コード例 #1
0
static void deformVerts_do(HookModifierData *hmd, Object *ob, DerivedMesh *dm,
                           float (*vertexCos)[3], int numVerts)
{
	bPoseChannel *pchan = BKE_pose_channel_find_name(hmd->object->pose, hmd->subtarget);
	float dmat[4][4];
	int i, *index_pt;
	struct HookData_cb hd;
	
	if (hmd->curfalloff == NULL) {
		/* should never happen, but bad lib linking could cause it */
		hmd->curfalloff = curvemapping_add(1, 0.0f, 0.0f, 1.0f, 1.0f);
	}

	if (hmd->curfalloff) {
		curvemapping_initialize(hmd->curfalloff);
	}

	/* Generic data needed for applying per-vertex calculations (initialize all members) */
	hd.vertexCos = vertexCos;
	modifier_get_vgroup(ob, dm, hmd->name, &hd.dvert, &hd.defgrp_index);

	hd.curfalloff = hmd->curfalloff;

	hd.falloff_type = hmd->falloff_type;
	hd.falloff = (hmd->falloff_type == eHook_Falloff_None) ? 0.0f : hmd->falloff;
	hd.falloff_sq = SQUARE(hd.falloff);
	hd.fac_orig = hmd->force;

	hd.use_falloff = (hd.falloff_sq != 0.0f);
	hd.use_uniform = (hmd->flag & MOD_HOOK_UNIFORM_SPACE) != 0;

	if (hd.use_uniform) {
		copy_m3_m4(hd.mat_uniform, hmd->parentinv);
		mul_v3_m3v3(hd.cent, hd.mat_uniform, hmd->cent);
	}
	else {
		unit_m3(hd.mat_uniform);  /* unused */
		copy_v3_v3(hd.cent, hmd->cent);
	}

	/* get world-space matrix of target, corrected for the space the verts are in */
	if (hmd->subtarget[0] && pchan) {
		/* bone target if there's a matching pose-channel */
		mul_m4_m4m4(dmat, hmd->object->obmat, pchan->pose_mat);
	}
	else {
		/* just object target */
		copy_m4_m4(dmat, hmd->object->obmat);
	}
	invert_m4_m4(ob->imat, ob->obmat);
	mul_m4_series(hd.mat, ob->imat, dmat, hmd->parentinv);
	/* --- done with 'hd' init --- */


	/* Regarding index range checking below.
	 *
	 * This should always be true and I don't generally like 
	 * "paranoid" style code like this, but old files can have
	 * indices that are out of range because old blender did
	 * not correct them on exit editmode. - zr
	 */

	if (hmd->force == 0.0f) {
		/* do nothing, avoid annoying checks in the loop */
	}
	else if (hmd->indexar) { /* vertex indices? */
		const int *origindex_ar;
		
		/* if DerivedMesh is present and has original index data, use it */
		if (dm && (origindex_ar = dm->getVertDataArray(dm, CD_ORIGINDEX))) {
			for (i = 0, index_pt = hmd->indexar; i < hmd->totindex; i++, index_pt++) {
				if (*index_pt < numVerts) {
					int j;
					
					for (j = 0; j < numVerts; j++) {
						if (origindex_ar[j] == *index_pt) {
							hook_co_apply(&hd, j);
						}
					}
				}
			}
		}
		else { /* missing dm or ORIGINDEX */
			for (i = 0, index_pt = hmd->indexar; i < hmd->totindex; i++, index_pt++) {
				if (*index_pt < numVerts) {
					hook_co_apply(&hd, *index_pt);
				}
			}
		}
	}
	else if (hd.dvert) {  /* vertex group hook */
		for (i = 0; i < numVerts; i++) {
			hook_co_apply(&hd, i);
		}
	}
}
コード例 #2
0
ファイル: clip_draw.c プロジェクト: sftd/blender
void clip_draw_main(const bContext *C, SpaceClip *sc, ARegion *ar)
{
	MovieClip *clip = ED_space_clip_get_clip(sc);
	Scene *scene = CTX_data_scene(C);
	ImBuf *ibuf = NULL;
	int width, height;
	float zoomx, zoomy;

	ED_space_clip_get_size(sc, &width, &height);
	ED_space_clip_get_zoom(sc, ar, &zoomx, &zoomy);

	/* if no clip, nothing to do */
	if (!clip) {
		ED_region_grid_draw(ar, zoomx, zoomy);
		return;
	}

	if (sc->flag & SC_SHOW_STABLE) {
		float smat[4][4], ismat[4][4];

		ibuf = ED_space_clip_get_stable_buffer(sc, sc->loc, &sc->scale, &sc->angle);

		if (ibuf) {
			float translation[2];
			float aspect = clip->tracking.camera.pixel_aspect;

			if (width != ibuf->x)
				mul_v2_v2fl(translation, sc->loc, (float)width / ibuf->x);
			else
				copy_v2_v2(translation, sc->loc);

