コード例 #1
0
ファイル: 3dDespike.c プロジェクト: ccraddock/afni
MRI_IMAGE * DES_get_psinv( int ntim , int nref , float **ref )
{
   MRI_IMAGE *refim , *psinv ; float *refar , *jar ; int ii , jj ;

   refim = mri_new(ntim,nref,MRI_float) ;
   refar = MRI_FLOAT_PTR(refim) ;
   for( jj=0 ; jj < nref ; jj++ ){
     jar = refar + jj*ntim ;
     for( ii=0 ; ii < ntim ; ii++ ) jar[ii] = ref[jj][ii] ;
   }
   mri_matrix_psinv_svd(1) ;
   psinv = mri_matrix_psinv(refim,NULL,0.0f) ;
   mri_free(refim) ;
   return psinv ;
}
コード例 #2
0
ファイル: 3dmaskSVD.c プロジェクト: CesarCaballeroGaudes/afni
int main( int argc , char *argv[] )
{
   THD_3dim_dataset *inset=NULL ;
   byte *mask=NULL ; int mask_nx=0,mask_ny=0,mask_nz=0 , automask=0 , masknum=0 ;
   int iarg=1 , verb=1 , ntype=0 , nev,kk,ii,nxyz,nt ;
   float na,nb,nc , dx,dy,dz ;
   MRI_IMARR *imar=NULL ; int *ivox ; MRI_IMAGE *pim ;
   int do_vmean=0 , do_vnorm=0 , sval_itop=0 ;
   int polort=-1 ; float *ev ;
   MRI_IMARR *ortar ; MRI_IMAGE *ortim ; int nyort=0 ;
   float bpass_L=0.0f , bpass_H=0.0f , dtime ; int do_bpass=0 ;

   if( argc < 2 || strcmp(argv[1],"-help") == 0 ){
     printf(
       "Usage:  3dmaskSVD [options] inputdataset\n"
       "Author: Zhark the Gloriously Singular\n"
       "\n"
       "* Computes the principal singular vector of the time series\n"
       "    vectors extracted from the input dataset over the input mask.\n"
       "  ++ You can use the '-sval' option to change which singular\n"
       "     vectors are output.\n"
       "* The sign of the output vector is chosen so that the average\n"
       "    of arctanh(correlation coefficient) over all input data\n"
       "    vectors (from the mask) is positive.\n"
       "* The output vector is normalized: the sum of its components\n"
       "    squared is 1.\n"
       "* You probably want to use 3dDetrend (or something similar) first,\n"
       "    to get rid of annoying artifacts, such as motion, breathing,\n"
       "    dark matter interactions with the brain, etc.\n"
       "  ++ If you are lazy scum like Zhark, you might be able to get\n"
       "     away with using the '-polort' option.\n"
       "  ++ In particular, if your data time series has a nonzero mean,\n"
       "     then you probably want at least '-polort 0' to remove the\n"
       "     mean, otherwise you'll pretty much just get a constant\n"
       "     time series as the principal singular vector!\n"
       "* An alternative to this program would be 3dmaskdump followed\n"
       "    by 1dsvd, which could give you all the singular vectors you\n"
       "    could ever want, and much more -- enough to confuse you for days.\n"
       "  ++ In particular, although you COULD input a 1D file into\n"
       "     3dmaskSVD, the 1dsvd program would make much more sense.\n"
       "* This program will be pretty slow if there are over about 2000\n"
       "    voxels in the mask.  It could be made more efficient for\n"
       "    such cases, but you'll have to give Zhark some 'incentive'.\n"
       "* Result vector goes to stdout.  Redirect per your pleasures and needs.\n"
       "* Also see program 3dLocalSVD if you want to compute the principal\n"
       "    singular time series vector from a neighborhood of EACH voxel.\n"
       "  ++ (Which is a pretty slow operation!)\n"
       "* http://en.wikipedia.org/wiki/Singular_value_decomposition\n"
       "\n"
       "-------\n"
       "Options:\n"
       "-------\n"
       " -vnorm      = L2 normalize all time series before SVD [recommended!]\n"
       " -sval a     = output singular vectors 0 .. a [default a=0 = first one only]\n"
       " -mask mset  = define the mask [default is entire dataset == slow!]\n"
       " -automask   = you'll have to guess what this option does\n"
       " -polort p   = if you are lazy and didn't run 3dDetrend (like Zhark)\n"
       " -bpass L H  = bandpass [mutually exclusive with -polort]\n"
       " -ort xx.1D  = time series to remove from the data before SVD-ization\n"
       "               ++ You can give more than 1 '-ort' option\n"
       "               ++ 'xx.1D' can contain more than 1 column\n"
       " -input ddd  = alternative way to give the input dataset name\n"
       "\n"
       "-------\n"
       "Example:\n"
       "-------\n"
       " You have a mask dataset with discrete values 1, 2, ... 77 indicating\n"
       " some ROIs; you want to get the SVD from each ROI's time series separately,\n"
       " and then put these into 1 big 77 column .1D file.  You can do this using\n"
       " a csh shell script like the one below:\n"
       "\n"
       " # Compute the individual SVD vectors\n"
       " foreach mm ( `count 1 77` )\n"
       "   3dmaskSVD -vnorm -mask mymask+orig\"<${mm}..${mm}>\" epi+orig > qvec${mm}.1D\n"
       " end\n"
       " # Glue them together into 1 big file, then delete the individual files\n"
       " 1dcat qvec*.1D > allvec.1D\n"
       " /bin/rm -f qvec*.1D\n"
       " # Plot the results to a JPEG file, then compute their correlation matrix\n"
       " 1dplot -one -nopush -jpg allvec.jpg allvec.1D\n"
       " 1ddot -terse allvec.1D > allvec_COR.1D\n"
       "\n"
       " [[ If you use the bash shell,  you'll have to figure out the syntax ]]\n"
       " [[ yourself. Zhark has no sympathy for you bash shell infidels, and ]]\n"
       " [[ considers you only slightly better than those lowly Emacs users. ]]\n"
       " [[ And do NOT ever even mention 'nedit' in Zhark's august presence! ]]\n"
     ) ;
     PRINT_COMPILE_DATE ; exit(0) ;
   }

   /*---- official startup ---*/

   PRINT_VERSION("3dmaskSVD"); mainENTRY("3dmaskSVD main"); machdep();
   AFNI_logger("3dmaskSVD",argc,argv); AUTHOR("Zhark the Singular");

