_XOP_STWBRX:
			rs = get_rs(inst);
			ra = get_ra(inst);
			rb = get_rb(inst);

			emulated = kvmppc_handle_store(run, vcpu,
			                               vcpu->arch.gpr[rs],
			                               4, 0);
			break;

		case OP_31_XOP_LHBRX:
			rt = get_rt(inst);
			emulated = kvmppc_handle_load(run, vcpu, rt, 2, 0);
			break;

		case OP_31_XOP_STHBRX:
			rs = get_rs(inst);
			ra = get_ra(inst);
			rb = get_rb(inst);

			emulated = kvmppc_handle_store(run, vcpu,
			                               vcpu->arch.gpr[rs],
			                               2, 0);
			break;

		default:
			/* Attempt core-specific emulation below. */
			emulated = EMULATE_FAIL;
		}
		break;

	case OP_LWZ:
		rt = get_rt(inst);
		emulated = kvmppc_handle_load(run, vcpu, rt, 4, 1);
		break;

	case OP_LWZU:
		ra = get_ra(inst);
		rt = get_rt(inst);
		emulated = kvmppc_handle_load(run, vcpu, rt, 4, 1);
		vcpu->arch.gpr[ra] = vcpu->arch.paddr_accessed;
		break;

	case OP_LBZ:
		rt = get_rt(inst);
		emulated = kvmppc_handle_load(run, vcpu, rt, 1, 1);
		break;

	case OP_LBZU:
		ra = get_ra(inst);
		rt = get_rt(inst);
		emulated = kvmppc_handle_load(run, vcpu, rt, 1, 1);
		vcpu->arch.gpr[ra] = vcpu->arch.paddr_accessed;
		break;

	case OP_STW:
		rs = get_rs(inst);
		emulated = kvmppc_handle_store(run, vcpu, vcpu->arch.gpr[rs],
		                               4, 1);
		break;

	case OP_STWU:
		ra = get_ra(inst);
		rs = get_rs(inst);
		emulated = kvmppc_handle_store(run, vcpu, vcpu->arch.gpr[rs],
		                               4, 1);
		vcpu->arch.gpr[ra] = vcpu->arch.paddr_accessed;
		break;

	case OP_STB:
		rs = get_rs(inst);
		emulated = kvmppc_handle_store(run, vcpu, vcpu->arch.gpr[rs],
		                               1, 1);
		break;

	case OP_STBU:
		ra = get_ra(inst);
		rs = get_rs(inst);
		emulated = kvmppc_handle_store(run, vcpu, vcpu->arch.gpr[rs],
		                               1, 1);
		vcpu->arch.gpr[ra] = vcpu->arch.paddr_accessed;
		break;

	case OP_LHZ:
		rt = get_rt(inst);
		emulated = kvmppc_handle_load(run, vcpu, rt, 2, 1);
		break;

	case OP_LHZU:
		ra = get_ra(inst);
		rt = get_rt(inst);
		emulated = kvmppc_handle_load(run, vcpu, rt, 2, 1);
		vcpu->arch.gpr[ra] = vcpu->arch.paddr_accessed;
		break;

	case OP_STH:
		rs = get_rs(inst);
		emulated = kvmppc_handle_store(run, vcpu, vcpu->arch.gpr[rs],
		                               2, 1);
		break;

	case OP_STHU:
		ra = get_ra(inst);
		rs = get_rs(inst);
		emulated = kvmppc_handle_store(run, vcpu, vcpu->arch.gpr[rs],
		                               2, 1);
		vcpu->arch.gpr[ra] = vcpu->arch.paddr_accessed;
		break;

	default:
		emulated = EMULATE_FAIL;
	}

	if (emulated == EMULATE_FAIL) {
		emulated = kvmppc_core_emulate_op(run, vcpu, inst, &advance);
		if (emulated == EMULATE_FAIL) {
			advance = 0;
			printk(KERN_ERR "Couldn't emulate instruction 0x%08x "
			       "(op %d xop %d)\n", inst, get_op(inst), get_xop(inst));
		}
	}

	KVMTRACE_3D(PPC_INSTR, vcpu, inst, (int)vcpu->arch.pc, emulated, entryexit);

	if (advance)
		vcpu->arch.pc += 4; /* Advance past emulated instruction. */

	return emulated;
}