コード例 #1
0
ファイル: level.cpp プロジェクト: pazthor/lean
level mk_max(buffer<level> const & args) {
    lean_assert(!args.empty());
    unsigned nargs = args.size();
    if (nargs == 1) {
        return args[0];
    } else {
        lean_assert(nargs >= 2);
        level r = mk_max(args[nargs-2], args[nargs-1]);
        unsigned i = nargs-2;
        while (i > 0) {
            --i;
            r = mk_max(args[i], r);
        }
        return r;
    }
}
コード例 #2
0
ファイル: level.cpp プロジェクト: pazthor/lean
level update_max(level const & l, level const & new_lhs, level const & new_rhs) {
    if (is_eqp(to_max_core(l).m_lhs, new_lhs) && is_eqp(to_max_core(l).m_rhs, new_rhs))
        return l;
    else if (is_max(l))
        return mk_max(new_lhs, new_rhs);
    else
        return mk_imax(new_lhs, new_rhs);
}
コード例 #3
0
ファイル: level.cpp プロジェクト: pazthor/lean
level mk_imax(level const & l1, level const & l2) {
    if (is_not_zero(l2))
        return mk_max(l1, l2);
    else if (is_zero(l2))
        return l2;  // imax u 0 = 0  for any u
    else if (is_zero(l1))
        return l2;  // imax 0 u = u  for any u
    else if (l1 == l2)
        return l1;  // imax u u = u
    else
        return cache(level(new level_max_core(true,  l1, l2)));
}
コード例 #4
0
br_status float_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
    br_status st = BR_FAILED;
    SASSERT(f->get_family_id() == get_fid());
    switch (f->get_decl_kind()) {
    case OP_TO_FLOAT:        st = mk_to_fp(f, num_args, args, result); break;
    case OP_FLOAT_ADD:       SASSERT(num_args == 3); st = mk_add(args[0], args[1], args[2], result); break;
    case OP_FLOAT_SUB:       SASSERT(num_args == 3); st = mk_sub(args[0], args[1], args[2], result); break;
    case OP_FLOAT_NEG:       SASSERT(num_args == 1); st = mk_neg(args[0], result); break;
    case OP_FLOAT_MUL:       SASSERT(num_args == 3); st = mk_mul(args[0], args[1], args[2], result); break;
    case OP_FLOAT_DIV:       SASSERT(num_args == 3); st = mk_div(args[0], args[1], args[2], result); break;
    case OP_FLOAT_REM:       SASSERT(num_args == 2); st = mk_rem(args[0], args[1], result); break;
    case OP_FLOAT_ABS:       SASSERT(num_args == 1); st = mk_abs(args[0], result); break;
    case OP_FLOAT_MIN:       SASSERT(num_args == 2); st = mk_min(args[0], args[1], result); break;
    case OP_FLOAT_MAX:       SASSERT(num_args == 2); st = mk_max(args[0], args[1], result); break;
    case OP_FLOAT_FMA:       SASSERT(num_args == 4); st = mk_fma(args[0], args[1], args[2], args[3], result); break;
    case OP_FLOAT_SQRT:      SASSERT(num_args == 2); st = mk_sqrt(args[0], args[1], result); break;
    case OP_FLOAT_ROUND_TO_INTEGRAL: SASSERT(num_args == 2); st = mk_round(args[0], args[1], result); break;

