コード例 #1
0
ファイル: main.c プロジェクト: Joshorilla/micropython
STATIC void execute_from_lexer(mp_lexer_t *lex, mp_parse_input_kind_t input_kind, bool is_repl) {
    if (lex == NULL) {
        return;
    }

    if (0) {
        // just tokenise
        while (!mp_lexer_is_kind(lex, MP_TOKEN_END)) {
            mp_token_show(mp_lexer_cur(lex));
            mp_lexer_to_next(lex);
        }
        mp_lexer_free(lex);
        return;
    }

    mp_parse_error_kind_t parse_error_kind;
    mp_parse_node_t pn = mp_parse(lex, input_kind, &parse_error_kind);

    if (pn == MP_PARSE_NODE_NULL) {
        // parse error
        mp_parse_show_exception(lex, parse_error_kind);
        mp_lexer_free(lex);
        return;
    }

    qstr source_name = mp_lexer_source_name(lex);
    mp_lexer_free(lex);

    /*
    printf("----------------\n");
    mp_parse_node_print(pn, 0);
    printf("----------------\n");
    */

    mp_obj_t module_fun = mp_compile(pn, source_name, emit_opt, is_repl);

    if (module_fun == mp_const_none) {
        // compile error
        return;
    }

    if (compile_only) {
        return;
    }

    // execute it
    nlr_buf_t nlr;
    if (nlr_push(&nlr) == 0) {
        mp_call_function_0(module_fun);
        nlr_pop();
    } else {
        // uncaught exception
        mp_obj_print_exception((mp_obj_t)nlr.ret_val);
    }
}
コード例 #2
0
ファイル: main.c プロジェクト: anpage/micropython
void do_file(const char *file) {
    mp_lexer_t *lex = mp_lexer_new_from_file(file);
    if (lex == NULL) {
        return;
    }

    if (0) {
        // just tokenise
        while (!mp_lexer_is_kind(lex, MP_TOKEN_END)) {
            mp_token_show(mp_lexer_cur(lex));
            mp_lexer_to_next(lex);
        }
        mp_lexer_free(lex);

    } else {
        // parse
        qstr parse_exc_id;
        const char *parse_exc_msg;
        mp_parse_node_t pn = mp_parse(lex, MP_PARSE_FILE_INPUT, &parse_exc_id, &parse_exc_msg);

        if (pn == MP_PARSE_NODE_NULL) {
            // parse error
            mp_lexer_show_error_pythonic_prefix(lex);
            printf("%s: %s\n", qstr_str(parse_exc_id), parse_exc_msg);
            mp_lexer_free(lex);
            return;
        }

        mp_lexer_free(lex);

        if (pn != MP_PARSE_NODE_NULL) {
            //printf("----------------\n");
            //mp_parse_node_print(pn, 0);
            //printf("----------------\n");

            // compile
            mp_obj_t module_fun = mp_compile(pn, 0, false);

            //printf("----------------\n");

            if (module_fun == mp_const_none) {
                printf("compile error\n");
            }
        }
    }
}
コード例 #3
0
void do_file(const char *file) {
    mp_lexer_t *lex = mp_lexer_new_from_file(file);
    if (lex == NULL) {
        return;
    }

    if (0) {
        // just tokenise
        while (!mp_lexer_is_kind(lex, MP_TOKEN_END)) {
            mp_token_show(mp_lexer_cur(lex));
            mp_lexer_to_next(lex);
        }
        mp_lexer_free(lex);

    } else {
        // parse
        mp_parse_error_kind_t parse_error_kind;
        mp_parse_node_t pn = mp_parse(lex, MP_PARSE_FILE_INPUT, &parse_error_kind);

        if (pn == MP_PARSE_NODE_NULL) {
            // parse error
            mp_parse_show_exception(lex, parse_error_kind);
            mp_lexer_free(lex);
            return;
        }

        mp_lexer_free(lex);

        if (pn != MP_PARSE_NODE_NULL) {
            //printf("----------------\n");
            //mp_parse_node_print(pn, 0);
            //printf("----------------\n");

            // compile
            mp_obj_t module_fun = mp_compile(pn, 0, false);

            //printf("----------------\n");

            if (module_fun == mp_const_none) {
                printf("compile error\n");
            }
        }
    }
}
コード例 #4
0
ファイル: parse.c プロジェクト: brooksman/micropython
mp_parse_node_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) {

    // allocate memory for the parser and its stacks

    parser_t *parser = m_new_obj(parser_t);

    parser->rule_stack_alloc = 64;
    parser->rule_stack_top = 0;
    parser->rule_stack = m_new(rule_stack_t, parser->rule_stack_alloc);

    parser->result_stack_alloc = 64;
    parser->result_stack_top = 0;
    parser->result_stack = m_new(mp_parse_node_t, parser->result_stack_alloc);