			BKE_tracking_stabilization_data_to_mat4(width, height, aspect,
			                                        translation, sc->scale, sc->angle, sc->stabmat);

			unit_m4(smat);
			smat[0][0] = 1.0f / width;
			smat[1][1] = 1.0f / height;
			invert_m4_m4(ismat, smat);

			mul_m4_series(sc->unistabmat, smat, sc->stabmat, ismat);
		}
	}
	else if ((sc->flag & SC_MUTE_FOOTAGE) == 0) {
		ibuf = ED_space_clip_get_buffer(sc);

		zero_v2(sc->loc);
		sc->scale = 1.0f;
		unit_m4(sc->stabmat);
		unit_m4(sc->unistabmat);
	}

	if (ibuf) {
		draw_movieclip_buffer(C, sc, ar, ibuf, width, height, zoomx, zoomy);
		IMB_freeImBuf(ibuf);
	}
	else if (sc->flag & SC_MUTE_FOOTAGE) {
		draw_movieclip_muted(ar, width, height, zoomx, zoomy);
	}
	else {
		ED_region_grid_draw(ar, zoomx, zoomy);
	}

	if (width && height) {
		draw_stabilization_border(sc, ar, width, height, zoomx, zoomy);
		draw_tracking_tracks(sc, scene, ar, clip, width, height, zoomx, zoomy);
		draw_distortion(sc, ar, clip, width, height, zoomx, zoomy);
	}
}
コード例 #3
0
ファイル: MOD_array.c プロジェクト: akonneker/blensor
static DerivedMesh *arrayModifier_doArray(
        ArrayModifierData *amd,
        Scene *scene, Object *ob, DerivedMesh *dm,
        ModifierApplyFlag flag)
{
	const float eps = 1e-6f;
	const MVert *src_mvert;
	MVert *mv, *mv_prev, *result_dm_verts;

	MEdge *me;
	MLoop *ml;
	MPoly *mp;
	int i, j, c, count;
	float length = amd->length;
	/* offset matrix */
	float offset[4][4];
	float scale[3];
	bool offset_has_scale;
	float current_offset[4][4];
	float final_offset[4][4];
	int *full_doubles_map = NULL;
	int tot_doubles;

	const bool use_merge = (amd->flags & MOD_ARR_MERGE) != 0;
	const bool use_recalc_normals = (dm->dirty & DM_DIRTY_NORMALS) || use_merge;
	const bool use_offset_ob = ((amd->offset_type & MOD_ARR_OFF_OBJ) && amd->offset_ob);
	/* allow pole vertices to be used by many faces */
	const bool with_follow = use_offset_ob;

	int start_cap_nverts = 0, start_cap_nedges = 0, start_cap_npolys = 0, start_cap_nloops = 0;
	int end_cap_nverts = 0, end_cap_nedges = 0, end_cap_npolys = 0, end_cap_nloops = 0;
	int result_nverts = 0, result_nedges = 0, result_npolys = 0, result_nloops = 0;
	int chunk_nverts, chunk_nedges, chunk_nloops, chunk_npolys;
	int first_chunk_start, first_chunk_nverts, last_chunk_start, last_chunk_nverts;

	DerivedMesh *result, *start_cap_dm = NULL, *end_cap_dm = NULL;

	chunk_nverts = dm->getNumVerts(dm);
	chunk_nedges = dm->getNumEdges(dm);
	chunk_nloops = dm->getNumLoops(dm);
	chunk_npolys = dm->getNumPolys(dm);

	count = amd->count;

	if (amd->start_cap && amd->start_cap != ob && amd->start_cap->type == OB_MESH) {
		start_cap_dm = get_dm_for_modifier(amd->start_cap, flag);
		if (start_cap_dm) {
			start_cap_nverts = start_cap_dm->getNumVerts(start_cap_dm);
			start_cap_nedges = start_cap_dm->getNumEdges(start_cap_dm);
			start_cap_nloops = start_cap_dm->getNumLoops(start_cap_dm);
			start_cap_npolys = start_cap_dm->getNumPolys(start_cap_dm);
		}
	}
	if (amd->end_cap && amd->end_cap != ob && amd->end_cap->type == OB_MESH) {
		end_cap_dm = get_dm_for_modifier(amd->end_cap, flag);
		if (end_cap_dm) {
			end_cap_nverts = end_cap_dm->getNumVerts(end_cap_dm);
			end_cap_nedges = end_cap_dm->getNumEdges(end_cap_dm);
			end_cap_nloops = end_cap_dm->getNumLoops(end_cap_dm);
			end_cap_npolys = end_cap_dm->getNumPolys(end_cap_dm);
		}
	}

	/* Build up offset array, cumulating all settings options */

	unit_m4(offset);
	src_mvert = dm->getVertArray(dm);

	if (amd->offset_type & MOD_ARR_OFF_CONST)
		add_v3_v3v3(offset[3], offset[3], amd->offset);

	if (amd->offset_type & MOD_ARR_OFF_RELATIVE) {
		for (j = 0; j < 3; j++)
			offset[3][j] += amd->scale[j] * vertarray_size(src_mvert, chunk_nverts, j);
	}

	if (use_offset_ob) {
		float obinv[4][4];
		float result_mat[4][4];

		if (ob)
			invert_m4_m4(obinv, ob->obmat);
		else
			unit_m4(obinv);

		mul_m4_series(result_mat, offset,
		              obinv, amd->offset_ob->obmat);
		copy_m4_m4(offset, result_mat);
	}