    case OP_FLOAT_EQ:        SASSERT(num_args == 2); st = mk_float_eq(args[0], args[1], result); break; 
    case OP_FLOAT_LT:        SASSERT(num_args == 2); st = mk_lt(args[0], args[1], result); break;
    case OP_FLOAT_GT:        SASSERT(num_args == 2); st = mk_gt(args[0], args[1], result); break;
    case OP_FLOAT_LE:        SASSERT(num_args == 2); st = mk_le(args[0], args[1], result); break;
    case OP_FLOAT_GE:        SASSERT(num_args == 2); st = mk_ge(args[0], args[1], result); break;
    case OP_FLOAT_IS_ZERO:   SASSERT(num_args == 1); st = mk_is_zero(args[0], result); break;
    case OP_FLOAT_IS_NZERO:  SASSERT(num_args == 1); st = mk_is_nzero(args[0], result); break;
    case OP_FLOAT_IS_PZERO:  SASSERT(num_args == 1); st = mk_is_pzero(args[0], result); break;
    case OP_FLOAT_IS_NAN:    SASSERT(num_args == 1); st = mk_is_nan(args[0], result); break;
    case OP_FLOAT_IS_INF:    SASSERT(num_args == 1); st = mk_is_inf(args[0], result); break;
    case OP_FLOAT_IS_NORMAL: SASSERT(num_args == 1); st = mk_is_normal(args[0], result); break;
    case OP_FLOAT_IS_SUBNORMAL: SASSERT(num_args == 1); st = mk_is_subnormal(args[0], result); break;
    case OP_FLOAT_IS_NEGATIVE: SASSERT(num_args == 1); st = mk_is_negative(args[0], result); break;
    case OP_FLOAT_IS_POSITIVE: SASSERT(num_args == 1); st = mk_is_positive(args[0], result); break;
    case OP_FLOAT_TO_IEEE_BV: SASSERT(num_args == 1); st = mk_to_ieee_bv(args[0], result); break;
    case OP_FLOAT_FP:        SASSERT(num_args == 3); st = mk_fp(args[0], args[1], args[2], result); break;
    case OP_FLOAT_TO_UBV:    SASSERT(num_args == 2); st = mk_to_ubv(args[0], args[1], result); break;
    case OP_FLOAT_TO_SBV:    SASSERT(num_args == 2); st = mk_to_sbv(args[0], args[1], result); break;
    case OP_FLOAT_TO_REAL:   SASSERT(num_args == 1); st = mk_to_real(args[0], result); break;
    }
    return st;
}
コード例 #5
0
ファイル: brec_on.cpp プロジェクト: fgdorais/lean
static environment mk_below(environment const & env, name const & n, bool ibelow) {
    if (!is_recursive_datatype(env, n))
        return env;
    if (is_inductive_predicate(env, n))
        return env;
    inductive::inductive_decls decls = *inductive::is_inductive_decl(env, n);
    type_checker tc(env);
    name_generator ngen;
    unsigned nparams       = std::get<1>(decls);
    declaration ind_decl   = env.get(n);
    declaration rec_decl   = env.get(inductive::get_elim_name(n));
    unsigned nindices      = *inductive::get_num_indices(env, n);
    unsigned nminors       = *inductive::get_num_minor_premises(env, n);
    unsigned ntypeformers  = length(std::get<2>(decls));
    level_param_names lps  = rec_decl.get_univ_params();
    bool is_reflexive      = is_reflexive_datatype(tc, n);
    level  lvl             = mk_param_univ(head(lps));
    levels lvls            = param_names_to_levels(tail(lps));
    level_param_names blvls; // universe level parameters of ibelow/below
    level  rlvl;  // universe level of the resultant type
    // The arguments of below (ibelow) are the ones in the recursor - minor premises.
    // The universe we map to is also different (l+1 for below of reflexive types) and (0 fo ibelow).
    expr ref_type;
    expr Type_result;
    if (ibelow) {
        // we are eliminating to Prop
        blvls      = tail(lps);
        rlvl       = mk_level_zero();
        ref_type   = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_level_zero());
    } else if (is_reflexive) {
        blvls = lps;
        rlvl  = get_datatype_level(ind_decl.get_type());
        // if rlvl is of the form (max 1 l), then rlvl <- l
        if (is_max(rlvl) && is_one(max_lhs(rlvl)))
            rlvl = max_rhs(rlvl);
        rlvl       = mk_max(mk_succ(lvl), rlvl);
        ref_type   = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_succ(lvl));
    } else {
        // we can simplify the universe levels for non-reflexive datatypes
        blvls       = lps;
        rlvl        = mk_max(mk_level_one(), lvl);
        ref_type    = rec_decl.get_type();
    }
    Type_result        = mk_sort(rlvl);
    buffer<expr> ref_args;
    to_telescope(ngen, ref_type, ref_args);
    if (ref_args.size() != nparams + ntypeformers + nminors + nindices + 1)
        throw_corrupted(n);

    // args contains the below/ibelow arguments
    buffer<expr> args;
    buffer<name> typeformer_names;
    // add parameters and typeformers
    for (unsigned i = 0; i < nparams; i++)
        args.push_back(ref_args[i]);
    for (unsigned i = nparams; i < nparams + ntypeformers; i++) {
        args.push_back(ref_args[i]);
        typeformer_names.push_back(mlocal_name(ref_args[i]));
    }
    // we ignore minor premises in below/ibelow
    for (unsigned i = nparams + ntypeformers + nminors; i < ref_args.size(); i++)
        args.push_back(ref_args[i]);