    // work out the top-level rule to use, and push it on the stack
    int top_level_rule;
    switch (input_kind) {
        case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break;
        //case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break;
        default: top_level_rule = RULE_file_input;
    }
    push_rule(parser, rules[top_level_rule], 0);

    // parse!

    uint n, i;
    bool backtrack = false;
    const rule_t *rule;
    mp_token_kind_t tok_kind;
    bool emit_rule;
    bool had_trailing_sep;

    for (;;) {
        next_rule:
        if (parser->rule_stack_top == 0) {
            break;
        }

        pop_rule(parser, &rule, &i);
        n = rule->act & RULE_ACT_ARG_MASK;

        /*
        // debugging
        printf("depth=%d ", parser->rule_stack_top);
        for (int j = 0; j < parser->rule_stack_top; ++j) {
            printf(" ");
        }
        printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack);
        */

        switch (rule->act & RULE_ACT_KIND_MASK) {
            case RULE_ACT_OR:
                if (i > 0 && !backtrack) {
                    goto next_rule;
                } else {
                    backtrack = false;
                }
                for (; i < n - 1; ++i) {
                    switch (rule->arg[i] & RULE_ARG_KIND_MASK) {
                        case RULE_ARG_TOK:
                            if (mp_lexer_is_kind(lex, rule->arg[i] & RULE_ARG_ARG_MASK)) {
                                push_result_token(parser, lex);
                                mp_lexer_to_next(lex);
                                goto next_rule;
                            }
                            break;
                        case RULE_ARG_RULE:
                            push_rule(parser, rule, i + 1);
                            push_rule_from_arg(parser, rule->arg[i]);
                            goto next_rule;
                        default:
                            assert(0);
                    }
                }
                if ((rule->arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                    if (mp_lexer_is_kind(lex, rule->arg[i] & RULE_ARG_ARG_MASK)) {
                        push_result_token(parser, lex);
                        mp_lexer_to_next(lex);
                    } else {
                        backtrack = true;
                        goto next_rule;
                    }
                } else {
                    push_rule_from_arg(parser, rule->arg[i]);
                }
                break;

            case RULE_ACT_AND:

                // failed, backtrack if we can, else syntax error
                if (backtrack) {
                    assert(i > 0);
                    if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) {
                        // an optional rule that failed, so continue with next arg
                        push_result_node(parser, MP_PARSE_NODE_NULL);
                        backtrack = false;
                    } else {
                        // a mandatory rule that failed, so propagate backtrack
                        if (i > 1) {
                            // already eaten tokens so can't backtrack
                            goto syntax_error;
                        } else {
                            goto next_rule;
                        }
                    }
                }

                // progress through the rule
                for (; i < n; ++i) {
                    switch (rule->arg[i] & RULE_ARG_KIND_MASK) {
                        case RULE_ARG_TOK:
                            // need to match a token
                            tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK;
                            if (mp_lexer_is_kind(lex, tok_kind)) {
                                // matched token
                                if (tok_kind == MP_TOKEN_NAME) {
                                    push_result_token(parser, lex);
                                }
                                mp_lexer_to_next(lex);
                            } else {
                                // failed to match token
                                if (i > 0) {
                                    // already eaten tokens so can't backtrack
                                    goto syntax_error;
                                } else {
                                    // this rule failed, so backtrack
                                    backtrack = true;
                                    goto next_rule;
                                }
                            }
                            break;
                        case RULE_ARG_RULE:
                            //if (i + 1 < n) {
                                push_rule(parser, rule, i + 1);
                            //}
                            push_rule_from_arg(parser, rule->arg[i]);
                            goto next_rule;
                        case RULE_ARG_OPT_RULE:
                            push_rule(parser, rule, i + 1);
                            push_rule_from_arg(parser, rule->arg[i]);
                            goto next_rule;
                        default:
                            assert(0);
                    }
                }

                assert(i == n);

                // matched the rule, so now build the corresponding parse_node

                // count number of arguments for the parse_node
                i = 0;
                emit_rule = false;
                for (int x = 0; x < n; ++x) {
                    if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                        tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK;
                        if (tok_kind >= MP_TOKEN_NAME) {
                            emit_rule = true;
                        }
                        if (tok_kind == MP_TOKEN_NAME) {
                            // only tokens which were names are pushed to stack
                            i += 1;
                        }
                    } else {
                        // rules are always pushed
                        i += 1;
                    }
                }

                // always emit these rules, even if they have only 1 argument
                if (rule->rule_id == RULE_expr_stmt || rule->rule_id == RULE_yield_stmt) {
                    emit_rule = true;
                }

