static void bug20090227 (void) { mpfr_t x, y, r1, r2; int inex1, inex2; mpfr_init2 (x, 118); mpfr_init2 (y, 181); mpfr_init2 (r1, 140); mpfr_init2 (r2, 140); mpfr_set_si (x, -1, MPFR_RNDN); mpfr_set_str_binary (y, "1.100100100001111110110101010001000100001011010001100001000110100110001001100011001100010100010111000000011011100000111001101000100101001000000100100111000001000100010100110011111010"); inex1 = mpfr_remainder (r1, x, y, MPFR_RNDU); /* since the quotient is -1, r1 is the rounding of x+y */ inex2 = mpfr_add (r2, x, y, MPFR_RNDU); if (mpfr_cmp (r1, r2)) { printf ("Error in mpfr_remainder (bug20090227)\n"); printf ("Expected "); mpfr_dump (r2); printf ("Got "); mpfr_dump (r1); exit (1); } mpfr_clear (x); mpfr_clear (y); mpfr_clear (r1); mpfr_clear (r2); }
real remainder(const real & a, const real & b) { real x; mpfr_remainder(x.r, a.r, b.r, MPFR_RNDN); return x; }
SeedValue seed_mpfr_remainder (SeedContext ctx, SeedObject function, SeedObject this_object, gsize argument_count, const SeedValue args[], SeedException *exception) { mpfr_rnd_t rnd; mpfr_ptr rop, op1, op2; gint ret; CHECK_ARG_COUNT("mpfr.remainder", 3); rop = seed_object_get_private(this_object); rnd = seed_value_to_mpfr_rnd_t(ctx, args[2], exception); if ( seed_value_is_object_of_class(ctx, args[0], mpfr_class) && seed_value_is_object_of_class(ctx, args[1], mpfr_class)) { op1 = seed_object_get_private(args[0]); op2 = seed_object_get_private(args[1]); } else { TYPE_EXCEPTION("mpfr.remainder", "mpfr_t"); } ret = mpfr_remainder(rop, op1, op2, rnd); return seed_value_from_int(ctx, ret, exception); }
int main (int argc, char *argv[]) { mpfr_t x, y, r; long q[1]; if (argc == 3) /* usage: tremquo x y (rnd=MPFR_RNDN implicit) */ { mpfr_init2 (x, GMP_NUMB_BITS); mpfr_init2 (y, GMP_NUMB_BITS); mpfr_init2 (r, GMP_NUMB_BITS); mpfr_set_str (x, argv[1], 10, MPFR_RNDN); mpfr_set_str (y, argv[2], 10, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); printf ("r="); mpfr_out_str (stdout, 10, 0, r, MPFR_RNDN); printf (" q=%ld\n", q[0]); mpfr_clear (x); mpfr_clear (y); mpfr_clear (r); return 0; } tests_start_mpfr (); bug20090227 (); mpfr_init (x); mpfr_init (y); mpfr_init (r); /* special values */ mpfr_set_nan (x); mpfr_set_ui (y, 1, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN(mpfr_nan_p (r)); mpfr_set_ui (x, 1, MPFR_RNDN); mpfr_set_nan (y); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN(mpfr_nan_p (r)); mpfr_set_inf (x, 1); /* +Inf */ mpfr_set_ui (y, 1, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_nan_p (r)); mpfr_set_inf (x, 1); /* +Inf */ mpfr_set_ui (y, 0, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_nan_p (r)); mpfr_set_inf (x, 1); /* +Inf */ mpfr_set_inf (y, 1); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_nan_p (r)); mpfr_set_ui (x, 0, MPFR_RNDN); mpfr_set_inf (y, 1); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_ui (r, 0) == 0 && MPFR_IS_POS (r)); MPFR_ASSERTN (q[0] == (long) 0); mpfr_set_ui (x, 0, MPFR_RNDN); mpfr_neg (x, x, MPFR_RNDN); /* -0 */ mpfr_set_inf (y, 1); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_ui (r, 0) == 0 && MPFR_IS_NEG (r)); MPFR_ASSERTN (q[0] == (long) 0); mpfr_set_ui (x, 17, MPFR_RNDN); mpfr_set_inf (y, 1); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp (r, x) == 0); MPFR_ASSERTN (q[0] == (long) 0); mpfr_set_ui (x, 17, MPFR_RNDN); mpfr_set_ui (y, 0, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_nan_p (r)); mpfr_set_ui (x, 0, MPFR_RNDN); mpfr_set_ui (y, 17, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_ui (r, 0) == 0 && MPFR_IS_POS (r)); MPFR_ASSERTN (q[0] == (long) 0); mpfr_set_ui (x, 0, MPFR_RNDN); mpfr_neg (x, x, MPFR_RNDN); mpfr_set_ui (y, 17, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_ui (r, 0) == 0 && MPFR_IS_NEG (r)); MPFR_ASSERTN (q[0] == (long) 0); mpfr_set_prec (x, 53); mpfr_set_prec (y, 53); /* check four possible sign combinations */ mpfr_set_ui (x, 42, MPFR_RNDN); mpfr_set_ui (y, 17, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_ui (r, 8) == 0); MPFR_ASSERTN (q[0] == (long) 2); mpfr_set_si (x, -42, MPFR_RNDN); mpfr_set_ui (y, 17, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_si (r, -8) == 0); MPFR_ASSERTN (q[0] == (long) -2); mpfr_set_si (x, -42, MPFR_RNDN); mpfr_set_si (y, -17, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_si (r, -8) == 0); MPFR_ASSERTN (q[0] == (long) 2); mpfr_set_ui (x, 42, MPFR_RNDN); mpfr_set_si (y, -17, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_ui (r, 8) == 0); MPFR_ASSERTN (q[0] == (long) -2); mpfr_set_prec (x, 100); mpfr_set_prec (y, 50); mpfr_set_ui (x, 42, MPFR_RNDN); mpfr_nextabove (x); /* 42 + 2^(-94) */ mpfr_set_ui (y, 21, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_ui_2exp (r, 1, -94) == 0); MPFR_ASSERTN (q[0] == (long) 2); mpfr_set_prec (x, 50); mpfr_set_prec (y, 100); mpfr_set_ui (x, 42, MPFR_RNDN); mpfr_nextabove (x); /* 42 + 2^(-44) */ mpfr_set_ui (y, 21, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_ui_2exp (r, 1, -44) == 0); MPFR_ASSERTN (q[0] == (long) 2); mpfr_set_prec (x, 100); mpfr_set_prec (y, 50); mpfr_set_ui (x, 42, MPFR_RNDN); mpfr_set_ui (y, 21, MPFR_RNDN); mpfr_nextabove (y); /* 21 + 2^(-45) */ mpfr_remquo (r, q, x, y, MPFR_RNDN); /* r should be 42 - 2*(21 + 2^(-45)) = -2^(-44) */ MPFR_ASSERTN (mpfr_cmp_si_2exp (r, -1, -44) == 0); MPFR_ASSERTN (q[0] == (long) 2); mpfr_set_prec (x, 50); mpfr_set_prec (y, 100); mpfr_set_ui (x, 42, MPFR_RNDN); mpfr_set_ui (y, 21, MPFR_RNDN); mpfr_nextabove (y); /* 21 + 2^(-95) */ mpfr_remquo (r, q, x, y, MPFR_RNDN); /* r should be 42 - 2*(21 + 2^(-95)) = -2^(-94) */ MPFR_ASSERTN (mpfr_cmp_si_2exp (r, -1, -94) == 0); MPFR_ASSERTN (q[0] == (long) 2); /* exercise large quotient */ mpfr_set_ui_2exp (x, 1, 65, MPFR_RNDN); mpfr_set_ui (y, 1, MPFR_RNDN); /* quotient is 2^65 */ mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_si (r, 0) == 0); MPFR_ASSERTN (q[0] % 1073741824L == 0L); /* another large quotient */ mpfr_set_prec (x, 65); mpfr_set_prec (y, 65); mpfr_const_pi (x, MPFR_RNDN); mpfr_mul_2exp (x, x, 63, MPFR_RNDN); mpfr_const_log2 (y, MPFR_RNDN); mpfr_set_prec (r, 10); mpfr_remquo (r, q, x, y, MPFR_RNDN); /* q should be 41803643793084085130, r should be 605/2048 */ MPFR_ASSERTN (mpfr_cmp_ui_2exp (r, 605, -11) == 0); MPFR_ASSERTN ((q[0] > 0) && ((q[0] % 1073741824L) == 733836170L)); /* check cases where quotient is 1.5 +/- eps */ mpfr_set_prec (x, 