    // We define below/ibelow using the recursor for this type
    levels rec_lvls       = cons(mk_succ(rlvl), lvls);
    expr rec              = mk_constant(rec_decl.get_name(), rec_lvls);
    for (unsigned i = 0; i < nparams; i++)
        rec = mk_app(rec, args[i]);
    // add type formers
    for (unsigned i = nparams; i < nparams + ntypeformers; i++) {
        buffer<expr> targs;
        to_telescope(ngen, mlocal_type(args[i]), targs);
        rec = mk_app(rec, Fun(targs, Type_result));
    }
    // add minor premises
    for (unsigned i = nparams + ntypeformers; i < nparams + ntypeformers + nminors; i++) {
        expr minor = ref_args[i];
        expr minor_type = mlocal_type(minor);
        buffer<expr> minor_args;
        minor_type = to_telescope(ngen, minor_type, minor_args);
        buffer<expr> prod_pairs;
        for (expr & minor_arg : minor_args) {
            buffer<expr> minor_arg_args;
            expr minor_arg_type = to_telescope(tc, mlocal_type(minor_arg), minor_arg_args);
            if (is_typeformer_app(typeformer_names, minor_arg_type)) {
                expr fst  = mlocal_type(minor_arg);
                minor_arg = update_mlocal(minor_arg, Pi(minor_arg_args, Type_result));
                expr snd = Pi(minor_arg_args, mk_app(minor_arg, minor_arg_args));
                prod_pairs.push_back(mk_prod(tc, fst, snd, ibelow));
            }
        }
        expr new_arg = foldr([&](expr const & a, expr const & b) { return mk_prod(tc, a, b, ibelow); },
                             [&]() { return mk_unit(rlvl, ibelow); },
                             prod_pairs.size(), prod_pairs.data());
        rec = mk_app(rec, Fun(minor_args, new_arg));
    }

    // add indices and major premise
    for (unsigned i = nparams + ntypeformers; i < args.size(); i++) {
        rec = mk_app(rec, args[i]);
    }

    name below_name  = ibelow ? name{n, "ibelow"} : name{n, "below"};
    expr below_type  = Pi(args, Type_result);
    expr below_value = Fun(args, rec);

    bool use_conv_opt = true;
    declaration new_d = mk_definition(env, below_name, blvls, below_type, below_value,
                                      use_conv_opt);
    environment new_env = module::add(env, check(env, new_d));
    new_env = set_reducible(new_env, below_name, reducible_status::Reducible);
    if (!ibelow)
        new_env = add_unfold_hint(new_env, below_name, nparams + nindices + ntypeformers);
    return add_protected(new_env, below_name);
}
コード例 #6
0
ファイル: brec_on.cpp プロジェクト: fgdorais/lean
static environment mk_brec_on(environment const & env, name const & n, bool ind) {
    if (!is_recursive_datatype(env, n))
        return env;
    if (is_inductive_predicate(env, n))
        return env;
    inductive::inductive_decls decls = *inductive::is_inductive_decl(env, n);
    type_checker tc(env);
    name_generator ngen;
    unsigned nparams       = std::get<1>(decls);
    declaration ind_decl   = env.get(n);
    declaration rec_decl   = env.get(inductive::get_elim_name(n));
    // declaration below_decl = env.get(name(n, ind ? "ibelow" : "below"));
    unsigned nindices      = *inductive::get_num_indices(env, n);
    unsigned nminors       = *inductive::get_num_minor_premises(env, n);
    unsigned ntypeformers  = length(std::get<2>(decls));
    level_param_names lps  = rec_decl.get_univ_params();
    bool is_reflexive      = is_reflexive_datatype(tc, n);
    level  lvl             = mk_param_univ(head(lps));
    levels lvls            = param_names_to_levels(tail(lps));
    level rlvl;
    level_param_names blps;
    levels blvls; // universe level parameters of brec_on/binduction_on
    // The arguments of brec_on (binduction_on) are the ones in the recursor - minor premises.
    // The universe we map to is also different (l+1 for below of reflexive types) and (0 fo ibelow).
    expr ref_type;
    if (ind) {
        // we are eliminating to Prop
        blps       = tail(lps);
        blvls      = lvls;
        rlvl       = mk_level_zero();
        ref_type   = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_level_zero());
    } else if (is_reflexive) {
        blps    = lps;
        blvls   = cons(lvl, lvls);
        rlvl    = get_datatype_level(ind_decl.get_type());
        // if rlvl is of the form (max 1 l), then rlvl <- l
        if (is_max(rlvl) && is_one(max_lhs(rlvl)))
            rlvl = max_rhs(rlvl);
        rlvl       = mk_max(mk_succ(lvl), rlvl);
        // inner_prod, inner_prod_intro, pr1, pr2 do not use the same universe levels for
        // reflective datatypes.
        ref_type   = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_succ(lvl));
    } else {
        // we can simplify the universe levels for non-reflexive datatypes
        blps        = lps;
        blvls       = cons(lvl, lvls);
        rlvl        = mk_max(mk_level_one(), lvl);
        ref_type    = rec_decl.get_type();
    }
    buffer<expr> ref_args;
    to_telescope(ngen, ref_type, ref_args);
    if (ref_args.size() != nparams + ntypeformers + nminors + nindices + 1)
        throw_corrupted(n);

    // args contains the brec_on/binduction_on arguments
    buffer<expr> args;
    buffer<name> typeformer_names;
    // add parameters and typeformers
    for (unsigned i = 0; i < nparams; i++)
        args.push_back(ref_args[i]);
    for (unsigned i = nparams; i < nparams + ntypeformers; i++) {
        args.push_back(ref_args[i]);
        typeformer_names.push_back(mlocal_name(ref_args[i]));
    }
    // add indices and major premise
    for (unsigned i = nparams + ntypeformers + nminors; i < ref_args.size(); i++)
        args.push_back(ref_args[i]);
    // create below terms (one per datatype)
    //    (below.{lvls} params type-formers)
    // Remark: it also creates the result type
    buffer<expr> belows;
    expr result_type;
    unsigned k = 0;
    for (auto const & decl : std::get<2>(decls)) {
        name const & n1 = inductive::inductive_decl_name(decl);
        if (n1 == n) {
            result_type = ref_args[nparams + k];
            for (unsigned i = nparams + ntypeformers + nminors; i < ref_args.size(); i++)
                result_type = mk_app(result_type, ref_args[i]);
        }
        k++;
        name bname = name(n1, ind ? "ibelow" : "below");
        expr below = mk_constant(bname, blvls);
        for (unsigned i = 0; i < nparams; i++)
            below = mk_app(below, ref_args[i]);
        for (unsigned i = nparams; i < nparams + ntypeformers; i++)
            below = mk_app(below, ref_args[i]);
        belows.push_back(below);
    }
    // create functionals (one for each type former)
    //     Pi idxs t, below idxs t -> C idxs t
    buffer<expr> Fs;
    name F_name("F");
    for (unsigned i = nparams, j = 0; i < nparams + ntypeformers; i++, j++) {
        expr const & C = ref_args[i];
        buffer<expr> F_args;
        to_telescope(ngen, mlocal_type(C), F_args);
        expr F_result = mk_app(C, F_args);
        expr F_below  = mk_app(belows[j], F_args);
        F_args.push_back(mk_local(ngen.next(), "f", F_below, binder_info()));
        expr F_type   = Pi(F_args, F_result);
        expr F        = mk_local(ngen.next(), F_name.append_after(j+1), F_type, binder_info());
        Fs.push_back(F);
        args.push_back(F);
    }