   /*---- loop over options ----*/

   INIT_IMARR(ortar) ;

   mpv_sign_meth = AFNI_yesenv("AFNI_3dmaskSVD_meansign") ;

   while( iarg < argc && argv[iarg][0] == '-' ){

     if( strcasecmp(argv[iarg],"-bpass") == 0 ){
       if( iarg+2 >= argc ) ERROR_exit("need 2 args after -bpass") ;
       bpass_L = (float)strtod(argv[++iarg],NULL) ;
       bpass_H = (float)strtod(argv[++iarg],NULL) ;
       if( bpass_L < 0.0f || bpass_H <= bpass_L )
         ERROR_exit("Illegal values after -bpass: %g %g",bpass_L,bpass_H) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-ort") == 0 ){  /* 01 Oct 2009 */
       int nx,ny ;
       if( ++iarg >= argc ) ERROR_exit("Need argument after '-ort'") ;
       ortim = mri_read_1D( argv[iarg] ) ;
       if( ortim == NULL ) ERROR_exit("-ort '%s': Can't read 1D file",argv[iarg]) ;
       nx = ortim->nx ; ny = ortim->ny ;
       if( nx == 1 && ny > 1 ){
         MRI_IMAGE *tim=mri_transpose(ortim); mri_free(ortim); ortim = tim; ny = 1;
       }
       mri_add_name(argv[iarg],ortim) ; ADDTO_IMARR(ortar,ortim) ; nyort += ny ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-polort") == 0 ){
       char *qpt ;
       if( ++iarg >= argc ) ERROR_exit("Need argument after '-polort'") ;
       polort = (int)strtod(argv[iarg],&qpt) ;
       if( *qpt != '\0' ) WARNING_message("Illegal non-numeric value after -polort") ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-vnorm") == 0 ){
       do_vnorm = 1 ; iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-input") == 0 ){
       if( inset != NULL  ) ERROR_exit("Can't have two -input options") ;
       if( ++iarg >= argc ) ERROR_exit("Need argument after '-input'") ;
       inset = THD_open_dataset( argv[iarg] ) ;
       CHECK_OPEN_ERROR(inset,argv[iarg]) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-sval") == 0 ){
       if( ++iarg >= argc ) ERROR_exit("Need argument after '-sval'") ;
       sval_itop = (int)strtod(argv[iarg],NULL) ;
       if( sval_itop < 0 ){ sval_itop = 0 ; WARNING_message("'-sval' reset to 0") ; }
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-mask") == 0 ){
       THD_3dim_dataset *mset ; int mmm ;
       if( ++iarg >= argc ) ERROR_exit("Need argument after '-mask'") ;
       if( mask != NULL || automask ) ERROR_exit("Can't have two mask inputs") ;
       mset = THD_open_dataset( argv[iarg] ) ;
       CHECK_OPEN_ERROR(mset,argv[iarg]) ;
       DSET_load(mset) ; CHECK_LOAD_ERROR(mset) ;
       mask_nx = DSET_NX(mset); mask_ny = DSET_NY(mset); mask_nz = DSET_NZ(mset);
       mask = THD_makemask( mset , 0 , 0.5f, 0.0f ) ; DSET_delete(mset) ;
       if( mask == NULL ) ERROR_exit("Can't make mask from dataset '%s'",argv[iarg]) ;
       masknum = mmm = THD_countmask( mask_nx*mask_ny*mask_nz , mask ) ;
       INFO_message("Number of voxels in mask = %d",mmm) ;
       if( mmm < 2 ) ERROR_exit("Mask is too small to process") ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-automask") == 0 ){
       if( mask != NULL ) ERROR_exit("Can't have two mask inputs!") ;
       automask = 1 ; iarg++ ; continue ;
     }

     ERROR_exit("Unknown option '%s'",argv[iarg]) ;

   } /*--- end of loop over options ---*/

   /*---- deal with input dataset ----*/

   if( inset == NULL ){
     if( iarg >= argc ) ERROR_exit("No input dataset on command line?") ;
     inset = THD_open_dataset( argv[iarg] ) ;
     CHECK_OPEN_ERROR(inset,argv[iarg]) ;
   }
   nt = DSET_NVALS(inset) ;  /* vector lengths */
   if( nt < 9 )
     ERROR_exit("Must have at least 9 values per voxel") ;
   if( polort+1 >= nt )
     ERROR_exit("'-polort %d' too big for time series length = %d",polort,nt) ;

   DSET_load(inset) ; CHECK_LOAD_ERROR(inset) ;
   nxyz = DSET_NVOX(inset) ;

   DSET_UNMSEC(inset) ;
   dtime = DSET_TR(inset) ;
   if( dtime <= 0.0f ) dtime = 1.0f ;
   do_bpass = (bpass_L < bpass_H) ;
   if( do_bpass ){
     kk = THD_bandpass_OK( nt , dtime , bpass_L , bpass_H , 1 ) ;
     if( kk <= 0 ) ERROR_exit("Can't continue since -bpass setup is illegal") ;
     polort = -1 ;
   }

   /*--- deal with the masking ---*/

   if( mask != NULL ){
     if( mask_nx != DSET_NX(inset) ||
         mask_ny != DSET_NY(inset) ||
         mask_nz != DSET_NZ(inset)   )
       ERROR_exit("-mask dataset grid doesn't match input dataset") ;

   } else if( automask ){
     int mmm ;
     mask = THD_automask( inset ) ;
     if( mask == NULL )
       ERROR_message("Can't create -automask from input dataset?") ;
     masknum = mmm = THD_countmask( DSET_NVOX(inset) , mask ) ;
     INFO_message("Number of voxels in automask = %d",mmm) ;
     if( mmm < 9 ) ERROR_exit("Automask is too small to process") ;
   } else {
     mask = (byte *)malloc(sizeof(byte)*nxyz) ; masknum = nxyz ;
     memset( mask , 1 , sizeof(byte)*nxyz ) ;
     INFO_message("Using all %d voxels in dataset",nxyz) ;
   }

   nev = MIN(nt,masknum) ;  /* max possible number of eigenvalues */
   if( sval_itop >= nev ){
     sval_itop = nev-1 ;
     WARNING_message("'-sval' reset to '%d'",sval_itop) ;
   }
   mri_principal_vector_params( 0 , do_vnorm , sval_itop ) ;
   mri_principal_setev(nev) ;

   /*-- get data vectors --*/

   ivox = (int *)malloc(sizeof(int)*masknum) ;
   for( kk=ii=0 ; ii < nxyz ; ii++ ) if( mask[ii] ) ivox[kk++] = ii ;
   INFO_message("Extracting data vectors") ;
   imar = THD_extract_many_series( masknum, ivox, inset ) ; DSET_unload(inset) ;
   if( imar == NULL ) ERROR_exit("Can't get data vector?!") ;

   /*-- detrending --*/

   if( polort >= 0 || nyort > 0 || do_bpass ){
     float **polref=NULL ; float *tsar ;
     int nort=IMARR_COUNT(ortar) , nref=0 ;

     if( polort >= 0 ){  /* polynomials */
       nref = polort+1 ; polref = THD_build_polyref(nref,nt) ;
     }

     if( nort > 0 ){     /* other orts */
       float *oar , *par ; int nx,ny , qq,tt ;
       for( kk=0 ; kk < nort ; kk++ ){  /* loop over input -ort files */
         ortim = IMARR_SUBIM(ortar,kk) ;
         nx = ortim->nx ; ny = ortim->ny ;
         if( nx < nt )
           ERROR_exit("-ort '%s' length %d shorter than dataset length %d" ,
                      ortim->name , nx , nt ) ;
         polref = (float **)realloc(polref,(nref+ny)*sizeof(float *)) ;
         oar    = MRI_FLOAT_PTR(ortim) ;
         for( qq=0 ; qq < ny ; qq++,oar+=nx ){
           par = polref[nref+qq] = (float *)malloc(sizeof(float)*nt) ;
           for( tt=0 ; tt < nt ; tt++ ) par[tt] = oar[tt] ;
                if( polort == 0 ) THD_const_detrend (nt,par,NULL) ;
           else if( polort >  0 ) THD_linear_detrend(nt,par,NULL,NULL) ;
         }
         nref += ny ;
       }
       DESTROY_IMARR(ortar) ;
     }

     if( !do_bpass ){            /* old style ort-ification */

       MRI_IMAGE *imq , *imp ; float *qar ;
       INFO_message("Detrending data vectors") ;
#if 1
       imq = mri_new( nt , nref , MRI_float) ; qar = MRI_FLOAT_PTR(imq) ;
       for( kk=0 ; kk < nref ; kk++ )
         memcpy( qar+kk*nt , polref[kk] , sizeof(float)*nt ) ;
       imp = mri_matrix_psinv( imq , NULL , 1.e-8 ) ;
       for( kk=0 ; kk < IMARR_COUNT(imar) ; kk++ ){
         mri_matrix_detrend( IMARR_SUBIM(imar,kk) , imq , imp ) ;
       }
       mri_free(imp) ; mri_free(imq) ;
#else
       for( kk=0 ; kk < IMARR_COUNT(imar) ; kk++ ){
         tsar = MRI_FLOAT_PTR(IMARR_SUBIM(imar,kk)) ;
         THD_generic_detrend_LSQ( nt , tsar , -1 , nref , polref , NULL ) ;
       }
#endif

     } else {                   /* bandpass plus (maybe) orts */

       float **vec = (float **)malloc(sizeof(float *)*IMARR_COUNT(imar)) ;
       INFO_message("Bandpassing data vectors") ;
       for( kk=0 ; kk < IMARR_COUNT(imar) ; kk++ )
         vec[kk] = MRI_FLOAT_PTR(IMARR_SUBIM(imar,kk)) ;
       (void)THD_bandpass_vectors( nt    , IMARR_COUNT(imar) , vec     ,
                                   dtime , bpass_L           , bpass_H ,
                                   2     , nref              , polref   ) ;
       free(vec) ;
     }

     for( kk=0 ; kk < nref; kk++ ) free(polref[kk]) ;
     free(polref) ;
   } /* end of detrendization */

   /*--- the actual work ---*/

   INFO_message("Computing SVD") ;
   pim  = mri_principal_vector( imar ) ; DESTROY_IMARR(imar) ;
   if( pim == NULL ) ERROR_exit("SVD failure!?!") ;
   ev = mri_principal_getev() ;
   switch(sval_itop+1){
     case 1:
       INFO_message("First singular value: %g",ev[0]) ; break ;
     case 2:
       INFO_message("First 2 singular values: %g %g",ev[0],ev[1]) ; break ;
     case 3:
       INFO_message("First 3 singular values: %g %g %g",ev[0],ev[1],ev[2]) ; break ;
     case 4:
       INFO_message("First 4 singular values: %g %g %g %g",ev[0],ev[1],ev[2],ev[3]) ; break ;
     default:
     case 5:
       INFO_message("First 5 singular values: %g %g %g %g %g",ev[0],ev[1],ev[2],ev[3],ev[4]) ; break ;
   }
   mri_write_1D(NULL,pim) ;

   exit(0) ;
}
コード例 #3
0
ファイル: 3dInvFMRI.c プロジェクト: CesarCaballeroGaudes/afni
int main( int argc , char *argv[] )
{
   THD_3dim_dataset *yset=NULL , *aset=NULL , *mset=NULL , *wset=NULL ;
   MRI_IMAGE *fim=NULL, *qim,*tim, *pfim=NULL , *vim     , *wim=NULL  ;
   float     *flar    , *qar,*tar, *par=NULL  , *var     , *war=NULL  ;
   MRI_IMARR *fimar=NULL ;
   MRI_IMAGE *aim , *yim ; float *aar , *yar ;
   int nt=0 , nxyz=0 , nvox=0 , nparam=0 , nqbase , polort=0 , ii,jj,kk,bb ;
   byte *mask=NULL ; int nmask=0 , iarg ;
   char *fname_out="-" ;   /** equiv to stdout **/

   float alpha=0.0f ;
   int   nfir =0 ; float firwt[5]={0.09f,0.25f,0.32f,0.25f,0.09f} ;
   int   nmed =0 ;
   int   nwt  =0 ;

#define METHOD_C  3
#define METHOD_K 11
   int   method = METHOD_C ;