65); mpfr_set_prec (y, 65); mpfr_set_prec (r, 63); mpfr_set_ui (x, 3, MPFR_RNDN); mpfr_set_ui (y, 2, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); /* x/y = 1.5, quotient should be 2 (even rule), remainder should be -1 */ MPFR_ASSERTN (mpfr_cmp_si (r, -1) == 0); MPFR_ASSERTN (q[0] == 2L); mpfr_set_ui (x, 3, MPFR_RNDN); mpfr_nextabove (x); /* 3 + 2^(-63) */ mpfr_set_ui (y, 2, MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); /* x/y = 1.5 + 2^(-64), quo should be 2, r should be -1 + 2^(-63) */ MPFR_ASSERTN (mpfr_add_ui (r, r, 1, MPFR_RNDN) == 0); MPFR_ASSERTN (mpfr_cmp_ui_2exp (r, 1, -63) == 0); MPFR_ASSERTN (q[0] == 2L); mpfr_set_ui (x, 3, MPFR_RNDN); mpfr_set_ui (y, 2, MPFR_RNDN); mpfr_nextabove (y); /* 2 + 2^(-63) */ mpfr_remquo (r, q, x, y, MPFR_RNDN); /* x/y = 1.5 - eps, quo should be 1, r should be 1 - 2^(-63) */ MPFR_ASSERTN (mpfr_sub_ui (r, r, 1, MPFR_RNDN) == 0); MPFR_ASSERTN (mpfr_cmp_si_2exp (r, -1, -63) == 0); MPFR_ASSERTN (q[0] == 1L); /* bug founds by Kaveh Ghazi, 3 May 2007 */ mpfr_set_ui (x, 2, MPFR_RNDN); mpfr_set_ui (y, 3, MPFR_RNDN); mpfr_remainder (r, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_si (r, -1) == 0); mpfr_set_si (x, -1, MPFR_RNDN); mpfr_set_ui (y, 1, MPFR_RNDN); mpfr_remainder (r, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_si (r, 0) == 0 && MPFR_SIGN (r) < 0); /* check argument reuse */ mpfr_set_si (x, -1, MPFR_RNDN); mpfr_set_ui (y, 1, MPFR_RNDN); mpfr_remainder (x, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_si (x, 0) == 0 && MPFR_SIGN (x) < 0); mpfr_set_ui_2exp (x, 1, mpfr_get_emax () - 1, MPFR_RNDN); mpfr_set_ui_2exp (y, 1, mpfr_get_emin (), MPFR_RNDN); mpfr_remquo (r, q, x, y, MPFR_RNDN); MPFR_ASSERTN (mpfr_zero_p (r) && MPFR_SIGN (r) > 0); MPFR_ASSERTN (q[0] == 0); mpfr_clear (x); mpfr_clear (y); mpfr_clear (r); tests_end_mpfr (); return 0; }
/* (y, z) <- (sin(x), cos(x)), return value is 0 iff both results are exact ie, iff x = 0 */ int mpfr_sin_cos (mpfr_ptr y, mpfr_ptr z, mpfr_srcptr x, mp_rnd_t rnd_mode) { mp_prec_t prec, m; int neg, reduce; mpfr_t c, xr; mpfr_srcptr xx; mp_exp_t err, expx; MPFR_ZIV_DECL (loop); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN(x) || MPFR_IS_INF(x)) { MPFR_SET_NAN (y); MPFR_SET_NAN (z); MPFR_RET_NAN; } else /* x is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (y); MPFR_SET_SAME_SIGN (y, x); /* y = 0, thus exact, but z is inexact in case of underflow or overflow */ return mpfr_set_ui (z, 1, rnd_mode); } } MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode), ("sin[%#R]=%R cos[%#R]=%R", y, y, z, z)); prec = MAX (MPFR_PREC (y), MPFR_PREC (z)); m = prec + MPFR_INT_CEIL_LOG2 (prec) + 13; expx = MPFR_GET_EXP (x); mpfr_init (c); mpfr_init (xr); MPFR_ZIV_INIT (loop, m); for (;;) { /* the following is copied from sin.c */ if (expx >= 2) /* reduce the argument */ { reduce = 1; mpfr_set_prec (c, expx + m - 1); mpfr_set_prec (xr, m); mpfr_const_pi (c, GMP_RNDN); mpfr_mul_2ui (c, c, 1, GMP_RNDN); mpfr_remainder (xr, x, c, GMP_RNDN); mpfr_div_2ui (c, c, 1, GMP_RNDN); if (MPFR_SIGN (xr) > 0) mpfr_sub (c, c, xr, GMP_RNDZ); else mpfr_add (c, c, xr, GMP_RNDZ); if (MPFR_IS_ZERO(xr) || MPFR_EXP(xr) < (mp_exp_t) 3 - (mp_exp_t) m || MPFR_EXP(c) < (mp_exp_t) 3 - (mp_exp_t) m) goto next_step; xx = xr; } else /* the input argument is already reduced */ { reduce = 0; xx = x; } neg = MPFR_IS_NEG (xx); /* gives sign of sin(x) */ mpfr_set_prec (c, m); mpfr_cos (c, xx, GMP_RNDZ); /* If no argument reduction was performed, the error is at most ulp(c), otherwise it is at most ulp(c) + 2^(2-m). Since |c| < 1, we have ulp(c) <= 2^(-m), thus the error is bounded by 2^(3-m) in that later case. */ if (reduce == 0) err = m; else err = MPFR_GET_EXP (c) + (mp_exp_t) (m - 3); if (!mpfr_can_round (c, err, GMP_RNDN, rnd_mode, MPFR_PREC (z) + (rnd_mode == GMP_RNDN))) goto next_step; mpfr_set (z, c, rnd_mode); mpfr_sqr (c, c, GMP_RNDU); mpfr_ui_sub (c, 1, c, GMP_RNDN); err = 2 + (- MPFR_GET_EXP (c)) / 2; mpfr_sqrt (c, c, GMP_RNDN); if (neg) MPFR_CHANGE_SIGN (c); /* the absolute error on c is at most 2^(err-m), which we must put in the form 2^(EXP(c)-err). If there was an argument reduction, we need to add 2^(2-m); since err >= 2, the error is bounded by 2^(err+1-m) in that case. */ err = MPFR_GET_EXP (c) + (mp_exp_t) m - (err + reduce); if (mpfr_can_round (c, err, GMP_RNDN, rnd_mode, MPFR_PREC (y) + (rnd_mode == GMP_RNDN))) break; /* check for huge cancellation */ if (err < (mp_exp_t) MPFR_PREC (y)) m += MPFR_PREC (y) - err; /* Check if near 1 */ if (MPFR_GET_EXP (c) == 1 && MPFR_MANT (c)[MPFR_LIMB_SIZE (c)-1] == MPFR_LIMB_HIGHBIT) m += m; next_step: MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (c, m); } MPFR_ZIV_FREE (loop); mpfr_set (y, c, rnd_mode); mpfr_clear (c); mpfr_clear (xr); MPFR_RET (1); /* Always inexact */ }
int mpfr_cos (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_prec_t K0, K, precy, m, k, l; int inexact, reduce = 0; mpfr_t r, s, xr, c; mpfr_exp_t exps, cancel = 0, expx; MPFR_ZIV_DECL (loop); MPFR_SAVE_EXPO_DECL (expo); MPFR_GROUP_DECL (group); MPFR_LOG_FUNC ( ("x[%Pu]=%*.Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode), ("y[%Pu]=%*.Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x) || MPFR_IS_INF (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else { MPFR_ASSERTD (MPFR_IS_ZERO (x)); return mpfr_set_ui (y, 1, rnd_mode); } } MPFR_SAVE_EXPO_MARK (expo); /* cos(x) = 1-x^2/2 + ..., so error < 2^(2*EXP(x)-1) */ expx = MPFR_GET_EXP (x); MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, -2 * expx, 1, 0, rnd_mode, expo, {}); /* Compute initial precision */ precy = MPFR_PREC (y); if (precy >= MPFR_SINCOS_THRESHOLD) { MPFR_SAVE_EXPO_FREE (expo); return mpfr_cos_fast (y, x, rnd_mode); } K0 = __gmpfr_isqrt (precy / 3); m = precy + 2 * MPFR_INT_CEIL_LOG2 (precy) + 2 * K0; if (expx >= 3) { reduce = 1; /* As expx + m - 1 will silently be converted into mpfr_prec_t in the mpfr_init2 call, the assert below may be useful to avoid undefined behavior. */ MPFR_ASSERTN (expx + m - 1 <= MPFR_PREC_MAX); mpfr_init2 (c, expx + m - 1); mpfr_init2 (xr, m); } MPFR_GROUP_INIT_2 (group, m, r, s); MPFR_ZIV_INIT (loop, m); for (;;) { /* If |x| >= 4, first reduce x cmod (2*Pi) into xr, using mpfr_remainder: let e = EXP(x) >= 3, and m the target precision: (1) c <- 2*Pi [precision e+m-1, nearest] (2) xr <- remainder (x, c) [precision m, nearest] We have |c - 2*Pi| <= 1/2ulp(c) = 2^(3-e-m) |xr - x - k c| <= 1/2ulp(xr) <= 2^(1-m) |k| <= |x|/(2*Pi) <= 2^(e-2) Thus |xr - x - 2kPi| <= |k| |c - 2Pi| + 2^(1-m) <= 2^(2-m). It follows |cos(xr) - cos(x)| <= 2^(2-m). */ if (reduce) { mpfr_const_pi (c, MPFR_RNDN); mpfr_mul_2ui (c, c, 1, MPFR_RNDN); /* 2Pi */ mpfr_remainder (xr, x, c, MPFR_RNDN); if (MPFR_IS_ZERO(xr)) goto ziv_next; /* now |xr| <= 4, thus r <= 16 below */ mpfr_mul (r, xr, xr, MPFR_RNDU); /* err <= 1 ulp */ } else mpfr_mul (r, x, x, MPFR_RNDU); /* err <= 1 ulp */ /* now |x| < 4 (or xr if reduce = 1), thus |r| <= 16 */ /* we need |r| < 1/2 for mpfr_cos2_aux, i.e., EXP(r) - 2K <= -1 */ K = K0 + 1 + MAX(0, MPFR_GET_EXP(r)) / 2; /* since K0 >= 0, if EXP(r) < 0, then K >= 1, thus EXP(r) - 2K <= -3; otherwise if EXP(r) >= 0, then K >= 1/2 + EXP(r)/2, thus EXP(r) - 2K <= -1 */ MPFR_SET_EXP (r, MPFR_GET_EXP (r) - 2 * K); /* Can't overflow! */ /* s <- 1 - r/2! + ... + (-1)^l r^l/(2l)! */ l = mpfr_cos2_aux (s, r); /* l is the error bound in ulps on s */ MPFR_SET_ONE (r); for (k = 0; k < K; k++) { mpfr_sqr (s, s, MPFR_RNDU); /* err <= 2*olderr */ MPFR_SET_EXP (s, MPFR_GET_EXP (s) + 1); /* Can't overflow */ mpfr_sub (s, s, r, MPFR_RNDN); /* err <= 4*olderr */ if (MPFR_IS_ZERO(s)) goto ziv_next; MPFR_ASSERTD (MPFR_GET_EXP (s) <= 1); } /* The absolute error on s is bounded by (2l+1/3)*2^(2K-m) 2l+1/3 <= 2l+1. If |x| >= 4, we need to add 2^(2-m) for the argument reduction by 2Pi: if K = 0, this amounts to add 4 to 2l+1/3, i.e., to add 2 to l; if K >= 1, this amounts to add 1 to 2*l+1/3. */ l = 2 * l + 1; if (reduce) l += (K == 0) ? 4 : 1; k = MPFR_INT_CEIL_LOG2 (l) + 2*K; /* now the error is bounded by 2^(k-m) = 2^(EXP(s)-err) */ exps = MPFR_GET_EXP (s); if (MPFR_LIKELY (MPFR_CAN_ROUND (s, exps + m - k, precy, rnd_mode))) break; if (MPFR_UNLIKELY (exps == 1)) /* s = 1 or -1, and except x=0 which was already checked above, cos(x) cannot be 1 or -1, so we can round if the error is less than 2^(-precy) for directed rounding, or 2^(-precy-1) for rounding to nearest. */ { if (m > k && (m - k >= precy + (rnd_mode == MPFR_RNDN))) { /* If round to nearest or away, result is s = 1 or -1, otherwise it is round(nexttoward (s, 0)). However in order to have the inexact flag correctly set below, we set |s| to 1 - 2^(-m) in all cases. */ mpfr_nexttozero (s); break; } } if (exps < cancel) { m += cancel - exps; cancel = exps; } ziv_next: MPFR_ZIV_NEXT (loop, m); MPFR_GROUP_REPREC_2 (group, m, r, s); if (reduce) { mpfr_set_prec (xr, m); mpfr_set_prec (c, expx + m - 1); } } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); MPFR_GROUP_CLEAR (group); if (reduce) { mpfr_clear (xr); mpfr_clear (c); } MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }
int mpfr_sin (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_t c, xr; mpfr_srcptr xx; mpfr_exp_t expx, err; mpfr_prec_t precy, m; int inexact, sign, reduce; MPFR_ZIV_DECL (loop); MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode), ("y[%#R]=%R inexact=%d", y, y, inexact)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x) || MPFR_IS_INF (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else /* x is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (y); MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); } } /* sin(x) = x - x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -2 * MPFR_GET_EXP (x), 2, 0, rnd_mode, {}); MPFR_SAVE_EXPO_MARK (expo); /* Compute initial precision */ precy = MPFR_PREC (y); if (precy >= MPFR_SINCOS_THRESHOLD) return mpfr_sin_fast (y, x, rnd_mode); m = precy + MPFR_INT_CEIL_LOG2 (precy) + 13; expx = MPFR_GET_EXP (x); mpfr_init (c); mpfr_init (xr); MPFR_ZIV_INIT (loop, m); for (;;) { /* first perform argument reduction modulo 2*Pi (if needed), also helps to determine the sign of sin(x) */ if (expx >= 2) /* If Pi < x < 4, we need to reduce too, to determine the sign of sin(x). For 2 <= |x| < Pi, we could avoid the reduction. */ { reduce = 1; /* As expx + m - 1 will silently be converted into mpfr_prec_t in the mpfr_set_prec call, the assert below may be useful to avoid undefined behavior. */ MPFR_ASSERTN (expx + m - 1 <= MPFR_PREC_MAX); mpfr_set_prec (c, expx + m - 1); mpfr_set_prec (xr, m); mpfr_const_pi (c, MPFR_RNDN); mpfr_mul_2ui (c, c, 1, MPFR_RNDN); mpfr_remainder (xr, x, c, MPFR_RNDN); /* The analysis is similar to that of cos.c: |xr - x - 2kPi| <= 2^(2-m). Thus we can decide the sign of sin(x) if xr is at distance at least 2^(2-m) of both 0 and +/-Pi. */ mpfr_div_2ui (c, c, 1, MPFR_RNDN); /* Since c approximates Pi with an error <= 2^(2-expx-m) <= 2^(-m), it suffices to check that c - |xr| >= 2^(2-m). */ if (MPFR_SIGN (xr) > 0) mpfr_sub (c, c, xr, MPFR_RNDZ); else mpfr_add (c, c, xr, MPFR_RNDZ); if (MPFR_IS_ZERO(xr) || MPFR_EXP(xr) < (mpfr_exp_t) 3 - (mpfr_exp_t) m || MPFR_EXP(c) < (mpfr_exp_t) 3 - (mpfr_exp_t) m) goto ziv_next; /* |xr - x - 2kPi| <= 2^(2-m), thus |sin(xr) - sin(x)| <= 2^(2-m) */ xx = xr; } else /* the input argument is already reduced */ { reduce = 0; xx = x; } sign = MPFR_SIGN(xx); /* now that the argument is reduced, precision m is enough */ mpfr_set_prec (c, m); mpfr_cos (c, xx, MPFR_RNDZ); /* can't be exact */ mpfr_nexttoinf (c); /* now c = cos(x) rounded away */ mpfr_mul (c, c, c, MPFR_RNDU); /* away */ mpfr_ui_sub (c, 1, c, MPFR_RNDZ); mpfr_sqrt (c, c, MPFR_RNDZ); if (MPFR_IS_NEG_SIGN(sign)) MPFR_CHANGE_SIGN(c); /* Warning: c may be 0! */ if (MPFR_UNLIKELY (MPFR_IS_ZERO (c))) { /* Huge cancellation: increase prec a lot! */ m = MAX (m, MPFR_PREC (x)); m = 2 * m; } else { /* the absolute error on c is at most 2^(3-m-EXP(c)), plus 2^(2-m) if there was an argument reduction. Since EXP(c) <= 1, 3-m-EXP(c) >= 2-m, thus the error is at most 2^(3-m-EXP(c)) in case of argument reduction. */ err = 2 * MPFR_GET_EXP (c) + (mpfr_exp_t) m - 3 - (reduce != 0); if (MPFR_CAN_ROUND (c, err, precy, rnd_mode)) break; /* check for huge cancellation (Near 0) */ if (err < (mpfr_exp_t) MPFR_PREC (y)) m += MPFR_PREC (y) - err; /* Check if near 1 */ if (MPFR_GET_EXP (c) == 1) m += m; } ziv_next: /* Else generic increase */ MPFR_ZIV_NEXT (loop, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, c, rnd_mode); /* inexact cannot be 0, since this would mean that c was representable within the target precision, but in that case mpfr_can_round will fail */ mpfr_clear (c); mpfr_clear (xr); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }