コード例 #1
0
ファイル: BIDMat_SPBLAS.c プロジェクト: phlip9/BIDMat
JNIEXPORT jint JNICALL Java_edu_berkeley_bid_SPBLAS_scsrmm
(JNIEnv * env, jobject calling_obj, jstring j_transa, jint m, jint n, jint k, jfloat alpha, jstring j_matdescra,
 jfloatArray j_vals, jintArray j_ir, jintArray j_jc, jfloatArray j_b, jint ldb, jfloat beta, jfloatArray j_c, jint ldc) {
    char * transa = (char *)(*env)->GetStringUTFChars(env, j_transa, 0);
    char * matdescra = (char *)(*env)->GetStringUTFChars(env, j_matdescra, 0);
    jfloat * vals = (*env)->GetPrimitiveArrayCritical(env, j_vals, 0);
    jint * ir = (*env)->GetPrimitiveArrayCritical(env, j_ir, 0);
    jint * jc = (*env)->GetPrimitiveArrayCritical(env, j_jc, 0);
    jfloat * b = (*env)->GetPrimitiveArrayCritical(env, j_b, 0);
    jfloat * c = (*env)->GetPrimitiveArrayCritical(env, j_c, 0);
    jint returnValue = 0;

    if (transa != NULL && matdescra != NULL && vals != NULL && ir != NULL && jc != NULL && b != NULL && c != NULL) {
        mkl_scsrmm(transa, &m, &n, &k, &alpha, matdescra, vals, ir, jc, jc+1, b, &ldb, &beta, c, &ldc);
    } else {
        returnValue = 1;
    }

    (*env)->ReleasePrimitiveArrayCritical(env, j_c, c, 0);
    (*env)->ReleasePrimitiveArrayCritical(env, j_b, b, 0);
    (*env)->ReleasePrimitiveArrayCritical(env, j_jc, jc, 0);
    (*env)->ReleasePrimitiveArrayCritical(env, j_ir, ir, 0);
    (*env)->ReleasePrimitiveArrayCritical(env, j_vals, vals, 0);
    (*env)->ReleaseStringUTFChars(env, j_matdescra, matdescra);
    (*env)->ReleaseStringUTFChars(env, j_transa, transa);
    return returnValue;
};
コード例 #2
0
void multiply(const CrsMatrix< float , Kokkos::OpenMP >& A,
              const std::vector< Kokkos::View< float* , Kokkos::OpenMP > >& x,
              std::vector< Kokkos::View< float* , Kokkos::OpenMP > >& y,
              MKLMultiply tag)
{
  typedef Kokkos::OpenMP device_type ;
  typedef float value_type ;
  typedef Kokkos::View< float** , Kokkos::LayoutLeft, device_type >  trans_multi_vector_type ;

  MKL_INT n = A.graph.row_map.dimension_0() - 1 ;
  float *A_values = A.values.ptr_on_device() ;
  MKL_INT *col_indices = A.graph.entries.ptr_on_device() ;
  MKL_INT *row_beg = const_cast<MKL_INT*>(A.graph.row_map.ptr_on_device()) ;
  MKL_INT *row_end = row_beg+1;
  char matdescra[6] = { 'G', 'x', 'N', 'C', 'x', 'x' };
  char trans = 'N';
  float alpha = 1.0;
  float beta = 0.0;

  // Copy columns of x into a contiguous vector
  MKL_INT ncol = x.size();
  trans_multi_vector_type xx( "xx" , ncol , n );
  trans_multi_vector_type yy( "yy" , ncol , n );
  Impl::GatherVecTranspose<value_type,device_type>::apply(x,xx);
  float *x_values = xx.ptr_on_device() ;
  float *y_values = yy.ptr_on_device() ;

  // Call MKLs CSR x multi-vector (row-based) multiply
  mkl_scsrmm(&trans, &n, &ncol, &n, &alpha, matdescra, A_values, col_indices,
             row_beg, row_end, x_values, &ncol, &beta, y_values, &ncol);

  // Copy columns out of continguous multivector
  Impl::ScatterVecTranspose<value_type,device_type>::apply(y,yy);
}
コード例 #3
0
ファイル: testing_sspmm.cpp プロジェクト: maxhutch/magma
/* ////////////////////////////////////////////////////////////////////////////
   -- testing sparse matrix vector product
*/
int main(  int argc, char** argv )
{
    magma_int_t info = 0;
    TESTING_CHECK( magma_init() );
    magma_print_environment();
    magma_queue_t queue=NULL;
    magma_queue_create( 0, &queue );
    
    magma_s_matrix hA={Magma_CSR}, hA_SELLP={Magma_CSR}, 
    dA={Magma_CSR}, dA_SELLP={Magma_CSR};
    
    magma_s_matrix hx={Magma_CSR}, hy={Magma_CSR}, dx={Magma_CSR}, 
    dy={Magma_CSR}, hrefvec={Magma_CSR}, hcheck={Magma_CSR};
        
    hA_SELLP.blocksize = 8;
    hA_SELLP.alignment = 8;
    real_Double_t start, end, res;
    #ifdef MAGMA_WITH_MKL
        magma_int_t *pntre=NULL;
    #endif
    cusparseHandle_t cusparseHandle = NULL;
    cusparseMatDescr_t descr = NULL;

    float c_one  = MAGMA_S_MAKE(1.0, 0.0);
    float c_zero = MAGMA_S_MAKE(0.0, 0.0);
    
    float accuracy = 1e-10;
    
    #define PRECISION_s
    #if defined(PRECISION_c)
        accuracy = 1e-4;
    #endif
    #if defined(PRECISION_s)
        accuracy = 1e-4;
    #endif
    
    magma_int_t i, j;
    for( i = 1; i < argc; ++i ) {
        if ( strcmp("--blocksize", argv[i]) == 0 ) {
            hA_SELLP.blocksize = atoi( argv[++i] );
        } else if ( strcmp("--alignment", argv[i]) == 0 ) {
            hA_SELLP.alignment = atoi( argv[++i] );
        } else
            break;
    }
    printf("\n#    usage: ./run_sspmm"
           " [ --blocksize %lld --alignment %lld (for SELLP) ] matrices\n\n",
           (long long) hA_SELLP.blocksize, (long long) hA_SELLP.alignment );

    while( i < argc ) {
        if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
            i++;
            magma_int_t laplace_size = atoi( argv[i] );
            TESTING_CHECK( magma_sm_5stencil(  laplace_size, &hA, queue ));
        } else {                        // file-matrix test
            TESTING_CHECK( magma_s_csr_mtx( &hA,  argv[i], queue ));
        }

        printf("%% matrix info: %lld-by-%lld with %lld nonzeros\n",
                (long long) hA.num_rows, (long long) hA.num_cols, (long long) hA.nnz );

        real_Double_t FLOPS = 2.0*hA.nnz/1e9;



        // m - number of rows for the sparse matrix
        // n - number of vectors to be multiplied in the SpMM product
        magma_int_t m, n;

        m = hA.num_rows;
        n = 48;

        // init CPU vectors
        TESTING_CHECK( magma_svinit( &hx, Magma_CPU, m, n, c_one, queue ));
        TESTING_CHECK( magma_svinit( &hy, Magma_CPU, m, n, c_zero, queue ));

        // init DEV vectors
        TESTING_CHECK( magma_svinit( &dx, Magma_DEV, m, n, c_one, queue ));
        TESTING_CHECK( magma_svinit( &dy, Magma_DEV, m, n, c_zero, queue ));


        // calling MKL with CSR
        #ifdef MAGMA_WITH_MKL
            TESTING_CHECK( magma_imalloc_cpu( &pntre, m + 1 ) );
            pntre[0] = 0;
            for (j=0; j < m; j++ ) {
                pntre[j] = hA.row[j+1];
            }

            MKL_INT num_rows = hA.num_rows;
            MKL_INT num_cols = hA.num_cols;
            MKL_INT nnz = hA.nnz;
            MKL_INT num_vecs = n;

            MKL_INT *col;
            TESTING_CHECK( magma_malloc_cpu( (void**) &col, nnz * sizeof(MKL_INT) ));
            for( magma_int_t t=0; t < hA.nnz; ++t ) {
                col[ t ] = hA.col[ t ];
            }
            MKL_INT *row;
            TESTING_CHECK( magma_malloc_cpu( (void**) &row, num_rows * sizeof(MKL_INT) ));
            for( magma_int_t t=0; t < hA.num_rows; ++t ) {
                row[ t ] = hA.col[ t ];
            }