                // never emit these rules if they have only 1 argument
                // NOTE: can't put atom_paren here because we need it to distinguisg, for example, [a,b] from [(a,b)]
                // TODO possibly put varargslist_name, varargslist_equal here as well
                if (rule->rule_id == RULE_else_stmt || rule->rule_id == RULE_testlist_comp_3b || rule->rule_id == RULE_import_as_names_paren || rule->rule_id == RULE_typedargslist_name || rule->rule_id == RULE_typedargslist_colon || rule->rule_id == RULE_typedargslist_equal || rule->rule_id == RULE_dictorsetmaker_colon || rule->rule_id == RULE_classdef_2 || rule->rule_id == RULE_with_item_as || rule->rule_id == RULE_assert_stmt_extra || rule->rule_id == RULE_as_name || rule->rule_id == RULE_raise_stmt_from || rule->rule_id == RULE_vfpdef) {
                    emit_rule = false;
                }

                // always emit these rules, and add an extra blank node at the end (to be used by the compiler to store data)
                if (rule->rule_id == RULE_funcdef || rule->rule_id == RULE_classdef || rule->rule_id == RULE_comp_for || rule->rule_id == RULE_lambdef || rule->rule_id == RULE_lambdef_nocond) {
                    emit_rule = true;
                    push_result_node(parser, MP_PARSE_NODE_NULL);
                    i += 1;
                }

                int num_not_nil = 0;
                for (int x = 0; x < i; ++x) {
                    if (peek_result(parser, x) != MP_PARSE_NODE_NULL) {
                        num_not_nil += 1;
                    }
                }
                //printf("done and %s n=%d i=%d notnil=%d\n", rule->rule_name, n, i, num_not_nil);
                if (emit_rule) {
                    push_result_rule(parser, rule, i);
                } else if (num_not_nil == 0) {
                    push_result_rule(parser, rule, i); // needed for, eg, atom_paren, testlist_comp_3b
                    //result_stack_show(parser);
                    //assert(0);
                } else if (num_not_nil == 1) {
                    // single result, leave it on stack
                    mp_parse_node_t pn = MP_PARSE_NODE_NULL;
                    for (int x = 0; x < i; ++x) {
                        mp_parse_node_t pn2 = pop_result(parser);
                        if (pn2 != MP_PARSE_NODE_NULL) {
                            pn = pn2;
                        }
                    }
                    push_result_node(parser, pn);
                } else {
                    push_result_rule(parser, rule, i);
                }
                break;

            case RULE_ACT_LIST:
                // n=2 is: item item*
                // n=1 is: item (sep item)*
                // n=3 is: item (sep item)* [sep]
                if (backtrack) {
                    list_backtrack:
                    had_trailing_sep = false;
                    if (n == 2) {
                        if (i == 1) {
                            // fail on item, first time round; propagate backtrack
                            goto next_rule;
                        } else {
                            // fail on item, in later rounds; finish with this rule
                            backtrack = false;
                        }
                    } else {
                        if (i == 1) {
                            // fail on item, first time round; propagate backtrack
                            goto next_rule;
                        } else if ((i & 1) == 1) {
                            // fail on item, in later rounds; have eaten tokens so can't backtrack
                            if (n == 3) {
                                // list allows trailing separator; finish parsing list
                                had_trailing_sep = true;
                                backtrack = false;
                            } else {
                                // list doesn't allowing trailing separator; fail
                                goto syntax_error;
                            }
                        } else {
                            // fail on separator; finish parsing list
                            backtrack = false;
                        }
                    }
                } else {
                    for (;;) {
                        uint arg = rule->arg[i & 1 & n];
                        switch (arg & RULE_ARG_KIND_MASK) {
                            case RULE_ARG_TOK:
                                if (mp_lexer_is_kind(lex, arg & RULE_ARG_ARG_MASK)) {
                                    if (i & 1 & n) {
                                        // separators which are tokens are not pushed to result stack
                                    } else {
                                        push_result_token(parser, lex);
                                    }
                                    mp_lexer_to_next(lex);
                                    // got element of list, so continue parsing list
                                    i += 1;
                                } else {
                                    // couldn't get element of list
                                    i += 1;
                                    backtrack = true;
                                    goto list_backtrack;
                                }
                                break;
                            case RULE_ARG_RULE:
                                push_rule(parser, rule, i + 1);
                                push_rule_from_arg(parser, arg);
                                goto next_rule;
                            default:
                                assert(0);
                        }
                    }
                }
                assert(i >= 1);