   /**--- help the pitiful user? ---**/

   if( argc < 2 || strcmp(argv[1],"-help") == 0 ){
     printf(
      "Usage: 3dInvFMRI [options]\n"
      "Program to compute stimulus time series, given a 3D+time dataset\n"
      "and an activation map (the inverse of the usual FMRI analysis problem).\n"
      "-------------------------------------------------------------------\n"
      "OPTIONS:\n"
      "\n"
      " -data yyy  =\n"
      "   *OR*     = Defines input 3D+time dataset [a non-optional option].\n"
      " -input yyy =\n"
      "\n"
      " -map  aaa  = Defines activation map; 'aaa' should be a bucket dataset,\n"
      "                each sub-brick of which defines the beta weight map for\n"
      "                an unknown stimulus time series [also non-optional].\n"
      "\n"
      " -mapwt www = Defines a weighting factor to use for each element of\n"
      "                the map.  The dataset 'www' can have either 1 sub-brick,\n"
      "                or the same number as in the -map dataset.  In the\n"
      "                first case, in each voxel, each sub-brick of the map\n"
      "                gets the same weight in the least squares equations.\n"
      "                  [default: all weights are 1]\n"
      "\n"
      " -mask mmm  = Defines a mask dataset, to restrict input voxels from\n"
      "                -data and -map.  [default: all voxels are used]\n"
      "\n"
      " -base fff  = Each column of the 1D file 'fff' defines a baseline time\n"
      "                series; these columns should be the same length as\n"
      "                number of time points in 'yyy'.  Multiple -base options\n"
      "                can be given.\n"
      " -polort pp = Adds polynomials of order 'pp' to the baseline collection.\n"
      "                The default baseline model is '-polort 0' (constant).\n"
      "                To specify no baseline model at all, use '-polort -1'.\n"
      "\n"
      " -out vvv   = Name of 1D output file will be 'vvv'.\n"
      "                [default = '-', which is stdout; probably not good]\n"
      "\n"
      " -method M  = Determines the method to use.  'M' is a single letter:\n"
      "               -method C = least squares fit to data matrix Y [default]\n"
      "               -method K = least squares fit to activation matrix A\n"
      "\n"
      " -alpha aa  = Set the 'alpha' factor to 'aa'; alpha is used to penalize\n"
      "                large values of the output vectors.  Default is 0.\n"
      "                A large-ish value for alpha would be 0.1.\n"
      "\n"
      " -fir5     = Smooth the results with a 5 point lowpass FIR filter.\n"
      " -median5  = Smooth the results with a 5 point median filter.\n"
      "               [default: no smoothing; only 1 of these can be used]\n"
      "-------------------------------------------------------------------\n"
      "METHODS:\n"
      " Formulate the problem as\n"
      "    Y = V A' + F C' + errors\n"
      " where Y = data matrix      (N x M) [from -data]\n"
      "       V = stimulus         (N x p) [to -out]\n"
      "       A = map matrix       (M x p) [from -map]\n"
      "       F = baseline matrix  (N x q) [from -base and -polort]\n"
      "       C = baseline weights (M x q) [not computed]\n"
      "       N = time series length = length of -data file\n"
      "       M = number of voxels in mask\n"
      "       p = number of stimulus time series to estimate\n"
      "         = number of parameters in -map file\n"
      "       q = number of baseline parameters\n"
      "   and ' = matrix transpose operator\n"
      " Next, define matrix Z (Y detrended relative to columns of F) by\n"
      "                       -1\n"
      "   Z = [I - F(F'F)  F']  Y\n"
      "-------------------------------------------------------------------\n"
      " The method C solution is given by\n"
      "                 -1\n"
      "   V0 = Z A [A'A]\n"
      "\n"
      " This solution minimizes the sum of squares over the N*M elements\n"
      " of the matrix   Y - V A' + F C'   (N.B.: A' means A-transpose).\n"
      "-------------------------------------------------------------------\n"
      " The method K solution is given by\n"
      "             -1                            -1\n"
      "   W = [Z Z']  Z A   and then   V = W [W'W]\n"
      "\n"
      " This solution minimizes the sum of squares of the difference between\n"
      " the A(V) predicted from V and the input A, where A(V) is given by\n"
      "                    -1\n"
      "   A(V) = Z' V [V'V]   = Z'W\n"
      "-------------------------------------------------------------------\n"
      " Technically, the solution is unidentfiable up to an arbitrary\n"
      " multiple of the columns of F (i.e., V = V0 + F G, where G is\n"
      " an arbitrary q x p matrix); the solution above is the solution\n"
      " that is orthogonal to the columns of F.\n"
      "\n"
      "-- RWCox - March 2006 - purely for experimental purposes!\n"
     ) ;

     printf("\n"
     "===================== EXAMPLE USAGE =====================================\n"
     "** Step 1: From a training dataset, generate activation map.\n"
     "  The input dataset has 4 runs, each 108 time points long.  3dDeconvolve\n"
     "  is used on the first 3 runs (time points 0..323) to generate the\n"
     "  activation map.  There are two visual stimuli (Complex and Simple).\n"
     "\n"
     "  3dDeconvolve -x1D xout_short_two.1D -input rall_vr+orig'[0..323]'   \\\n"
     "      -num_stimts 2                                                   \\\n"
     "      -stim_file 1 hrf_complex.1D               -stim_label 1 Complex \\\n"
     "      -stim_file 2 hrf_simple.1D                -stim_label 2 Simple  \\\n"
     "      -concat '1D:0,108,216'                                          \\\n"
     "      -full_first -fout -tout                                         \\\n"
     "      -bucket func_ht2_short_two -cbucket cbuc_ht2_short_two\n"
     "\n"
     "  N.B.: You may want to de-spike, smooth, and register the 3D+time\n"
     "        dataset prior to the analysis (as usual).  These steps are not\n"
     "        shown here -- I'm presuming you know how to use AFNI already.\n"
     "\n"
     "** Step 2: Create a mask of highly activated voxels.\n"
     "  The F statistic threshold is set to 30, corresponding to a voxel-wise\n"
     "  p = 1e-12 = very significant.  The mask is also lightly clustered, and\n"
     "  restricted to brain voxels.\n"
     "\n"
     "  3dAutomask -prefix Amask rall_vr+orig\n"
     "  3dcalc -a 'func_ht2_short+orig[0]' -b Amask+orig -datum byte \\\n"
     "         -nscale -expr 'step(a-30)*b' -prefix STmask300\n"
     "  3dmerge -dxyz=1 -1clust 1.1 5 -prefix STmask300c STmask300+orig\n"
     "\n"
     "** Step 3: Run 3dInvFMRI to estimate the stimulus functions in run #4.\n"
     "  Run #4 is time points 324..431 of the 3D+time dataset (the -data\n"
     "  input below).  The -map input is the beta weights extracted from\n"
     "  the -cbucket output of 3dDeconvolve.\n"
     "\n"
     "  3dInvFMRI -mask STmask300c+orig                       \\\n"
     "            -data rall_vr+orig'[324..431]'              \\\n"
     "            -map cbuc_ht2_short_two+orig'[6..7]'        \\\n"
     "            -polort 1 -alpha 0.01 -median5 -method K    \\\n"
     "            -out ii300K_short_two.1D\n"
     "\n"
     "  3dInvFMRI -mask STmask300c+orig                       \\\n"
     "            -data rall_vr+orig'[324..431]'              \\\n"
     "            -map cbuc_ht2_short_two+orig'[6..7]'        \\\n"
     "            -polort 1 -alpha 0.01 -median5 -method C    \\\n"
     "            -out ii300C_short_two.1D\n"
     "\n"
     "** Step 4: Plot the results, and get confused.\n"
     "\n"
     "  1dplot -ynames VV KK CC -xlabel Run#4 -ylabel ComplexStim \\\n"
     "         hrf_complex.1D'{324..432}'                         \\\n"
     "         ii300K_short_two.1D'[0]'                           \\\n"
     "         ii300C_short_two.1D'[0]'\n"
     "\n"
     "  1dplot -ynames VV KK CC -xlabel Run#4 -ylabel SimpleStim \\\n"
     "         hrf_simple.1D'{324..432}'                         \\\n"
     "         ii300K_short_two.1D'[1]'                          \\\n"
     "         ii300C_short_two.1D'[1]'\n"
     "\n"
     "  N.B.: I've found that method K works better if MORE voxels are\n"
     "        included in the mask (lower threshold) and method C if\n"
     "        FEWER voxels are included.  The above threshold gave 945\n"
     "        voxels being used to determine the 2 output time series.\n"
     "=========================================================================\n"
     ) ;