            // === Call MKL with consecutive SpMVs, using mkl_scsrmv ===
            // warmp up
            mkl_scsrmv( "N", &num_rows, &num_cols,
                        MKL_ADDR(&c_one), "GFNC", MKL_ADDR(hA.val), col, row, pntre,
                                                  MKL_ADDR(hx.val),
                        MKL_ADDR(&c_zero),        MKL_ADDR(hy.val) );
    
            start = magma_wtime();
            for (j=0; j < 10; j++ ) {
                mkl_scsrmv( "N", &num_rows, &num_cols,
                            MKL_ADDR(&c_one), "GFNC", MKL_ADDR(hA.val), col, row, pntre,
                                                      MKL_ADDR(hx.val),
                            MKL_ADDR(&c_zero),        MKL_ADDR(hy.val) );
            }
            end = magma_wtime();
            printf( "\n > MKL SpMVs : %.2e seconds %.2e GFLOP/s    (CSR).\n",
                                            (end-start)/10, FLOPS*10/(end-start) );
    
            // === Call MKL with blocked SpMVs, using mkl_scsrmm ===
            char transa = 'n';
            MKL_INT ldb = n, ldc=n;
            char matdescra[6] = {'g', 'l', 'n', 'c', 'x', 'x'};
    
            // warm up
            mkl_scsrmm( &transa, &num_rows, &num_vecs, &num_cols, MKL_ADDR(&c_one), matdescra,
                        MKL_ADDR(hA.val), col, row, pntre,
                        MKL_ADDR(hx.val), &ldb,
                        MKL_ADDR(&c_zero),
                        MKL_ADDR(hy.val), &ldc );
    
            start = magma_wtime();
            for (j=0; j < 10; j++ ) {
                mkl_scsrmm( &transa, &num_rows, &num_vecs, &num_cols, MKL_ADDR(&c_one), matdescra,
                            MKL_ADDR(hA.val), col, row, pntre,
                            MKL_ADDR(hx.val), &ldb,
                            MKL_ADDR(&c_zero),
                            MKL_ADDR(hy.val), &ldc );
            }
            end = magma_wtime();
            printf( "\n > MKL SpMM  : %.2e seconds %.2e GFLOP/s    (CSR).\n",
                    (end-start)/10, FLOPS*10.*n/(end-start) );

            magma_free_cpu( row );
            magma_free_cpu( col );
            row = NULL;
            col = NULL;

        #endif // MAGMA_WITH_MKL

        // copy matrix to GPU
        TESTING_CHECK( magma_smtransfer( hA, &dA, Magma_CPU, Magma_DEV, queue ));
        // SpMV on GPU (CSR)
        start = magma_sync_wtime( queue );
        for (j=0; j < 10; j++) {
            TESTING_CHECK( magma_s_spmv( c_one, dA, dx, c_zero, dy, queue ));
        }
        end = magma_sync_wtime( queue );
        printf( " > MAGMA: %.2e seconds %.2e GFLOP/s    (standard CSR).\n",
                                        (end-start)/10, FLOPS*10.*n/(end-start) );

        TESTING_CHECK( magma_smtransfer( dy, &hrefvec , Magma_DEV, Magma_CPU, queue ));
        magma_smfree(&dA, queue );


        // convert to SELLP and copy to GPU
        TESTING_CHECK( magma_smconvert(  hA, &hA_SELLP, Magma_CSR, Magma_SELLP, queue ));
        TESTING_CHECK( magma_smtransfer( hA_SELLP, &dA_SELLP, Magma_CPU, Magma_DEV, queue ));
        magma_smfree(&hA_SELLP, queue );
        magma_smfree( &dy, queue );
        TESTING_CHECK( magma_svinit( &dy, Magma_DEV, dx.num_rows, dx.num_cols, c_zero, queue ));
        // SpMV on GPU (SELLP)
        start = magma_sync_wtime( queue );
        for (j=0; j < 10; j++) {
            TESTING_CHECK( magma_s_spmv( c_one, dA_SELLP, dx, c_zero, dy, queue ));
        }
        end = magma_sync_wtime( queue );
        printf( " > MAGMA: %.2e seconds %.2e GFLOP/s    (SELLP).\n",
                                        (end-start)/10, FLOPS*10.*n/(end-start) );