                // compute number of elements in list, result in i
                i -= 1;
                if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                    // don't count separators when they are tokens
                    i = (i + 1) / 2;
                }

                if (i == 1) {
                    // list matched single item
                    if (had_trailing_sep) {
                        // if there was a trailing separator, make a list of a single item
                        push_result_rule(parser, rule, i);
                    } else {
                        // just leave single item on stack (ie don't wrap in a list)
                    }
                } else {
                    //printf("done list %s %d %d\n", rule->rule_name, n, i);
                    push_result_rule(parser, rule, i);
                }
                break;

            default:
                assert(0);
        }
    }

    // check we are at the end of the token stream
    if (!mp_lexer_is_kind(lex, MP_TOKEN_END)) {
        goto syntax_error;
    }

    //printf("--------------\n");
    //result_stack_show(parser);
    //printf("rule stack alloc: %d\n", parser->rule_stack_alloc);
    //printf("result stack alloc: %d\n", parser->result_stack_alloc);
    //printf("number of parse nodes allocated: %d\n", num_parse_nodes_allocated);

    // get the root parse node that we created
    assert(parser->result_stack_top == 1);
    mp_parse_node_t result = parser->result_stack[0];

finished:
    // free the memory that we don't need anymore
    m_del(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc);
    m_del(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc);
    m_del_obj(parser_t, parser);

    // return the result
    return result;

syntax_error:
    // TODO these should raise a proper exception
    if (mp_lexer_is_kind(lex, MP_TOKEN_INDENT)) {
        mp_lexer_show_error_pythonic(lex, "IndentationError: unexpected indent");
    } else if (mp_lexer_is_kind(lex, MP_TOKEN_DEDENT_MISMATCH)) {
        mp_lexer_show_error_pythonic(lex, "IndentationError: unindent does not match any outer indentation level");
    } else {
        mp_lexer_show_error_pythonic(lex, "syntax error:");
#ifdef USE_RULE_NAME
        mp_lexer_show_error(lex, rule->rule_name);
#endif
        mp_token_show(mp_lexer_cur(lex));
    }
    result = MP_PARSE_NODE_NULL;
    goto finished;
}
コード例 #5
0
ファイル: parse.c プロジェクト: brooksman/micropython
static void push_result_token(parser_t *parser, const mp_lexer_t *lex) {
    const mp_token_t *tok = mp_lexer_cur(lex);
    mp_parse_node_t pn;
    if (tok->kind == MP_TOKEN_NAME) {
        pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, qstr_from_strn_copy(tok->str, tok->len));
    } else if (tok->kind == MP_TOKEN_NUMBER) {
        bool dec = false;
        bool small_int = true;
        machine_int_t int_val = 0;
        int len = tok->len;
        const char *str = tok->str;
        int base = 10;
        int i = 0;
        if (len >= 3 && str[0] == '0') {
            if (str[1] == 'o' || str[1] == 'O') {
                // octal
                base = 8;
                i = 2;
            } else if (str[1] == 'x' || str[1] == 'X') {
                // hexadecimal
                base = 16;
                i = 2;
            } else if (str[1] == 'b' || str[1] == 'B') {
                // binary
                base = 2;
                i = 2;
            }
        }
        bool overflow = false;
        for (; i < len; i++) {
            machine_int_t old_val = int_val;
            if (unichar_isdigit(str[i]) && str[i] - '0' < base) {
                int_val = base * int_val + str[i] - '0';
            } else if (base == 16 && 'a' <= str[i] && str[i] <= 'f') {
                int_val = base * int_val + str[i] - 'a' + 10;
            } else if (base == 16 && 'A' <= str[i] && str[i] <= 'F') {
                int_val = base * int_val + str[i] - 'A' + 10;
            } else if (str[i] == '.' || str[i] == 'e' || str[i] == 'E' || str[i] == 'j' || str[i] == 'J') {
                dec = true;
                break;
            } else {
                small_int = false;
                break;
            }
            if (int_val < old_val) {
                // If new value became less than previous, it's overflow
                overflow = true;
            } else if ((old_val ^ int_val) & WORD_MSBIT_HIGH) {
                // If signed number changed sign - it's overflow
                overflow = true;
            }
        }
        if (dec) {
            pn = mp_parse_node_new_leaf(MP_PARSE_NODE_DECIMAL, qstr_from_strn_copy(str, len));
        } else if (small_int && !overflow && MP_FIT_SMALL_INT(int_val)) {
            pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, int_val);
        } else {
            pn = mp_parse_node_new_leaf(MP_PARSE_NODE_INTEGER, qstr_from_strn_copy(str, len));
        }
    } else if (tok->kind == MP_TOKEN_STRING) {
        pn = mp_parse_node_new_leaf(MP_PARSE_NODE_STRING, qstr_from_strn_copy(tok->str, tok->len));
    } else if (tok->kind == MP_TOKEN_BYTES) {
        pn = mp_parse_node_new_leaf(MP_PARSE_NODE_BYTES, qstr_from_strn_copy(tok->str, tok->len));
    } else {
        pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, tok->kind);
    }
    push_result_node(parser, pn);
}
コード例 #6
0
ファイル: main.c プロジェクト: idobatter/micropython
// returns standard error codes: 0 for success, 1 for all other errors
STATIC int execute_from_lexer(mp_lexer_t *lex, mp_parse_input_kind_t input_kind, bool is_repl) {
    if (lex == NULL) {
        return 1;
    }