     PRINT_COMPILE_DATE ; exit(0) ;
   }

   /**--- bureaucracy ---**/

   mainENTRY("3dInvFMRI main"); machdep();
   PRINT_VERSION("3dInvFMRI"); AUTHOR("Zhark");
   AFNI_logger("3dInvFMRI",argc,argv) ;

   /**--- scan command line ---**/

   iarg = 1 ;
   while( iarg < argc ){

     if( strcmp(argv[iarg],"-method") == 0 ){
       switch( argv[++iarg][0] ){
         default:
           WARNING_message("Ignoring illegal -method '%s'",argv[iarg]) ;
         break ;
         case 'C': method = METHOD_C ; break ;
         case 'K': method = METHOD_K ; break ;
       }
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-fir5") == 0 ){
       if( nmed > 0 ) WARNING_message("Ignoring -fir5 in favor of -median5") ;
       else           nfir = 5 ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-median5") == 0 ){
       if( nfir > 0 ) WARNING_message("Ignoring -median5 in favor of -fir5") ;
       else           nmed = 5 ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-alpha") == 0 ){
       alpha = (float)strtod(argv[++iarg],NULL) ;
       if( alpha <= 0.0f ){
         alpha = 0.0f ; WARNING_message("-alpha '%s' ignored!",argv[iarg]) ;
       }
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-data") == 0 || strcmp(argv[iarg],"-input") == 0 ){
       if( yset != NULL ) ERROR_exit("Can't input 2 3D+time datasets") ;
       yset = THD_open_dataset(argv[++iarg]) ;
       CHECK_OPEN_ERROR(yset,argv[iarg]) ;
       nt = DSET_NVALS(yset) ;
       if( nt < 2 ) ERROR_exit("Only 1 sub-brick in dataset %s",argv[iarg]) ;
       nxyz = DSET_NVOX(yset) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-map") == 0 ){
       if( aset != NULL ) ERROR_exit("Can't input 2 -map datasets") ;
       aset = THD_open_dataset(argv[++iarg]) ;
       CHECK_OPEN_ERROR(aset,argv[iarg]) ;
       nparam = DSET_NVALS(aset) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-mapwt") == 0 ){
       if( wset != NULL ) ERROR_exit("Can't input 2 -mapwt datasets") ;
       wset = THD_open_dataset(argv[++iarg]) ;
       CHECK_OPEN_ERROR(wset,argv[iarg]) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-mask") == 0 ){
       if( mset != NULL ) ERROR_exit("Can't input 2 -mask datasets") ;
       mset = THD_open_dataset(argv[++iarg]) ;
       CHECK_OPEN_ERROR(mset,argv[iarg]) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-polort") == 0 ){
       char *cpt ;
       polort = (int)strtod(argv[++iarg],&cpt) ;
       if( *cpt != '\0' ) WARNING_message("Illegal non-numeric value after -polort") ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-out") == 0 ){
       fname_out = strdup(argv[++iarg]) ;
       if( !THD_filename_ok(fname_out) )
         ERROR_exit("Bad -out filename '%s'",fname_out) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-base") == 0 ){
       if( fimar == NULL ) INIT_IMARR(fimar) ;
       qim = mri_read_1D( argv[++iarg] ) ;
       if( qim == NULL ) ERROR_exit("Can't read 1D file %s",argv[iarg]) ;
       ADDTO_IMARR(fimar,qim) ;
       iarg++ ; continue ;
     }

     ERROR_exit("Unrecognized option '%s'",argv[iarg]) ;
   }

   /**--- finish up processing options ---**/

   if( yset == NULL ) ERROR_exit("No input 3D+time dataset?!") ;
   if( aset == NULL ) ERROR_exit("No input FMRI -map dataset?!") ;

   if( DSET_NVOX(aset) != nxyz )
     ERROR_exit("Grid mismatch between -data and -map") ;

   INFO_message("Loading dataset for Y") ;
   DSET_load(yset); CHECK_LOAD_ERROR(yset) ;
   INFO_message("Loading dataset for A") ;
   DSET_load(aset); CHECK_LOAD_ERROR(aset) ;

   if( wset != NULL ){
     if( DSET_NVOX(wset) != nxyz )
       ERROR_exit("Grid mismatch between -data and -mapwt") ;
     nwt = DSET_NVALS(wset) ;
     if( nwt > 1 && nwt != nparam )
       ERROR_exit("Wrong number of values=%d in -mapwt; should be 1 or %d",
                  nwt , nparam ) ;
     INFO_message("Loading dataset for mapwt") ;
     DSET_load(wset); CHECK_LOAD_ERROR(wset) ;
   }

   if( mset != NULL ){
     if( DSET_NVOX(mset) != nxyz )
       ERROR_exit("Grid mismatch between -data and -mask") ;
     INFO_message("Loading dataset for mask") ;
     DSET_load(mset); CHECK_LOAD_ERROR(mset) ;
     mask  = THD_makemask( mset , 0 , 1.0f,-1.0f ); DSET_delete(mset);
     nmask = THD_countmask( nxyz , mask ) ;
     if( nmask < 3 ){
       WARNING_message("Mask has %d voxels -- ignoring!",nmask) ;
       free(mask) ; mask = NULL ; nmask = 0 ;
     }
   }

   nvox = (nmask > 0) ? nmask : nxyz ;
   INFO_message("N = time series length  = %d",nt    ) ;
   INFO_message("M = number of voxels    = %d",nvox  ) ;
   INFO_message("p = number of params    = %d",nparam) ;