	/* Check if there is some scaling.  If scaling, then we will not translate mapping */
	mat4_to_size(scale, offset);
	offset_has_scale = !is_one_v3(scale);

	if (amd->fit_type == MOD_ARR_FITCURVE && amd->curve_ob) {
		Curve *cu = amd->curve_ob->data;
		if (cu) {
#ifdef CYCLIC_DEPENDENCY_WORKAROUND
			if (amd->curve_ob->curve_cache == NULL) {
				BKE_displist_make_curveTypes(scene, amd->curve_ob, false);
			}
#endif

			if (amd->curve_ob->curve_cache && amd->curve_ob->curve_cache->path) {
				float scale = mat4_to_scale(amd->curve_ob->obmat);
				length = scale * amd->curve_ob->curve_cache->path->totdist;
			}
		}
	}

	/* calculate the maximum number of copies which will fit within the
	 * prescribed length */
	if (amd->fit_type == MOD_ARR_FITLENGTH || amd->fit_type == MOD_ARR_FITCURVE) {
		float dist = len_v3(offset[3]);

		if (dist > eps) {
			/* this gives length = first copy start to last copy end
			 * add a tiny offset for floating point rounding errors */
			count = (length + eps) / dist;
		}
		else {
			/* if the offset has no translation, just make one copy */
			count = 1;
		}
	}

	if (count < 1)
		count = 1;

	/* The number of verts, edges, loops, polys, before eventually merging doubles */
	result_nverts = chunk_nverts * count + start_cap_nverts + end_cap_nverts;
	result_nedges = chunk_nedges * count + start_cap_nedges + end_cap_nedges;
	result_nloops = chunk_nloops * count + start_cap_nloops + end_cap_nloops;
	result_npolys = chunk_npolys * count + start_cap_npolys + end_cap_npolys;

	/* Initialize a result dm */
	result = CDDM_from_template(dm, result_nverts, result_nedges, 0, result_nloops, result_npolys);
	result_dm_verts = CDDM_get_verts(result);

	if (use_merge) {
		/* Will need full_doubles_map for handling merge */
		full_doubles_map = MEM_mallocN(sizeof(int) * result_nverts, "mod array doubles map");
		fill_vn_i(full_doubles_map, result_nverts, -1);
	}

	/* copy customdata to original geometry */
	DM_copy_vert_data(dm, result, 0, 0, chunk_nverts);
	DM_copy_edge_data(dm, result, 0, 0, chunk_nedges);
	DM_copy_loop_data(dm, result, 0, 0, chunk_nloops);
	DM_copy_poly_data(dm, result, 0, 0, chunk_npolys);

	/* subsurf for eg wont have mesh data in the
	 * now add mvert/medge/mface layers */

	if (!CustomData_has_layer(&dm->vertData, CD_MVERT)) {
		dm->copyVertArray(dm, result_dm_verts);
	}
	if (!CustomData_has_layer(&dm->edgeData, CD_MEDGE)) {
		dm->copyEdgeArray(dm, CDDM_get_edges(result));
	}
	if (!CustomData_has_layer(&dm->polyData, CD_MPOLY)) {
		dm->copyLoopArray(dm, CDDM_get_loops(result));
		dm->copyPolyArray(dm, CDDM_get_polys(result));
	}

	/* Remember first chunk, in case of cap merge */
	first_chunk_start = 0;
	first_chunk_nverts = chunk_nverts;

	unit_m4(current_offset);
	for (c = 1; c < count; c++) {
		/* copy customdata to new geometry */
		DM_copy_vert_data(result, result, 0, c * chunk_nverts, chunk_nverts);
		DM_copy_edge_data(result, result, 0, c * chunk_nedges, chunk_nedges);
		DM_copy_loop_data(result, result, 0, c * chunk_nloops, chunk_nloops);
		DM_copy_poly_data(result, result, 0, c * chunk_npolys, chunk_npolys);

		mv_prev = result_dm_verts;
		mv = mv_prev + c * chunk_nverts;

		/* recalculate cumulative offset here */
		mul_m4_m4m4(current_offset, current_offset, offset);

		/* apply offset to all new verts */
		for (i = 0; i < chunk_nverts; i++, mv++, mv_prev++) {
			mul_m4_v3(current_offset, mv->co);

			/* We have to correct normals too, if we do not tag them as dirty! */
			if (!use_recalc_normals) {
				float no[3];
				normal_short_to_float_v3(no, mv->no);
				mul_mat3_m4_v3(current_offset, no);
				normalize_v3(no);
				normal_float_to_short_v3(mv->no, no);
			}
		}

		/* adjust edge vertex indices */
		me = CDDM_get_edges(result) + c * chunk_nedges;
		for (i = 0; i < chunk_nedges; i++, me++) {
			me->v1 += c * chunk_nverts;
			me->v2 += c * chunk_nverts;
		}

		mp = CDDM_get_polys(result) + c * chunk_npolys;
		for (i = 0; i < chunk_npolys; i++, mp++) {
			mp->loopstart += c * chunk_nloops;
		}

		/* adjust loop vertex and edge indices */
		ml = CDDM_get_loops(result) + c * chunk_nloops;
		for (i = 0; i < chunk_nloops; i++, ml++) {
			ml->v += c * chunk_nverts;
			ml->e += c * chunk_nedges;
		}