    if (0) {
        // just tokenise
        while (!mp_lexer_is_kind(lex, MP_TOKEN_END)) {
            mp_token_show(mp_lexer_cur(lex));
            mp_lexer_to_next(lex);
        }
        mp_lexer_free(lex);
        return 0;
    }

    mp_parse_error_kind_t parse_error_kind;
    mp_parse_node_t pn = mp_parse(lex, input_kind, &parse_error_kind);

    if (pn == MP_PARSE_NODE_NULL) {
        // parse error
        mp_parse_show_exception(lex, parse_error_kind);
        mp_lexer_free(lex);
        return 1;
    }

    qstr source_name = mp_lexer_source_name(lex);
    #if MICROPY_PY___FILE__
    if (input_kind == MP_PARSE_FILE_INPUT) {
        mp_store_global(MP_QSTR___file__, MP_OBJ_NEW_QSTR(source_name));
    }
    #endif
    mp_lexer_free(lex);

    /*
    printf("----------------\n");
    mp_parse_node_print(pn, 0);
    printf("----------------\n");
    */

    mp_obj_t module_fun = mp_compile(pn, source_name, emit_opt, is_repl);

    if (module_fun == mp_const_none) {
        // compile error
        return 1;
    }

    if (compile_only) {
        return 0;
    }

    // execute it
    nlr_buf_t nlr;
    if (nlr_push(&nlr) == 0) {
        mp_call_function_0(module_fun);
        nlr_pop();
        return 0;
    } else {
        // uncaught exception
        // check for SystemExit
        mp_obj_t exc = (mp_obj_t)nlr.ret_val;
        if (mp_obj_is_subclass_fast(mp_obj_get_type(exc), &mp_type_SystemExit)) {
            mp_obj_t exit_val = mp_obj_exception_get_value(exc);
            mp_int_t val;
            if (!mp_obj_get_int_maybe(exit_val, &val)) {
                val = 0;
            }
            exit(val);
        }
        mp_obj_print_exception((mp_obj_t)nlr.ret_val);
        return 1;
    }
}
コード例 #7
0
ファイル: parse.c プロジェクト: ArtemioCarlos/micropython
STATIC void push_rule_from_arg(parser_t *parser, mp_uint_t arg) {
    assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE);
    mp_uint_t rule_id = arg & RULE_ARG_ARG_MASK;
    assert(rule_id < RULE_maximum_number_of);
    push_rule(parser, mp_lexer_cur(parser->lexer)->src_line, rules[rule_id], 0);
}
コード例 #8
0
ファイル: parse.c プロジェクト: Metallicow/micropython
mp_parse_node_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind, mp_parse_error_kind_t *parse_error_kind_out) {

    // initialise parser and allocate memory for its stacks

    parser_t parser;

    parser.had_memory_error = false;

    parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT;
    parser.rule_stack_top = 0;
    parser.rule_stack = m_new_maybe(rule_stack_t, parser.rule_stack_alloc);

    parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT;
    parser.result_stack_top = 0;
    parser.result_stack = m_new_maybe(mp_parse_node_t, parser.result_stack_alloc);

    parser.lexer = lex;

    // check if we could allocate the stacks
    if (parser.rule_stack == NULL || parser.result_stack == NULL) {
        goto memory_error;
    }

    // work out the top-level rule to use, and push it on the stack
    int top_level_rule;
    switch (input_kind) {
        case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break;
        case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break;
        default: top_level_rule = RULE_file_input;
    }
    push_rule(&parser, mp_lexer_cur(lex)->src_line, rules[top_level_rule], 0);

    // parse!

    uint n, i; // state for the current rule
    uint rule_src_line; // source line for the first token matched by the current rule
    bool backtrack = false;
    const rule_t *rule = NULL;
    mp_token_kind_t tok_kind;
    bool emit_rule;
    bool had_trailing_sep;

    for (;;) {
        next_rule:
        if (parser.rule_stack_top == 0 || parser.had_memory_error) {
            break;
        }

        pop_rule(&parser, &rule, &i, &rule_src_line);
        n = rule->act & RULE_ACT_ARG_MASK;