   /**--- set up baseline funcs in one array ---*/

   nqbase = (polort >= 0 ) ? polort+1 : 0 ;
   if( fimar != NULL ){
     for( kk=0 ; kk < IMARR_COUNT(fimar) ; kk++ ){
       qim = IMARR_SUBIMAGE(fimar,kk) ;
       if( qim != NULL && qim->nx != nt )
         WARNING_message("-base #%d length=%d; data length=%d",kk+1,qim->nx,nt) ;
       nqbase += qim->ny ;
     }
   }

   INFO_message("q = number of baselines = %d",nqbase) ;

#undef  F
#define F(i,j) flar[(i)+(j)*nt]   /* nt X nqbase */
   if( nqbase > 0 ){
     fim  = mri_new( nt , nqbase , MRI_float ) ;   /* F matrix */
     flar = MRI_FLOAT_PTR(fim) ;
     bb = 0 ;
     if( polort >= 0 ){                /** load polynomial baseline **/
       double a = 2.0/(nt-1.0) ;
       for( jj=0 ; jj <= polort ; jj++ ){
         for( ii=0 ; ii < nt ; ii++ )
           F(ii,jj) = (float)Plegendre( a*ii-1.0 , jj ) ;
       }
       bb = polort+1 ;
     }
#undef  Q
#define Q(i,j) qar[(i)+(j)*qim->nx]  /* qim->nx X qim->ny */

     if( fimar != NULL ){             /** load -base baseline columns **/
       for( kk=0 ; kk < IMARR_COUNT(fimar) ; kk++ ){
         qim = IMARR_SUBIMAGE(fimar,kk) ; qar = MRI_FLOAT_PTR(qim) ;
         for( jj=0 ; jj < qim->ny ; jj++ ){
           for( ii=0 ; ii < nt ; ii++ )
             F(ii,bb+jj) = (ii < qim->nx) ? Q(ii,jj) : 0.0f ;
         }
         bb += qim->ny ;
       }
       DESTROY_IMARR(fimar) ; fimar=NULL ;
     }

     /* remove mean from each column after first? */

     if( polort >= 0 && nqbase > 1 ){
       float sum ;
       for( jj=1 ; jj < nqbase ; jj++ ){
         sum = 0.0f ;
         for( ii=0 ; ii < nt ; ii++ ) sum += F(ii,jj) ;
         sum /= nt ;
         for( ii=0 ; ii < nt ; ii++ ) F(ii,jj) -= sum ;
       }
     }

     /* compute pseudo-inverse of baseline matrix,
        so we can project it out from the data time series */

     /*      -1          */
     /* (F'F)  F' matrix */

     INFO_message("Computing pseudo-inverse of baseline matrix F") ;
     pfim = mri_matrix_psinv(fim,NULL,0.0f) ; par = MRI_FLOAT_PTR(pfim) ;

#undef  P
#define P(i,j) par[(i)+(j)*nqbase]   /* nqbase X nt */

#if 0
     qim = mri_matrix_transpose(pfim) ;    /** save to disk? **/
     mri_write_1D( "Fpsinv.1D" , qim ) ;
     mri_free(qim) ;
#endif
   }

   /**--- set up map image into aim/aar = A matrix ---**/

#undef  GOOD
#define GOOD(i) (mask==NULL || mask[i])

#undef  A
#define A(i,j) aar[(i)+(j)*nvox]   /* nvox X nparam */

   INFO_message("Loading map matrix A") ;
   aim = mri_new( nvox , nparam , MRI_float ); aar = MRI_FLOAT_PTR(aim);
   for( jj=0 ; jj < nparam ; jj++ ){
     for( ii=kk=0 ; ii < nxyz ; ii++ ){
       if( GOOD(ii) ){ A(kk,jj) = THD_get_voxel(aset,ii,jj); kk++; }
   }}
   DSET_unload(aset) ;

   /**--- set up map weight into wim/war ---**/

#undef  WT
#define WT(i,j) war[(i)+(j)*nvox]   /* nvox X nparam */

   if( wset != NULL ){
     int numneg=0 , numpos=0 ;
     float fac ;

     INFO_message("Loading map weight matrix") ;
     wim = mri_new( nvox , nwt , MRI_float ) ; war = MRI_FLOAT_PTR(wim) ;
     for( jj=0 ; jj < nwt ; jj++ ){
       for( ii=kk=0 ; ii < nxyz ; ii++ ){
         if( GOOD(ii) ){
           WT(kk,jj) = THD_get_voxel(wset,ii,jj);
                if( WT(kk,jj) > 0.0f ){ numpos++; WT(kk,jj) = sqrt(WT(kk,jj)); }
           else if( WT(kk,jj) < 0.0f ){ numneg++; WT(kk,jj) = 0.0f;            }
           kk++;
         }
     }}
     DSET_unload(wset) ;
     if( numpos <= nparam )
       WARNING_message("Only %d positive weights found in -wtmap!",numpos) ;
     if( numneg > 0 )
       WARNING_message("%d negative weights found in -wtmap!",numneg) ;

     for( jj=0 ; jj < nwt ; jj++ ){
       fac = 0.0f ;
       for( kk=0 ; kk < nvox ; kk++ ) if( WT(kk,jj) > fac ) fac = WT(kk,jj) ;
       if( fac > 0.0f ){
         fac = 1.0f / fac ;
         for( kk=0 ; kk < nvox ; kk++ ) WT(kk,jj) *= fac ;
       }
     }
   }

   /**--- set up data image into yim/yar = Y matrix ---**/

#undef  Y
#define Y(i,j) yar[(i)+(j)*nt]   /* nt X nvox */

   INFO_message("Loading data matrix Y") ;
   yim = mri_new( nt , nvox , MRI_float ); yar = MRI_FLOAT_PTR(yim);
   for( ii=0 ; ii < nt ; ii++ ){
     for( jj=kk=0 ; jj < nxyz ; jj++ ){
       if( GOOD(jj) ){ Y(ii,kk) = THD_get_voxel(yset,jj,ii); kk++; }
   }}
   DSET_unload(yset) ;

   /**--- project baseline out of data image = Z matrix ---**/

   if( pfim != NULL ){
#undef  T
#define T(i,j) tar[(i)+(j)*nt]  /* nt X nvox */
     INFO_message("Projecting baseline out of Y") ;
     qim = mri_matrix_mult( pfim , yim ) ;   /* nqbase X nvox */
     tim = mri_matrix_mult(  fim , qim ) ;   /* nt X nvox */
     tar = MRI_FLOAT_PTR(tim) ;              /* Y projected onto baseline */
     for( jj=0 ; jj < nvox ; jj++ )
       for( ii=0 ; ii < nt ; ii++ ) Y(ii,jj) -= T(ii,jj) ;
     mri_free(tim); mri_free(qim); mri_free(pfim); mri_free(fim);
   }

   /***** At this point:
             matrix A is in aim,
             matrix Z is in yim.
          Solve for V into vim, using the chosen method *****/

   switch( method ){
     default: ERROR_exit("Illegal method code!  WTF?") ; /* Huh? */

     /*.....................................................................*/
     case METHOD_C:
       /**--- compute pseudo-inverse of A map ---**/

       INFO_message("Method C: Computing pseudo-inverse of A") ;
       if( wim != NULL ) WARNING_message("Ignoring -mapwt dataset") ;
       pfim = mri_matrix_psinv(aim,NULL,alpha) ;  /* nparam X nvox */
       if( pfim == NULL ) ERROR_exit("mri_matrix_psinv() fails") ;
       mri_free(aim) ;

       /**--- and apply to data to get results ---*/

       INFO_message("Computing result V") ;
       vim = mri_matrix_multranB( yim , pfim ) ; /* nt x nparam */
       mri_free(pfim) ; mri_free(yim) ;
     break ;

     /*.....................................................................*/
     case METHOD_K:
       /**--- compute pseudo-inverse of transposed Z ---*/

       INFO_message("Method K: Computing pseudo-inverse of Z'") ;
       if( nwt > 1 ){
         WARNING_message("Ignoring -mapwt dataset: more than 1 sub-brick") ;
         nwt = 0 ; mri_free(wim) ; wim = NULL ; war = NULL ;
       }

       if( nwt == 1 ){
         float fac ;
         for( kk=0 ; kk < nvox ; kk++ ){
           fac = war[kk] ;
           for( ii=0 ; ii < nt     ; ii++ ) Y(ii,kk) *= fac ;
           for( ii=0 ; ii < nparam ; ii++ ) A(kk,ii) *= fac ;
         }
       }

       tim  = mri_matrix_transpose(yim)        ; mri_free(yim) ;
       pfim = mri_matrix_psinv(tim,NULL,alpha) ; mri_free(tim) ;
       if( pfim == NULL ) ERROR_exit("mri_matrix_psinv() fails") ;

       INFO_message("Computing W") ;
       tim = mri_matrix_mult( pfim , aim ) ;
       mri_free(aim) ; mri_free(pfim) ;

       INFO_message("Computing result V") ;
       pfim = mri_matrix_psinv(tim,NULL,0.0f) ; mri_free(tim) ;
       vim  = mri_matrix_transpose(pfim)      ; mri_free(pfim);
     break ;

   } /* end of switch on method */

   if( wim != NULL ) mri_free(wim) ;

   /**--- smooth? ---**/

   if( nfir > 0 && vim->nx > nfir ){
     INFO_message("FIR-5-ing result") ;
     var = MRI_FLOAT_PTR(vim) ;
     for( jj=0 ; jj < vim->ny ; jj++ )
       linear_filter_reflect( nfir,firwt , vim->nx , var + (jj*vim->nx) ) ;
   }

   if( nmed > 0 && vim->nx > nmed ){
     INFO_message("Median-5-ing result") ;
     var = MRI_FLOAT_PTR(vim) ;
     for( jj=0 ; jj < vim->ny ; jj++ )
       median5_filter_reflect( vim->nx , var + (jj*vim->nx) ) ;
   }

   /**--- write results ---**/

   INFO_message("Writing result to '%s'",fname_out) ;
   mri_write_1D( fname_out , vim ) ;
   exit(0) ;
}
コード例 #4
0
ファイル: thd_bandpass.c プロジェクト: neurodebian/afni
int THD_bandpass_vectors( int nlen , int nvec   , float **vec ,
                          float dt , float fbot , float ftop  ,
                          int qdet , int nort   , float **ort  )
{
   int nfft,nby2 , iv, jbot,jtop , ndof=0 ; register int jj ;
   float df , tapr ;
   register float *xar, *yar=NULL ;
   register complex *zar ; complex Zero={0.0f,0.0f} ;

ENTRY("THD_bandpass_vectors") ;

   if( ftop > ICOR_MAX_FTOP && qdet < 0 && (nort <= 0 || ort == NULL) )
     RETURN(ndof) ;   /* 26 Feb 2010: do nothing at all? */

   if( nlen < 9 || nvec < 1 || vec == NULL ){
     ERROR_message("bad bandpass data?");
     RETURN(ndof);
   }
   if( bpwrn && dt > 60.0f ) {
     WARNING_message("Your bandpass timestep (%f) is high.\n"
                     "   Make sure units are 'sec', not 'msec'.\n"
                     "   This warning will not be repeated." ,
                     dt);
     bpwrn = 0;
   }
   if( dt   <= 0.0f ) dt   = 1.0f ;
   if( fbot <  0.0f ) fbot = 0.0f ;
   if( ftop <= fbot ){
     ERROR_message("Bad bandpass frequencies?"); RETURN(ndof);
   }
   if( nort >= nlen ){
     ERROR_message("Too many bandpass orts?")  ; RETURN(ndof);
   }

   /** setup for FFT **/

   nfft = (nfft_fixed >= nlen) ? nfft_fixed : csfft_nextup_even(nlen) ;
   nby2 = nfft/2 ;

   df   = 1.0f / (nfft * dt) ;           /* frequency resolution */
   jbot = (int)rint(fbot/df) ;           /* closest freq index to fbot */
   jtop = (int)rint(ftop/df) ;           /* and to ftop */
   if( jtop >= nby2   ) jtop = nby2-1 ;  /* can't go past Nyquist! */
   if( jbot >= jtop+1 ){
     ERROR_message("bandpass: fbot and ftop too close ==> "
                   "jbot=%d jtop=%d (df=%f)",
                   jbot,jtop, df) ;
     RETURN(ndof) ;
   }