		/* Handle merge between chunk n and n-1 */
		if (use_merge && (c >= 1)) {
			if (!offset_has_scale && (c >= 2)) {
				/* Mapping chunk 3 to chunk 2 is a translation of mapping 2 to 1
				 * ... that is except if scaling makes the distance grow */
				int k;
				int this_chunk_index = c * chunk_nverts;
				int prev_chunk_index = (c - 1) * chunk_nverts;
				for (k = 0; k < chunk_nverts; k++, this_chunk_index++, prev_chunk_index++) {
					int target = full_doubles_map[prev_chunk_index];
					if (target != -1) {
						target += chunk_nverts; /* translate mapping */
						if (full_doubles_map[target] != -1) {
							if (with_follow) {
								target = full_doubles_map[target];
							}
							else {
								/* The rule here is to not follow mapping to chunk N-2, which could be too far
								 * so if target vertex was itself mapped, then this vertex is not mapped */
								target = -1;
							}
						}
					}
					full_doubles_map[this_chunk_index] = target;
				}
			}
			else {
				dm_mvert_map_doubles(
				        full_doubles_map,
				        result_dm_verts,
				        (c - 1) * chunk_nverts,
				        chunk_nverts,
				        c * chunk_nverts,
				        chunk_nverts,
				        amd->merge_dist,
				        with_follow);
			}
		}
	}

	last_chunk_start = (count - 1) * chunk_nverts;
	last_chunk_nverts = chunk_nverts;

	copy_m4_m4(final_offset, current_offset);

	if (use_merge && (amd->flags & MOD_ARR_MERGEFINAL) && (count > 1)) {
		/* Merge first and last copies */
		dm_mvert_map_doubles(
		        full_doubles_map,
		        result_dm_verts,
		        last_chunk_start,
		        last_chunk_nverts,
		        first_chunk_start,
		        first_chunk_nverts,
		        amd->merge_dist,
		        with_follow);
	}

	/* start capping */
	if (start_cap_dm) {
		float start_offset[4][4];
		int start_cap_start = result_nverts - start_cap_nverts - end_cap_nverts;
		invert_m4_m4(start_offset, offset);
		dm_merge_transform(
		        result, start_cap_dm, start_offset,
		        result_nverts - start_cap_nverts - end_cap_nverts,
		        result_nedges - start_cap_nedges - end_cap_nedges,
		        result_nloops - start_cap_nloops - end_cap_nloops,
		        result_npolys - start_cap_npolys - end_cap_npolys,
		        start_cap_nverts, start_cap_nedges, start_cap_nloops, start_cap_npolys);
		/* Identify doubles with first chunk */
		if (use_merge) {
			dm_mvert_map_doubles(
			        full_doubles_map,
			        result_dm_verts,
			        first_chunk_start,
			        first_chunk_nverts,
			        start_cap_start,
			        start_cap_nverts,
			        amd->merge_dist,
			        false);
		}
	}

	if (end_cap_dm) {
		float end_offset[4][4];
		int end_cap_start = result_nverts - end_cap_nverts;
		mul_m4_m4m4(end_offset, current_offset, offset);
		dm_merge_transform(
		        result, end_cap_dm, end_offset,
		        result_nverts - end_cap_nverts,
		        result_nedges - end_cap_nedges,
		        result_nloops - end_cap_nloops,
		        result_npolys - end_cap_npolys,
		        end_cap_nverts, end_cap_nedges, end_cap_nloops, end_cap_npolys);
		/* Identify doubles with last chunk */
		if (use_merge) {
			dm_mvert_map_doubles(
			        full_doubles_map,
			        result_dm_verts,
			        last_chunk_start,
			        last_chunk_nverts,
			        end_cap_start,
			        end_cap_nverts,
			        amd->merge_dist,
			        false);
		}
	}
	/* done capping */

	/* Handle merging */
	tot_doubles = 0;
	if (use_merge) {
		for (i = 0; i < result_nverts; i++) {
			if (full_doubles_map[i] != -1) {
				if (i == full_doubles_map[i]) {
					full_doubles_map[i] = -1;
				}
				else {
					tot_doubles++;
				}
			}
		}
		if (tot_doubles > 0) {
			result = CDDM_merge_verts(result, full_doubles_map, tot_doubles, CDDM_MERGE_VERTS_DUMP_IF_EQUAL);
		}
		MEM_freeN(full_doubles_map);
	}

	/* In case org dm has dirty normals, or we made some merging, mark normals as dirty in new dm!
	 * TODO: we may need to set other dirty flags as well?
	 */
	if (use_recalc_normals) {
		result->dirty |= DM_DIRTY_NORMALS;
	}

	return result;
}
コード例 #4
0
ファイル: texture.c プロジェクト: mgschwan/blensor
void BKE_texture_mapping_init(TexMapping *texmap)
{
	float smat[4][4], rmat[4][4], tmat[4][4], proj[4][4], size[3];

	if (texmap->projx == PROJ_X && texmap->projy == PROJ_Y && texmap->projz == PROJ_Z &&
	    is_zero_v3(texmap->loc) && is_zero_v3(texmap->rot) && is_one_v3(texmap->size))
	{
		unit_m4(texmap->mat);

		texmap->flag |= TEXMAP_UNIT_MATRIX;
	}
	else {
		/* axis projection */
		zero_m4(proj);
		proj[3][3] = 1.0f;

		if (texmap->projx != PROJ_N)
			proj[texmap->projx - 1][0] = 1.0f;
		if (texmap->projy != PROJ_N)
			proj[texmap->projy - 1][1] = 1.0f;
		if (texmap->projz != PROJ_N)
			proj[texmap->projz - 1][2] = 1.0f;