    // We define brec_on/binduction_on using the recursor for this type
    levels rec_lvls       = cons(rlvl, lvls);
    expr rec              = mk_constant(rec_decl.get_name(), rec_lvls);
    // add parameters to rec
    for (unsigned i = 0; i < nparams; i++)
        rec = mk_app(rec, ref_args[i]);
    // add type formers to rec
    //     Pi indices t, prod (C ... t) (below ... t)
    for (unsigned i = nparams, j = 0; i < nparams + ntypeformers; i++, j++) {
        expr const & C = ref_args[i];
        buffer<expr> C_args;
        to_telescope(ngen, mlocal_type(C), C_args);
        expr C_t     = mk_app(C, C_args);
        expr below_t = mk_app(belows[j], C_args);
        expr prod    = mk_prod(tc, C_t, below_t, ind);
        rec = mk_app(rec, Fun(C_args, prod));
    }
    // add minor premises to rec
    for (unsigned i = nparams + ntypeformers, j = 0; i < nparams + ntypeformers + nminors; i++, j++) {
        expr minor = ref_args[i];
        expr minor_type = mlocal_type(minor);
        buffer<expr> minor_args;
        minor_type = to_telescope(ngen, minor_type, minor_args);
        buffer<expr> pairs;
        for (expr & minor_arg : minor_args) {
            buffer<expr> minor_arg_args;
            expr minor_arg_type = to_telescope(tc, mlocal_type(minor_arg), minor_arg_args);
            if (auto k = is_typeformer_app(typeformer_names, minor_arg_type)) {
                buffer<expr> C_args;
                get_app_args(minor_arg_type, C_args);
                expr new_minor_arg_type = mk_prod(tc, minor_arg_type, mk_app(belows[*k], C_args), ind);
                minor_arg = update_mlocal(minor_arg, Pi(minor_arg_args, new_minor_arg_type));
                if (minor_arg_args.empty()) {
                    pairs.push_back(minor_arg);
                } else {
                    expr r = mk_app(minor_arg, minor_arg_args);
                    expr r_1 = Fun(minor_arg_args, mk_pr1(tc, r, ind));
                    expr r_2 = Fun(minor_arg_args, mk_pr2(tc, r, ind));
                    pairs.push_back(mk_pair(tc, r_1, r_2, ind));
                }
            }
        }
        expr b = foldr([&](expr const & a, expr const & b) { return mk_pair(tc, a, b, ind); },
                       [&]() { return mk_unit_mk(rlvl, ind); },
                       pairs.size(), pairs.data());
        unsigned F_idx = *is_typeformer_app(typeformer_names, minor_type);
        expr F = Fs[F_idx];
        buffer<expr> F_args;
        get_app_args(minor_type, F_args);
        F_args.push_back(b);
        expr new_arg = mk_pair(tc, mk_app(F, F_args), b, ind);
        rec = mk_app(rec, Fun(minor_args, new_arg));
    }
    // add indices and major to rec
    for (unsigned i = nparams + ntypeformers + nminors; i < ref_args.size(); i++)
        rec = mk_app(rec, ref_args[i]);


    name brec_on_name  = name(n, ind ? "binduction_on" : "brec_on");
    expr brec_on_type  = Pi(args, result_type);
    expr brec_on_value = Fun(args, mk_pr1(tc, rec, ind));

    bool use_conv_opt = true;
    declaration new_d = mk_definition(env, brec_on_name, blps, brec_on_type, brec_on_value,
                                      use_conv_opt);
    environment new_env = module::add(env, check(env, new_d));
    new_env = set_reducible(new_env, brec_on_name, reducible_status::Reducible);
    if (!ind)
        new_env = add_unfold_hint(new_env, brec_on_name, nparams + nindices + ntypeformers);
    return add_protected(new_env, brec_on_name);
}
コード例 #7
0
ファイル: fpa_rewriter.cpp プロジェクト: chubbymaggie/angr-z3
br_status fpa_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
    br_status st = BR_FAILED;
    SASSERT(f->get_family_id() == get_fid());
    fpa_op_kind k = (fpa_op_kind)f->get_decl_kind();
    switch (k) {
    case OP_FPA_RM_NEAREST_TIES_TO_EVEN:
    case OP_FPA_RM_NEAREST_TIES_TO_AWAY:
    case OP_FPA_RM_TOWARD_POSITIVE:
    case OP_FPA_RM_TOWARD_NEGATIVE:
    case OP_FPA_RM_TOWARD_ZERO:
        SASSERT(num_args == 0); result = m().mk_app(f, (expr * const *)0); st = BR_DONE; break;

    case OP_FPA_PLUS_INF:
    case OP_FPA_MINUS_INF:
    case OP_FPA_NAN:
    case OP_FPA_PLUS_ZERO:
    case OP_FPA_MINUS_ZERO:
        SASSERT(num_args == 0); result = m().mk_app(f, (expr * const *)0); st = BR_DONE; break;

    case OP_FPA_NUM:
        SASSERT(num_args == 0); result = m().mk_app(f, (expr * const *)0); st = BR_DONE; break;

    case OP_FPA_ADD:       SASSERT(num_args == 3); st = mk_add(args[0], args[1], args[2], result); break;
    case OP_FPA_SUB:       SASSERT(num_args == 3); st = mk_sub(args[0], args[1], args[2], result); break;
    case OP_FPA_NEG:       SASSERT(num_args == 1); st = mk_neg(args[0], result); break;
    case OP_FPA_MUL:       SASSERT(num_args == 3); st = mk_mul(args[0], args[1], args[2], result); break;
    case OP_FPA_DIV:       SASSERT(num_args == 3); st = mk_div(args[0], args[1], args[2], result); break;
    case OP_FPA_REM:       SASSERT(num_args == 2); st = mk_rem(args[0], args[1], result); break;
    case OP_FPA_ABS:       SASSERT(num_args == 1); st = mk_abs(args[0], result); break;
    case OP_FPA_MIN:       SASSERT(num_args == 2); st = mk_min(args[0], args[1], result); break;
    case OP_FPA_MAX:       SASSERT(num_args == 2); st = mk_max(args[0], args[1], result); break;
    case OP_FPA_FMA:       SASSERT(num_args == 4); st = mk_fma(args[0], args[1], args[2], args[3], result); break;
    case OP_FPA_SQRT:      SASSERT(num_args == 2); st = mk_sqrt(args[0], args[1], result); break;
    case OP_FPA_ROUND_TO_INTEGRAL: SASSERT(num_args == 2); st = mk_round_to_integral(args[0], args[1], result); break;