   /** quadratic detrending first? (should normally be used) **/

   switch( qdet ){
     case 2:
       ndof += 2 ;
       for( iv=0 ; iv < nvec ; iv++ )
         THD_quadratic_detrend( nlen, vec[iv], NULL,NULL,NULL ) ;
     break ;

     case 1:
       ndof += 1 ;
       for( iv=0 ; iv < nvec ; iv++ )
         THD_linear_detrend( nlen, vec[iv], NULL,NULL ) ;
     break ;

     case 0:
       for( iv=0 ; iv < nvec ; iv++ )
         THD_const_detrend( nlen, vec[iv], NULL ) ;
     break ;
   }

   if( qdet > 0 || jbot > 0 || jtop < nby2-1 ){  /* 26 Feb 2010: do the FFTs */

     zar = (complex *)malloc(sizeof(complex)*nfft) ;  /* work array */
     csfft_scale_inverse(1) ;                         /* scale inverse FFT by 1/nfft */

     /** loop over vectors in pairs, FFT-ing and bandpassing **/

     ndof += 2 ;  /* for 0 and Nyquist freqs */

     if( jbot >= 1 ) ndof += 2*jbot - 1 ;  /* DOF for low freq */
     ndof += 2*(nby2-jtop) - 1 ;           /* DOF for high freq */

     for( iv=0 ; iv < nvec ; iv+=2 ){

       /* load a pair of vectors into zar to double up on FFTs of real data */

       xar = vec[iv] ;
       if( iv == nvec-1 ){  /* last one has nothing to pair with */
         for( jj=0 ; jj < nlen ; jj++ ){ zar[jj].r = xar[jj] ; zar[jj].i = 0.0f ; }
       } else {
         yar = vec[iv+1] ;
         for( jj=0 ; jj < nlen ; jj++ ){ zar[jj].r = xar[jj] ; zar[jj].i = yar[jj] ; }
       }
       for( jj=nlen ; jj < nfft ; jj++ ) zar[jj] = Zero ;  /* zero fill */

       csfft_cox( -1 , nfft , zar ) ;  /*** the FFT ***/

       /* delete unwanted frequencies */

       zar[0] = zar[nby2] = Zero ;

       tapr = (nort > 0 && ort != NULL) ? 0.05f : 0.5f ;

       if( jbot >= 1 ){
         zar[jbot].r      *= tapr ; zar[jbot].i      *= tapr ;
         zar[nfft-jbot].r *= tapr ; zar[nfft-jbot].i *= tapr ;
         for( jj=1 ; jj < jbot ; jj++ ) zar[jj] = zar[nfft-jj] = Zero ;
       }

       zar[jtop].r      *= tapr ; zar[jtop].i      *= tapr ;
       zar[nfft-jtop].r *= tapr ; zar[nfft-jtop].i *= tapr ;
       for( jj=jtop+1 ; jj < nby2 ; jj++ ) zar[jj] = zar[nfft-jj] = Zero ;

       csfft_cox( 1 , nfft , zar ) ;  /*** inverse FFT ***/

       /* unload vector pair back into original data arrays */

       if( iv == nvec-1 ){
         for( jj=0 ; jj < nlen ; jj++ ) xar[jj] = zar[jj].r ;
       } else {
         for( jj=0 ; jj < nlen ; jj++ ){ xar[jj] = zar[jj].r ; yar[jj] = zar[jj].i ; }
       }

     } /* end of loop over vector pairs: bandpassing now done */

     free(zar) ; csfft_scale_inverse(0) ;

   }  /* end of FFTs */

   /*** remove orts? ***/

   if( nort > 0 && ort != NULL ){
     float **qort = (float **)malloc(sizeof(float *)*nort) ;
     MRI_IMAGE *qim , *pim ; float *par, *qar , *rar , *pt,*qt ;
     register float sum , xt ; register int kk ;

     /* must bandpass copy of orts first -- via recursion
        (so we don't re-introduce any of the removed frequencies) */

     qim = mri_new( nlen , nort , MRI_float ) ; /** [Q] = nlen X nort  **/
     qar = MRI_FLOAT_PTR(qim) ;                 /** load with the orts **/
     for( iv=0 ; iv < nort ; iv++ ){
       qort[iv] = qar + iv*nlen ;
       memcpy( qort[iv] , ort[iv] , sizeof(float)*nlen ) ;
     }

     (void)THD_bandpass_vectors( nlen, nort, qort, dt, fbot, ftop, qdet, 0,NULL ) ;
     free(qort) ;

     /* compute pseudo-inverse ([P] = inv{[Q]'[Q]}[Q]') of bandpassed orts */

     pim = mri_matrix_psinv( qim , NULL , 1.e-8 ) ;  /** [P] = nort X nlen **/
     if( pim == NULL ){  /* should not happen */
       mri_free(qim) ;
       ERROR_message("can't remove bandpass orts?") ;
       RETURN(ndof) ;
     }

     par = MRI_FLOAT_PTR(pim) ;  /* nort X nlen matrix */

     /* Project the bandpassed orts out of data vectors:
        for each vector [y], replace it with [y] - [Q][P][y] ;
        this is more efficient than computing the nlen X nlen projection
        matrix [I]-[Q][P] and then applying to each vector, since
        that would require about nlen*nlen flops per vector, whereas
        the 2 matrix multiplications by [P] then [Q] will require
        about 2*nlen*nort flops per vector, a clear win if nort < nlen/2. */

     rar = (float *)malloc(sizeof(float)*nort) ;  /* will hold [P][y] */
     for( iv=0 ; iv < nvec ; iv++ ){
       xar = vec[iv] ;  /* [y] vector */

       /* compute nort-vector [r] = [P][y] */

       for( jj=0 ; jj < nort ; jj++ ) rar[jj] = 0.0f ;  /* initialize to 0 */
       for( kk=0 ; kk < nlen ; kk++ ){
         pt = par + kk*nort ; xt = xar[kk] ;
         for( jj=0 ; jj < nort ; jj++ ) rar[jj] += pt[jj]*xt ;
       }

       /* now subtract [Q][r] from [y] */

       for( jj=0 ; jj < nort ; jj++ ){
         qt = qar + jj*nlen ; xt = rar[jj] ;
         for( kk=0 ; kk < nlen ; kk++ ) xar[kk] -= qt[kk]*xt ;
       }
     }

     free(rar) ; mri_free(pim) ; mri_free(qim) ;

     ndof += nort ;

   } /* de-ortification is done */

   /** done **/

   if( nfft > nlen ){
     double fac = ((double)nlen)/(double)nfft ;
     ndof = (int)rint(fac*ndof) ;
   }
   RETURN(ndof) ;
}