		/* scale */
		copy_v3_v3(size, texmap->size);

		if (ELEM(texmap->type, TEXMAP_TYPE_TEXTURE, TEXMAP_TYPE_NORMAL)) {
			/* keep matrix invertible */
			if (fabsf(size[0]) < 1e-5f)
				size[0] = signf(size[0]) * 1e-5f;
			if (fabsf(size[1]) < 1e-5f)
				size[1] = signf(size[1]) * 1e-5f;
			if (fabsf(size[2]) < 1e-5f)
				size[2] = signf(size[2]) * 1e-5f;
		}
		
		size_to_mat4(smat, texmap->size);

		/* rotation */
		eul_to_mat4(rmat, texmap->rot);

		/* translation */
		unit_m4(tmat);
		copy_v3_v3(tmat[3], texmap->loc);

		if (texmap->type == TEXMAP_TYPE_TEXTURE) {
			/* to transform a texture, the inverse transform needs
			 * to be applied to the texture coordinate */
			mul_m4_series(texmap->mat, tmat, rmat, smat);
			invert_m4(texmap->mat);
		}
		else if (texmap->type == TEXMAP_TYPE_POINT) {
			/* forward transform */
			mul_m4_series(texmap->mat, tmat, rmat, smat);
		}
		else if (texmap->type == TEXMAP_TYPE_VECTOR) {
			/* no translation for vectors */
			mul_m4_m4m4(texmap->mat, rmat, smat);
		}
		else if (texmap->type == TEXMAP_TYPE_NORMAL) {
			/* no translation for normals, and inverse transpose */
			mul_m4_m4m4(texmap->mat, rmat, smat);
			invert_m4(texmap->mat);
			transpose_m4(texmap->mat);
		}

		/* projection last */
		mul_m4_m4m4(texmap->mat, texmap->mat, proj);

		texmap->flag &= ~TEXMAP_UNIT_MATRIX;
	}
}
コード例 #5
0
static void set_axis(Scene *scene,
                     Object *ob,
                     MovieClip *clip,
                     MovieTrackingObject *tracking_object,
                     MovieTrackingTrack *track,
                     char axis)
{
  Object *camera = get_camera_with_movieclip(scene, clip);
  const bool is_camera = (tracking_object->flag & TRACKING_OBJECT_CAMERA) != 0;
  bool flip = false;
  float mat[4][4], vec[3], obmat[4][4], dvec[3];

  BKE_object_to_mat4(ob, obmat);

  BKE_tracking_get_camera_object_matrix(scene, camera, mat);
  mul_v3_m4v3(vec, mat, track->bundle_pos);
  copy_v3_v3(dvec, vec);

  if (!is_camera) {
    float imat[4][4];

    object_solver_inverted_matrix(scene, ob, imat);
    mul_v3_m4v3(vec, imat, vec);

    invert_m4_m4(imat, obmat);
    mul_v3_m4v3(dvec, imat, vec);

    sub_v3_v3(vec, obmat[3]);
  }

  if (len_squared_v2(vec) < (1e-3f * 1e-3f)) {
    return;
  }

  unit_m4(mat);

  if (axis == 'X') {
    if (fabsf(dvec[1]) < 1e-3f) {
      flip = true;

      mat[0][0] = -1.0f;
      mat[0][1] = 0.0f;
      mat[0][2] = 0.0f;
      mat[1][0] = 0.0f;
      mat[1][1] = -1.0f;
      mat[1][2] = 0.0f;
      mat[2][0] = 0.0f;
      mat[2][1] = 0.0f;
      mat[2][2] = 1.0f;
    }
    else {
      copy_v3_v3(mat[0], vec);

      if (is_camera || fabsf(vec[2]) < 1e-3f) {
        mat[0][2] = 0.0f;
        mat[2][0] = 0.0f;
        mat[2][1] = 0.0f;
        mat[2][2] = 1.0f;
        cross_v3_v3v3(mat[1], mat[2], mat[0]);
      }
      else {
        vec[2] = 0.0f;

        cross_v3_v3v3(mat[1], mat[0], vec);
        cross_v3_v3v3(mat[2], mat[0], mat[1]);
      }
    }
  }
  else {
    if (fabsf(dvec[0]) < 1e-3f) {
      flip = true;

      mat[0][0] = -1.0f;
      mat[0][1] = 0.0f;
      mat[0][2] = 0.0f;
      mat[1][0] = 0.0f;
      mat[1][1] = -1.0f;
      mat[1][2] = 0.0f;
      mat[2][0] = 0.0f;
      mat[2][1] = 0.0f;
      mat[2][2] = 1.0f;
    }
    else {
      copy_v3_v3(mat[1], vec);

      if (is_camera || fabsf(vec[2]) < 1e-3f) {
        mat[1][2] = 0.0f;
        mat[2][0] = 0.0f;
        mat[2][1] = 0.0f;
        mat[2][2] = 1.0f;
        cross_v3_v3v3(mat[0], mat[1], mat[2]);
      }
      else {
        vec[2] = 0.0f;

        cross_v3_v3v3(mat[0], vec, mat[1]);
        cross_v3_v3v3(mat[2], mat[0], mat[1]);
      }
    }
  }

  normalize_v3(mat[0]);
  normalize_v3(mat[1]);
  normalize_v3(mat[2]);

  if (is_camera) {
    invert_m4(mat);

    mul_m4_m4m4(mat, mat, obmat);
  }
  else {
    if (!flip) {
      float lmat[4][4], ilmat[4][4], rmat[3][3];