    case OP_FPA_EQ:        SASSERT(num_args == 2); st = mk_float_eq(args[0], args[1], result); break;
    case OP_FPA_LT:        SASSERT(num_args == 2); st = mk_lt(args[0], args[1], result); break;
    case OP_FPA_GT:        SASSERT(num_args == 2); st = mk_gt(args[0], args[1], result); break;
    case OP_FPA_LE:        SASSERT(num_args == 2); st = mk_le(args[0], args[1], result); break;
    case OP_FPA_GE:        SASSERT(num_args == 2); st = mk_ge(args[0], args[1], result); break;
    case OP_FPA_IS_ZERO:   SASSERT(num_args == 1); st = mk_is_zero(args[0], result); break;
    case OP_FPA_IS_NAN:    SASSERT(num_args == 1); st = mk_is_nan(args[0], result); break;
    case OP_FPA_IS_INF:    SASSERT(num_args == 1); st = mk_is_inf(args[0], result); break;
    case OP_FPA_IS_NORMAL: SASSERT(num_args == 1); st = mk_is_normal(args[0], result); break;
    case OP_FPA_IS_SUBNORMAL: SASSERT(num_args == 1); st = mk_is_subnormal(args[0], result); break;
    case OP_FPA_IS_NEGATIVE: SASSERT(num_args == 1); st = mk_is_negative(args[0], result); break;
    case OP_FPA_IS_POSITIVE: SASSERT(num_args == 1); st = mk_is_positive(args[0], result); break;

    case OP_FPA_FP:        SASSERT(num_args == 3); st = mk_fp(args[0], args[1], args[2], result); break;
    case OP_FPA_TO_FP:     st = mk_to_fp(f, num_args, args, result); break;
    case OP_FPA_TO_FP_UNSIGNED: SASSERT(num_args == 2); st = mk_to_fp_unsigned(f, args[0], args[1], result); break;
    case OP_FPA_TO_UBV:    SASSERT(num_args == 2); st = mk_to_ubv(f, args[0], args[1], result); break;
    case OP_FPA_TO_SBV:    SASSERT(num_args == 2); st = mk_to_sbv(f, args[0], args[1], result); break;
    case OP_FPA_TO_IEEE_BV: SASSERT(num_args == 1); st = mk_to_ieee_bv(f, args[0], result); break;
    case OP_FPA_TO_REAL:   SASSERT(num_args == 1); st = mk_to_real(args[0], result); break;

    case OP_FPA_INTERNAL_MIN_I:
    case OP_FPA_INTERNAL_MAX_I:
    case OP_FPA_INTERNAL_MIN_UNSPECIFIED:
    case OP_FPA_INTERNAL_MAX_UNSPECIFIED:
        SASSERT(num_args == 2); st = BR_FAILED; break;

    case OP_FPA_INTERNAL_RM:
        SASSERT(num_args == 1); st = mk_rm(args[0], result); break;
    case OP_FPA_INTERNAL_TO_UBV_UNSPECIFIED:
        SASSERT(num_args == 0); st = mk_to_ubv_unspecified(f, result); break;
    case OP_FPA_INTERNAL_TO_SBV_UNSPECIFIED:
        SASSERT(num_args == 0); st = mk_to_sbv_unspecified(f, result); break;
    case OP_FPA_INTERNAL_TO_REAL_UNSPECIFIED:
        SASSERT(num_args == 0); st = mk_to_real_unspecified(result); break;

    case OP_FPA_INTERNAL_BVWRAP:
    case OP_FPA_INTERNAL_BVUNWRAP:
        st = BR_FAILED;
        break;