        /*
        // debugging
        printf("depth=%d ", parser.rule_stack_top);
        for (int j = 0; j < parser.rule_stack_top; ++j) {
            printf(" ");
        }
        printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack);
        */

        switch (rule->act & RULE_ACT_KIND_MASK) {
            case RULE_ACT_OR:
                if (i > 0 && !backtrack) {
                    goto next_rule;
                } else {
                    backtrack = false;
                }
                for (; i < n - 1; ++i) {
                    switch (rule->arg[i] & RULE_ARG_KIND_MASK) {
                        case RULE_ARG_TOK:
                            if (mp_lexer_is_kind(lex, rule->arg[i] & RULE_ARG_ARG_MASK)) {
                                push_result_token(&parser, lex);
                                mp_lexer_to_next(lex);
                                goto next_rule;
                            }
                            break;
                        case RULE_ARG_RULE:
                            push_rule(&parser, rule_src_line, rule, i + 1); // save this or-rule
                            push_rule_from_arg(&parser, rule->arg[i]); // push child of or-rule
                            goto next_rule;
                        default:
                            assert(0);
                    }
                }
                if ((rule->arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                    if (mp_lexer_is_kind(lex, rule->arg[i] & RULE_ARG_ARG_MASK)) {
                        push_result_token(&parser, lex);
                        mp_lexer_to_next(lex);
                    } else {
                        backtrack = true;
                        goto next_rule;
                    }
                } else {
                    push_rule_from_arg(&parser, rule->arg[i]);
                }
                break;

            case RULE_ACT_AND:

                // failed, backtrack if we can, else syntax error
                if (backtrack) {
                    assert(i > 0);
                    if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) {
                        // an optional rule that failed, so continue with next arg
                        push_result_node(&parser, MP_PARSE_NODE_NULL);
                        backtrack = false;
                    } else {
                        // a mandatory rule that failed, so propagate backtrack
                        if (i > 1) {
                            // already eaten tokens so can't backtrack
                            goto syntax_error;
                        } else {
                            goto next_rule;
                        }
                    }
                }

                // progress through the rule
                for (; i < n; ++i) {
                    switch (rule->arg[i] & RULE_ARG_KIND_MASK) {
                        case RULE_ARG_TOK:
                            // need to match a token
                            tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK;
                            if (mp_lexer_is_kind(lex, tok_kind)) {
                                // matched token
                                if (tok_kind == MP_TOKEN_NAME) {
                                    push_result_token(&parser, lex);
                                }
                                mp_lexer_to_next(lex);
                            } else {
                                // failed to match token
                                if (i > 0) {
                                    // already eaten tokens so can't backtrack
                                    goto syntax_error;
                                } else {
                                    // this rule failed, so backtrack
                                    backtrack = true;
                                    goto next_rule;
                                }
                            }
                            break;
                        case RULE_ARG_RULE:
                        case RULE_ARG_OPT_RULE:
                            push_rule(&parser, rule_src_line, rule, i + 1); // save this and-rule
                            push_rule_from_arg(&parser, rule->arg[i]); // push child of and-rule
                            goto next_rule;
                        default:
                            assert(0);
                    }
                }

                assert(i == n);

                // matched the rule, so now build the corresponding parse_node

                // count number of arguments for the parse_node
                i = 0;
                emit_rule = false;
                for (int x = 0; x < n; ++x) {
                    if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                        tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK;
                        if (tok_kind >= MP_TOKEN_NAME) {
                            emit_rule = true;
                        }
                        if (tok_kind == MP_TOKEN_NAME) {
                            // only tokens which were names are pushed to stack
                            i += 1;
                        }
                    } else {
                        // rules are always pushed
                        i += 1;
                    }
                }

#if !MICROPY_EMIT_CPYTHON && !MICROPY_ENABLE_DOC_STRING
                // this code discards lonely statements, such as doc strings
                if (input_kind != MP_PARSE_SINGLE_INPUT && rule->rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) {
                    mp_parse_node_t p = peek_result(&parser, 1);
                    if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_string)) {
                        pop_result(&parser);
                        pop_result(&parser);
                        push_result_rule(&parser, rule_src_line, rules[RULE_pass_stmt], 0);
                        break;
                    }
                }
#endif

                // always emit these rules, even if they have only 1 argument
                if (rule->rule_id == RULE_expr_stmt || rule->rule_id == RULE_yield_stmt) {
                    emit_rule = true;
                }

                // never emit these rules if they have only 1 argument
                // NOTE: can't put atom_paren here because we need it to distinguisg, for example, [a,b] from [(a,b)]
                // TODO possibly put varargslist_name, varargslist_equal here as well
                if (rule->rule_id == RULE_else_stmt || rule->rule_id == RULE_testlist_comp_3b || rule->rule_id == RULE_import_as_names_paren || rule->rule_id == RULE_typedargslist_name || rule->rule_id == RULE_typedargslist_colon || rule->rule_id == RULE_typedargslist_equal || rule->rule_id == RULE_dictorsetmaker_colon || rule->rule_id == RULE_classdef_2 || rule->rule_id == RULE_with_item_as || rule->rule_id == RULE_assert_stmt_extra || rule->rule_id == RULE_as_name || rule->rule_id == RULE_raise_stmt_from || rule->rule_id == RULE_vfpdef) {
                    emit_rule = false;
                }