      BKE_object_rot_to_mat3(ob, rmat, true);
      invert_m3(rmat);
      mul_m4_m4m3(mat, mat, rmat);

      unit_m4(lmat);
      copy_v3_v3(lmat[3], obmat[3]);
      invert_m4_m4(ilmat, lmat);

      mul_m4_series(mat, lmat, mat, ilmat, obmat);
    }
    else {
      mul_m4_m4m4(mat, obmat, mat);
    }
  }

  BKE_object_apply_mat4(ob, mat, 0, 0);
}
コード例 #6
0
ファイル: MOD_array.c プロジェクト: Ichthyostega/blender
static DerivedMesh *arrayModifier_doArray(
        ArrayModifierData *amd,
        Scene *scene, Object *ob, DerivedMesh *dm,
        ModifierApplyFlag flag)
{
	const float eps = 1e-6f;
	const MVert *src_mvert;
	MVert *mv, *mv_prev, *result_dm_verts;

	MEdge *me;
	MLoop *ml;
	MPoly *mp;
	int i, j, c, count;
	float length = amd->length;
	/* offset matrix */
	float offset[4][4];
	float scale[3];
	bool offset_has_scale;
	float current_offset[4][4];
	float final_offset[4][4];
	int *full_doubles_map = NULL;
	int tot_doubles;

	const bool use_merge = (amd->flags & MOD_ARR_MERGE) != 0;
	const bool use_recalc_normals = (dm->dirty & DM_DIRTY_NORMALS) || use_merge;
	const bool use_offset_ob = ((amd->offset_type & MOD_ARR_OFF_OBJ) && amd->offset_ob);

	int start_cap_nverts = 0, start_cap_nedges = 0, start_cap_npolys = 0, start_cap_nloops = 0;
	int end_cap_nverts = 0, end_cap_nedges = 0, end_cap_npolys = 0, end_cap_nloops = 0;
	int result_nverts = 0, result_nedges = 0, result_npolys = 0, result_nloops = 0;
	int chunk_nverts, chunk_nedges, chunk_nloops, chunk_npolys;
	int first_chunk_start, first_chunk_nverts, last_chunk_start, last_chunk_nverts;

	DerivedMesh *result, *start_cap_dm = NULL, *end_cap_dm = NULL;

	int *vgroup_start_cap_remap = NULL;
	int vgroup_start_cap_remap_len = 0;
	int *vgroup_end_cap_remap = NULL;
	int vgroup_end_cap_remap_len = 0;

	chunk_nverts = dm->getNumVerts(dm);
	chunk_nedges = dm->getNumEdges(dm);
	chunk_nloops = dm->getNumLoops(dm);
	chunk_npolys = dm->getNumPolys(dm);

	count = amd->count;

	if (amd->start_cap && amd->start_cap != ob && amd->start_cap->type == OB_MESH) {
		vgroup_start_cap_remap = BKE_object_defgroup_index_map_create(amd->start_cap, ob, &vgroup_start_cap_remap_len);

		start_cap_dm = get_dm_for_modifier(amd->start_cap, flag);
		if (start_cap_dm) {
			start_cap_nverts = start_cap_dm->getNumVerts(start_cap_dm);
			start_cap_nedges = start_cap_dm->getNumEdges(start_cap_dm);
			start_cap_nloops = start_cap_dm->getNumLoops(start_cap_dm);
			start_cap_npolys = start_cap_dm->getNumPolys(start_cap_dm);
		}
	}
	if (amd->end_cap && amd->end_cap != ob && amd->end_cap->type == OB_MESH) {
		vgroup_end_cap_remap = BKE_object_defgroup_index_map_create(amd->end_cap, ob, &vgroup_end_cap_remap_len);

		end_cap_dm = get_dm_for_modifier(amd->end_cap, flag);
		if (end_cap_dm) {
			end_cap_nverts = end_cap_dm->getNumVerts(end_cap_dm);
			end_cap_nedges = end_cap_dm->getNumEdges(end_cap_dm);
			end_cap_nloops = end_cap_dm->getNumLoops(end_cap_dm);
			end_cap_npolys = end_cap_dm->getNumPolys(end_cap_dm);
		}
	}

	/* Build up offset array, cumulating all settings options */

	unit_m4(offset);
	src_mvert = dm->getVertArray(dm);

	if (amd->offset_type & MOD_ARR_OFF_CONST) {
		add_v3_v3(offset[3], amd->offset);
	}

	if (amd->offset_type & MOD_ARR_OFF_RELATIVE) {
		float min[3], max[3];
		const MVert *src_mv;

		INIT_MINMAX(min, max);
		for (src_mv = src_mvert, j = chunk_nverts; j--; src_mv++) {
			minmax_v3v3_v3(min, max, src_mv->co);
		}

		for (j = 3; j--; ) {
			offset[3][j] += amd->scale[j] * (max[j] - min[j]);
		}
	}

	if (use_offset_ob) {
		float obinv[4][4];
		float result_mat[4][4];

		if (ob)
			invert_m4_m4(obinv, ob->obmat);
		else
			unit_m4(obinv);

		mul_m4_series(result_mat, offset,
		              obinv, amd->offset_ob->obmat);
		copy_m4_m4(offset, result_mat);
	}