    default:
        NOT_IMPLEMENTED_YET();
    }
    return st;
}
コード例 #8
0
ファイル: env.c プロジェクト: eigengrau/lean
void test_inductive() {
    // declare list type
    lean_exception ex = 0;
    lean_env env         = mk_env();
    lean_name l_name     = mk_name("l");
    lean_univ l          = mk_uparam("l");
    lean_univ one        = mk_one();
    lean_univ m1l        = mk_max(one, l);
    lean_expr Typel      = mk_sort(l);
    lean_expr Typem1l    = mk_sort(m1l);
    lean_expr list_type  = mk_pi("A", Typel, Typem1l);
    lean_name list_name  = mk_name("list");
    lean_expr list       = mk_const("list", l);
    lean_expr v0         = mk_var(0);
    // nil : Pi (A : Type.{l}), list.{l} A
    lean_expr list_v0    = mk_app(list, v0);
    lean_expr nil_type   = mk_pi("A", Typel, list_v0);
    lean_expr nil        = mk_local("nil", nil_type);
    // cons : Pi (A : Type.{l}), A -> list.{l} A -> list.{l} A
    lean_expr v1         = mk_var(1);
    lean_expr v2         = mk_var(2);
    lean_expr list_v2    = mk_app(list, v2);
    lean_expr list_v1    = mk_app(list, v1);
    lean_expr cons_type1 = mk_pi("tail", list_v1, list_v2);
    lean_expr cons_type2 = mk_pi("head", v0, cons_type1);
    lean_expr cons_type  = mk_pi("A", Typel, cons_type2);
    lean_expr cons       = mk_local("cons", cons_type);
    //
    lean_list_expr cs1, cs2, list_cs;
    lean_inductive_type list_ind_type;
    lean_list_inductive_type li1, list_ind_types;
    lean_list_name ls1, ls;
    lean_inductive_decl list_decl;
    lean_env new_env;

    check(lean_list_name_mk_nil(&ls1, &ex));
    check(lean_list_name_mk_cons(l_name, ls1, &ls, &ex));

    check(lean_list_expr_mk_nil(&cs1, &ex));
    check(lean_list_expr_mk_cons(nil,  cs1, &cs2, &ex));
    check(lean_list_expr_mk_cons(cons, cs2, &list_cs, &ex));

    check(lean_inductive_type_mk(list_name, list_type, list_cs, &list_ind_type, &ex));

    check(lean_list_inductive_type_mk_nil(&li1, &ex));
    check(lean_list_inductive_type_mk_cons(list_ind_type, li1, &list_ind_types, &ex));

    check(lean_inductive_decl_mk(ls, 1, list_ind_types, &list_decl, &ex));

    check(lean_env_add_inductive(env, list_decl, &new_env, &ex));

    {
        unsigned n;
        lean_inductive_decl d;
        lean_name cons_name = mk_name("cons");
        lean_name r_name;
        lean_list_inductive_type types;
        check(lean_env_get_inductive_type_num_indices(new_env, list_name, &n, &ex) && n == 0);
        check(lean_env_get_inductive_type_num_minor_premises(new_env, list_name, &n, &ex) && n == 2);
        check(!lean_env_is_inductive_type(env, list_name, &d, &ex));
        check(lean_env_is_inductive_type(new_env, list_name, &d, &ex));
        check(lean_inductive_decl_get_num_params(d, &n, &ex) && n == 1);
        check(lean_inductive_decl_get_types(d, &types, &ex));
        check(lean_list_inductive_type_is_cons(types));
        check(lean_env_is_constructor(new_env, cons_name, &r_name, &ex) && lean_name_eq(list_name, r_name));
        lean_inductive_decl_del(d);
        lean_name_del(cons_name);
        lean_name_del(r_name);
    }

    lean_env_del(env);
    lean_name_del(list_name);
    lean_name_del(l_name);
    lean_univ_del(l);
    lean_univ_del(one);
    lean_univ_del(m1l);
    lean_expr_del(Typel);
    lean_expr_del(Typem1l);
    lean_expr_del(list_type);
    lean_expr_del(list);
    lean_expr_del(v0);
    lean_expr_del(list_v0);
    lean_expr_del(nil_type);
    lean_expr_del(nil);
    lean_expr_del(v1);
    lean_expr_del(v2);
    lean_expr_del(list_v2);
    lean_expr_del(list_v1);
    lean_expr_del(cons_type1);
    lean_expr_del(cons_type2);
    lean_expr_del(cons_type);
    lean_expr_del(cons);
    lean_list_expr_del(cs1);
    lean_list_expr_del(cs2);
    lean_list_expr_del(list_cs);
    lean_inductive_type_del(list_ind_type);
    lean_list_inductive_type_del(li1);
    lean_list_inductive_type_del(list_ind_types);
    lean_list_name_del(ls1);
    lean_list_name_del(ls);
    lean_inductive_decl_del(list_decl);
    lean_env_del(new_env);
}
コード例 #9
0
ファイル: vm_level.cpp プロジェクト: soonhokong/lean-osx
vm_obj level_max(vm_obj const & o1, vm_obj const & o2) {
    return to_obj(mk_max(to_level(o1), to_level(o2)));
}
コード例 #10
0
ファイル: no_overflow.cpp プロジェクト: CHolmes3/z3
    unsigned sz = is_signed ? bvsize - 1 : bvsize;
    rational max_bound = power(rational(2), sz);
    --max_bound;
    return Z3_mk_numeral(ctx, max_bound.to_string().c_str(), bv);
}