        TESTING_CHECK( magma_smtransfer( dy, &hcheck , Magma_DEV, Magma_CPU, queue ));
        res = 0.0;
        for(magma_int_t k=0; k < hA.num_rows; k++ ) {
            res=res + MAGMA_S_REAL(hcheck.val[k]) - MAGMA_S_REAL(hrefvec.val[k]);
        }
        printf("%% |x-y|_F = %8.2e\n", res);
        if ( res < accuracy )
            printf("%% tester spmm SELL-P:  ok\n");
        else
            printf("%% tester spmm SELL-P:  failed\n");
        magma_smfree( &hcheck, queue );
        magma_smfree(&dA_SELLP, queue );



        // SpMV on GPU (CUSPARSE - CSR)
        // CUSPARSE context //
        magma_smfree( &dy, queue );
        TESTING_CHECK( magma_svinit( &dy, Magma_DEV, dx.num_rows, dx.num_cols, c_zero, queue ));
        //#ifdef PRECISION_d
        start = magma_sync_wtime( queue );
        TESTING_CHECK( cusparseCreate( &cusparseHandle ));
        TESTING_CHECK( cusparseSetStream( cusparseHandle, magma_queue_get_cuda_stream(queue) ));
        TESTING_CHECK( cusparseCreateMatDescr( &descr ));
        TESTING_CHECK( cusparseSetMatType( descr, CUSPARSE_MATRIX_TYPE_GENERAL ));
        TESTING_CHECK( cusparseSetMatIndexBase( descr, CUSPARSE_INDEX_BASE_ZERO ));
        float alpha = c_one;
        float beta = c_zero;

        // copy matrix to GPU
        TESTING_CHECK( magma_smtransfer( hA, &dA, Magma_CPU, Magma_DEV, queue) );

        for (j=0; j < 10; j++) {
            cusparseScsrmm(cusparseHandle,
                    CUSPARSE_OPERATION_NON_TRANSPOSE,
                    dA.num_rows,   n, dA.num_cols, dA.nnz,
                    &alpha, descr, dA.dval, dA.drow, dA.dcol,
                    dx.dval, dA.num_cols, &beta, dy.dval, dA.num_cols);
        }
        end = magma_sync_wtime( queue );
        printf( " > CUSPARSE: %.2e seconds %.2e GFLOP/s    (CSR).\n",
                                        (end-start)/10, FLOPS*10*n/(end-start) );

        TESTING_CHECK( magma_smtransfer( dy, &hcheck , Magma_DEV, Magma_CPU, queue ));
        res = 0.0;
        for(magma_int_t k=0; k < hA.num_rows; k++ ) {
            res = res + MAGMA_S_REAL(hcheck.val[k]) - MAGMA_S_REAL(hrefvec.val[k]);
        }
        printf("%% |x-y|_F = %8.2e\n", res);
        if ( res < accuracy )
            printf("%% tester spmm cuSPARSE:  ok\n");
        else
            printf("%% tester spmm cuSPARSE:  failed\n");
        magma_smfree( &hcheck, queue );

        cusparseDestroyMatDescr( descr ); 
        cusparseDestroy( cusparseHandle );
        descr = NULL;
        cusparseHandle = NULL;
        //#endif

        printf("\n\n");

        // free CPU memory
        magma_smfree( &hA, queue );
        magma_smfree( &hx, queue );
        magma_smfree( &hy, queue );
        magma_smfree( &hrefvec, queue );
        // free GPU memory
        magma_smfree( &dx, queue );
        magma_smfree( &dy, queue );
        magma_smfree( &dA, queue);

        #ifdef MAGMA_WITH_MKL
            magma_free_cpu( pntre );
        #endif
        
        i++;
    }

    magma_queue_destroy( queue );
    TESTING_CHECK( magma_finalize() );
    return info;
}