	/* Check if there is some scaling.  If scaling, then we will not translate mapping */
	mat4_to_size(scale, offset);
	offset_has_scale = !is_one_v3(scale);

	if (amd->fit_type == MOD_ARR_FITCURVE && amd->curve_ob) {
		Curve *cu = amd->curve_ob->data;
		if (cu) {
#ifdef CYCLIC_DEPENDENCY_WORKAROUND
			if (amd->curve_ob->curve_cache == NULL) {
				BKE_displist_make_curveTypes(scene, amd->curve_ob, false);
			}
#endif

			if (amd->curve_ob->curve_cache && amd->curve_ob->curve_cache->path) {
				float scale_fac = mat4_to_scale(amd->curve_ob->obmat);
				length = scale_fac * amd->curve_ob->curve_cache->path->totdist;
			}
		}
	}

	/* calculate the maximum number of copies which will fit within the
	 * prescribed length */
	if (amd->fit_type == MOD_ARR_FITLENGTH || amd->fit_type == MOD_ARR_FITCURVE) {
		float dist = len_v3(offset[3]);

		if (dist > eps) {
			/* this gives length = first copy start to last copy end
			 * add a tiny offset for floating point rounding errors */
			count = (length + eps) / dist + 1;
		}
		else {
			/* if the offset has no translation, just make one copy */
			count = 1;
		}
	}

	if (count < 1)
		count = 1;

	/* The number of verts, edges, loops, polys, before eventually merging doubles */
	result_nverts = chunk_nverts * count + start_cap_nverts + end_cap_nverts;
	result_nedges = chunk_nedges * count + start_cap_nedges + end_cap_nedges;
	result_nloops = chunk_nloops * count + start_cap_nloops + end_cap_nloops;
	result_npolys = chunk_npolys * count + start_cap_npolys + end_cap_npolys;

	/* Initialize a result dm */
	result = CDDM_from_template(dm, result_nverts, result_nedges, 0, result_nloops, result_npolys);
	result_dm_verts = CDDM_get_verts(result);

	if (use_merge) {
		/* Will need full_doubles_map for handling merge */
		full_doubles_map = MEM_malloc_arrayN(result_nverts, sizeof(int), "mod array doubles map");
		copy_vn_i(full_doubles_map, result_nverts, -1);
	}

	/* copy customdata to original geometry */
	DM_copy_vert_data(dm, result, 0, 0, chunk_nverts);
	DM_copy_edge_data(dm, result, 0, 0, chunk_nedges);
	DM_copy_loop_data(dm, result, 0, 0, chunk_nloops);
	DM_copy_poly_data(dm, result, 0, 0, chunk_npolys);

	/* Subsurf for eg won't have mesh data in the custom data arrays.
	 * now add mvert/medge/mpoly layers. */

	if (!CustomData_has_layer(&dm->vertData, CD_MVERT)) {
		dm->copyVertArray(dm, result_dm_verts);
	}
	if (!CustomData_has_layer(&dm->edgeData, CD_MEDGE)) {
		dm->copyEdgeArray(dm, CDDM_get_edges(result));
	}
	if (!CustomData_has_layer(&dm->polyData, CD_MPOLY)) {
		dm->copyLoopArray(dm, CDDM_get_loops(result));
		dm->copyPolyArray(dm, CDDM_get_polys(result));
	}

	/* Remember first chunk, in case of cap merge */
	first_chunk_start = 0;
	first_chunk_nverts = chunk_nverts;

	unit_m4(current_offset);
	for (c = 1; c < count; c++) {
		/* copy customdata to new geometry */
		DM_copy_vert_data(result, result, 0, c * chunk_nverts, chunk_nverts);
		DM_copy_edge_data(result, result, 0, c * chunk_nedges, chunk_nedges);
		DM_copy_loop_data(result, result, 0, c * chunk_nloops, chunk_nloops);
		DM_copy_poly_data(result, result, 0, c * chunk_npolys, chunk_npolys);

		mv_prev = result_dm_verts;
		mv = mv_prev + c * chunk_nverts;

		/* recalculate cumulative offset here */
		mul_m4_m4m4(current_offset, current_offset, offset);

		/* apply offset to all new verts */
		for (i = 0; i < chunk_nverts; i++, mv++, mv_prev++) {
			mul_m4_v3(current_offset, mv->co);

			/* We have to correct normals too, if we do not tag them as dirty! */
			if (!use_recalc_normals) {
				float no[3];
				normal_short_to_float_v3(no, mv->no);
				mul_mat3_m4_v3(current_offset, no);
				normalize_v3(no);
				normal_float_to_short_v3(mv->no, no);
			}
		}

		/* adjust edge vertex indices */
		me = CDDM_get_edges(result) + c * chunk_nedges;
		for (i = 0; i < chunk_nedges; i++, me++) {
			me->v1 += c * chunk_nverts;
			me->v2 += c * chunk_nverts;
		}

		mp = CDDM_get_polys(result) + c * chunk_npolys;
		for (i = 0; i < chunk_npolys; i++, mp++) {
			mp->loopstart += c * chunk_nloops;
		}