                // always emit these rules, and add an extra blank node at the end (to be used by the compiler to store data)
                if (ADD_BLANK_NODE(rule->rule_id)) {
                    emit_rule = true;
                    push_result_node(&parser, MP_PARSE_NODE_NULL);
                    i += 1;
                }

                int num_not_nil = 0;
                for (int x = 0; x < i; ++x) {
                    if (peek_result(&parser, x) != MP_PARSE_NODE_NULL) {
                        num_not_nil += 1;
                    }
                }
                //printf("done and %s n=%d i=%d notnil=%d\n", rule->rule_name, n, i, num_not_nil);
                if (emit_rule) {
                    push_result_rule(&parser, rule_src_line, rule, i);
                } else if (num_not_nil == 0) {
                    push_result_rule(&parser, rule_src_line, rule, i); // needed for, eg, atom_paren, testlist_comp_3b
                    //result_stack_show(parser);
                    //assert(0);
                } else if (num_not_nil == 1) {
                    // single result, leave it on stack
                    mp_parse_node_t pn = MP_PARSE_NODE_NULL;
                    for (int x = 0; x < i; ++x) {
                        mp_parse_node_t pn2 = pop_result(&parser);
                        if (pn2 != MP_PARSE_NODE_NULL) {
                            pn = pn2;
                        }
                    }
                    push_result_node(&parser, pn);
                } else {
                    push_result_rule(&parser, rule_src_line, rule, i);
                }
                break;

            case RULE_ACT_LIST:
                // n=2 is: item item*
                // n=1 is: item (sep item)*
                // n=3 is: item (sep item)* [sep]
                if (backtrack) {
                    list_backtrack:
                    had_trailing_sep = false;
                    if (n == 2) {
                        if (i == 1) {
                            // fail on item, first time round; propagate backtrack
                            goto next_rule;
                        } else {
                            // fail on item, in later rounds; finish with this rule
                            backtrack = false;
                        }
                    } else {
                        if (i == 1) {
                            // fail on item, first time round; propagate backtrack
                            goto next_rule;
                        } else if ((i & 1) == 1) {
                            // fail on item, in later rounds; have eaten tokens so can't backtrack
                            if (n == 3) {
                                // list allows trailing separator; finish parsing list
                                had_trailing_sep = true;
                                backtrack = false;
                            } else {
                                // list doesn't allowing trailing separator; fail
                                goto syntax_error;
                            }
                        } else {
                            // fail on separator; finish parsing list
                            backtrack = false;
                        }
                    }
                } else {
                    for (;;) {
                        uint arg = rule->arg[i & 1 & n];
                        switch (arg & RULE_ARG_KIND_MASK) {
                            case RULE_ARG_TOK:
                                if (mp_lexer_is_kind(lex, arg & RULE_ARG_ARG_MASK)) {
                                    if (i & 1 & n) {
                                        // separators which are tokens are not pushed to result stack
                                    } else {
                                        push_result_token(&parser, lex);
                                    }
                                    mp_lexer_to_next(lex);
                                    // got element of list, so continue parsing list
                                    i += 1;
                                } else {
                                    // couldn't get element of list
                                    i += 1;
                                    backtrack = true;
                                    goto list_backtrack;
                                }
                                break;
                            case RULE_ARG_RULE:
                                push_rule(&parser, rule_src_line, rule, i + 1); // save this list-rule
                                push_rule_from_arg(&parser, arg); // push child of list-rule
                                goto next_rule;
                            default:
                                assert(0);
                        }
                    }
                }
                assert(i >= 1);

                // compute number of elements in list, result in i
                i -= 1;
                if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                    // don't count separators when they are tokens
                    i = (i + 1) / 2;
                }

                if (i == 1) {
                    // list matched single item
                    if (had_trailing_sep) {
                        // if there was a trailing separator, make a list of a single item
                        push_result_rule(&parser, rule_src_line, rule, i);
                    } else {
                        // just leave single item on stack (ie don't wrap in a list)
                    }
                } else {
                    //printf("done list %s %d %d\n", rule->rule_name, n, i);
                    push_result_rule(&parser, rule_src_line, rule, i);
                }
                break;

            default:
                assert(0);
        }
    }

    mp_parse_node_t result;

    // check if we had a memory error
    if (parser.had_memory_error) {
memory_error:
        *parse_error_kind_out = MP_PARSE_ERROR_MEMORY;
        result = MP_PARSE_NODE_NULL;
        goto finished;