void test_add(unsigned bvsize, bool is_signed) {

    TRACE("no_overflow", tout << "test_add: bvsize = " << bvsize << ", is_signed = " << is_signed << "\n";);

    Z3_config cfg = Z3_mk_config();
    Z3_context ctx = Z3_mk_context(cfg);
    Z3_sort bv = Z3_mk_bv_sort(ctx, bvsize);

    Z3_ast min = mk_min(ctx, bv, is_signed);
    Z3_ast max = mk_max(ctx, bv, is_signed);
    Z3_ast t1;
    Z3_ast t2;
    Z3_ast test_ovfl;
    Z3_ast test_udfl;

    t1 = Z3_mk_const(ctx, Z3_mk_string_symbol(ctx,"x"), bv);
    t2 = Z3_mk_const(ctx, Z3_mk_string_symbol(ctx,"y"), bv);
    test_ovfl = Z3_mk_bvadd_no_overflow(ctx, t1, t2, is_signed);
    test_udfl = is_signed ? Z3_mk_bvadd_no_underflow(ctx, t1, t2) : NULL;

    Z3_push(ctx);
    Z3_assert_cnstr(ctx, Z3_mk_eq(ctx, t1, Z3_mk_numeral(ctx, "0", bv)));
    Z3_assert_cnstr(ctx, Z3_mk_eq(ctx, t2, Z3_mk_numeral(ctx, "1", bv)));
    TEST_NO_OVERFLOW;
    TEST_NO_UNDERFLOW;
コード例 #11
0
ファイル: level.cpp プロジェクト: pazthor/lean
level normalize(level const & l) {
    auto p = to_offset(l);
    level const & r = p.first;
    switch (kind(r)) {
    case level_kind::Succ:
        lean_unreachable(); // LCOV_EXCL_LINE
    case level_kind::Zero:   case level_kind::Param:
    case level_kind::Global: case level_kind::Meta:
        return l;
    case level_kind::IMax: {
        auto l1 = normalize(imax_lhs(r));
        auto l2 = normalize(imax_rhs(r));
        if (!is_eqp(l1, imax_lhs(r)) || !is_eqp(l2, imax_rhs(r)))
            return mk_succ(mk_imax(l1, l2), p.second);
        else
            return l;
    }
    case level_kind::Max: {
        buffer<level> todo;
        buffer<level> args;
        push_max_args(r, todo);
        for (level const & a : todo)
            push_max_args(normalize(a), args);
        std::sort(args.begin(), args.end(), is_norm_lt);
        buffer<level> & rargs = todo;
        rargs.clear();
        unsigned i = 0;
        if (is_explicit(args[i])) {
            // find max explicit univierse
            while (i+1 < args.size() && is_explicit(args[i+1]))
                i++;
            lean_assert(is_explicit(args[i]));
            unsigned k = to_offset(args[i]).second;
            // an explicit universe k is subsumed by succ^k(l)
            unsigned j = i+1;
            for (; j < args.size(); j++) {
                if (to_offset(args[j]).second >= k)
                    break;
            }
            if (j < args.size()) {
                // explicit universe was subsumed by succ^k'(l) where k' >= k
                i++;
            }
        }
        rargs.push_back(args[i]);
        auto p_prev = to_offset(args[i]);
        i++;
        for (; i < args.size(); i++) {
            auto p_curr = to_offset(args[i]);
            if (p_prev.first == p_curr.first) {
                if (p_prev.second < p_curr.second) {
                    p_prev = p_curr;
                    rargs.pop_back();
                    rargs.push_back(args[i]);
                }
            } else {
                p_prev = p_curr;
                rargs.push_back(args[i]);
            }
        }
        for (level & a : rargs)
            a = mk_succ(a, p.second);
        return mk_max(rargs);
    }}
    lean_unreachable(); // LCOV_EXCL_LINE
}