    }

    // check we are at the end of the token stream
    if (!mp_lexer_is_kind(lex, MP_TOKEN_END)) {
        goto syntax_error;
    }

    //printf("--------------\n");
    //result_stack_show(parser);
    //printf("rule stack alloc: %d\n", parser.rule_stack_alloc);
    //printf("result stack alloc: %d\n", parser.result_stack_alloc);
    //printf("number of parse nodes allocated: %d\n", num_parse_nodes_allocated);

    // get the root parse node that we created
    assert(parser.result_stack_top == 1);
    result = parser.result_stack[0];

finished:
    // free the memory that we don't need anymore
    m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc);
    m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc);

    // return the result
    return result;

syntax_error:
    if (mp_lexer_is_kind(lex, MP_TOKEN_INDENT)) {
        *parse_error_kind_out = MP_PARSE_ERROR_UNEXPECTED_INDENT;
    } else if (mp_lexer_is_kind(lex, MP_TOKEN_DEDENT_MISMATCH)) {
        *parse_error_kind_out = MP_PARSE_ERROR_UNMATCHED_UNINDENT;
    } else {
        *parse_error_kind_out = MP_PARSE_ERROR_INVALID_SYNTAX;
#ifdef USE_RULE_NAME
        // debugging: print the rule name that failed and the token
        printf("rule: %s\n", rule->rule_name);
#if MICROPY_DEBUG_PRINTERS
        mp_token_show(mp_lexer_cur(lex));
#endif
#endif
    }
    result = MP_PARSE_NODE_NULL;
    goto finished;
}
コード例 #9
0
ファイル: parse.c プロジェクト: Metallicow/micropython
STATIC void push_result_token(parser_t *parser, const mp_lexer_t *lex) {
    const mp_token_t *tok = mp_lexer_cur(lex);
    mp_parse_node_t pn;
    if (tok->kind == MP_TOKEN_NAME) {
        pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, qstr_from_strn(tok->str, tok->len));
    } else if (tok->kind == MP_TOKEN_NUMBER) {
        bool dec = false;
        bool small_int = true;
        machine_int_t int_val = 0;
        int len = tok->len;
        const char *str = tok->str;
        int base = 0;
        int i = mp_parse_num_base(str, len, &base);
        bool overflow = false;
        for (; i < len; i++) {
            int dig;
            if (unichar_isdigit(str[i]) && str[i] - '0' < base) {
                dig = str[i] - '0';
            } else if (base == 16 && 'a' <= str[i] && str[i] <= 'f') {
                dig = str[i] - 'a' + 10;
            } else if (base == 16 && 'A' <= str[i] && str[i] <= 'F') {
                dig = str[i] - 'A' + 10;
            } else if (str[i] == '.' || str[i] == 'e' || str[i] == 'E' || str[i] == 'j' || str[i] == 'J') {
                dec = true;
                break;
            } else {
                small_int = false;
                break;
            }
            // add next digi and check for overflow
            if (mp_small_int_mul_overflow(int_val, base)) {
                overflow = true;
            }
            int_val = int_val * base + dig;
            if (!MP_SMALL_INT_FITS(int_val)) {
                overflow = true;
            }
        }
        if (dec) {
            pn = mp_parse_node_new_leaf(MP_PARSE_NODE_DECIMAL, qstr_from_strn(str, len));
        } else if (small_int && !overflow && MP_SMALL_INT_FITS(int_val)) {
            pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, int_val);
        } else {
            pn = mp_parse_node_new_leaf(MP_PARSE_NODE_INTEGER, qstr_from_strn(str, len));
        }
    } else if (tok->kind == MP_TOKEN_STRING) {
        // Don't automatically intern all strings.  doc strings (which are usually large)
        // will be discarded by the compiler, and so we shouldn't intern them.
        qstr qst = MP_QSTR_NULL;
        if (tok->len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) {
            // intern short strings
            qst = qstr_from_strn(tok->str, tok->len);
        } else {
            // check if this string is already interned
            qst = qstr_find_strn(tok->str, tok->len);
        }
        if (qst != MP_QSTR_NULL) {
            // qstr exists, make a leaf node
            pn = mp_parse_node_new_leaf(MP_PARSE_NODE_STRING, qst);
        } else {
            // not interned, make a node holding a pointer to the string data
            push_result_string(parser, mp_lexer_cur(lex)->src_line, tok->str, tok->len);
            return;
        }
    } else if (tok->kind == MP_TOKEN_BYTES) {
        pn = mp_parse_node_new_leaf(MP_PARSE_NODE_BYTES, qstr_from_strn(tok->str, tok->len));
    } else {
        pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, tok->kind);
    }
    push_result_node(parser, pn);
}