		/* adjust loop vertex and edge indices */
		ml = CDDM_get_loops(result) + c * chunk_nloops;
		for (i = 0; i < chunk_nloops; i++, ml++) {
			ml->v += c * chunk_nverts;
			ml->e += c * chunk_nedges;
		}

		/* Handle merge between chunk n and n-1 */
		if (use_merge && (c >= 1)) {
			if (!offset_has_scale && (c >= 2)) {
				/* Mapping chunk 3 to chunk 2 is a translation of mapping 2 to 1
				 * ... that is except if scaling makes the distance grow */
				int k;
				int this_chunk_index = c * chunk_nverts;
				int prev_chunk_index = (c - 1) * chunk_nverts;
				for (k = 0; k < chunk_nverts; k++, this_chunk_index++, prev_chunk_index++) {
					int target = full_doubles_map[prev_chunk_index];
					if (target != -1) {
						target += chunk_nverts; /* translate mapping */
						while (target != -1 && !ELEM(full_doubles_map[target], -1, target)) {
							/* If target is already mapped, we only follow that mapping if final target remains
							 * close enough from current vert (otherwise no mapping at all). */
							if (compare_len_v3v3(result_dm_verts[this_chunk_index].co,
							                     result_dm_verts[full_doubles_map[target]].co,
							                     amd->merge_dist))
							{
								target = full_doubles_map[target];
							}
							else {
								target = -1;
							}
						}
					}
					full_doubles_map[this_chunk_index] = target;
				}
			}
			else {
				dm_mvert_map_doubles(
				        full_doubles_map,
				        result_dm_verts,
				        (c - 1) * chunk_nverts,
				        chunk_nverts,
				        c * chunk_nverts,
				        chunk_nverts,
				        amd->merge_dist);
			}
		}
	}

	/* handle UVs */
	if (chunk_nloops > 0 && is_zero_v2(amd->uv_offset) == false) {
		const int totuv = CustomData_number_of_layers(&result->loopData, CD_MLOOPUV);
		for (i = 0; i < totuv; i++) {
			MLoopUV *dmloopuv = CustomData_get_layer_n(&result->loopData, CD_MLOOPUV, i);
			dmloopuv += chunk_nloops;
			for (c = 1; c < count; c++) {
				const float uv_offset[2] = {
					amd->uv_offset[0] * (float)c,
					amd->uv_offset[1] * (float)c,
				};
				int l_index = chunk_nloops;
				for (; l_index-- != 0; dmloopuv++) {
					dmloopuv->uv[0] += uv_offset[0];
					dmloopuv->uv[1] += uv_offset[1];
				}
			}
		}
	}

	last_chunk_start = (count - 1) * chunk_nverts;
	last_chunk_nverts = chunk_nverts;

	copy_m4_m4(final_offset, current_offset);

	if (use_merge && (amd->flags & MOD_ARR_MERGEFINAL) && (count > 1)) {
		/* Merge first and last copies */
		dm_mvert_map_doubles(
		        full_doubles_map,
		        result_dm_verts,
		        last_chunk_start,
		        last_chunk_nverts,
		        first_chunk_start,
		        first_chunk_nverts,
		        amd->merge_dist);
	}

	/* start capping */
	if (start_cap_dm) {
		float start_offset[4][4];
		int start_cap_start = result_nverts - start_cap_nverts - end_cap_nverts;
		invert_m4_m4(start_offset, offset);
		dm_merge_transform(
		        result, start_cap_dm, start_offset,
		        result_nverts - start_cap_nverts - end_cap_nverts,
		        result_nedges - start_cap_nedges - end_cap_nedges,
		        result_nloops - start_cap_nloops - end_cap_nloops,
		        result_npolys - start_cap_npolys - end_cap_npolys,
		        start_cap_nverts, start_cap_nedges, start_cap_nloops, start_cap_npolys,
		        vgroup_start_cap_remap, vgroup_start_cap_remap_len);
		/* Identify doubles with first chunk */
		if (use_merge) {
			dm_mvert_map_doubles(
			        full_doubles_map,
			        result_dm_verts,
			        first_chunk_start,
			        first_chunk_nverts,
			        start_cap_start,
			        start_cap_nverts,
			        amd->merge_dist);
		}
	}

	if (end_cap_dm) {
		float end_offset[4][4];
		int end_cap_start = result_nverts - end_cap_nverts;
		mul_m4_m4m4(end_offset, current_offset, offset);
		dm_merge_transform(
		        result, end_cap_dm, end_offset,
		        result_nverts - end_cap_nverts,
		        result_nedges - end_cap_nedges,
		        result_nloops - end_cap_nloops,
		        result_npolys - end_cap_npolys,
		        end_cap_nverts, end_cap_nedges, end_cap_nloops, end_cap_npolys,
		        vgroup_end_cap_remap, vgroup_end_cap_remap_len);
		/* Identify doubles with last chunk */
		if (use_merge) {
			dm_mvert_map_doubles(
			        full_doubles_map,
			        result_dm_verts,
			        last_chunk_start,
			        last_chunk_nverts,
			        end_cap_start,
			        end_cap_nverts,
			        amd->merge_dist);
		}
	}
	/* done capping */

	/* Handle merging */
	tot_doubles = 0;
	if (use_merge) {
		for (i = 0; i < result_nverts; i++) {
			int new_i = full_doubles_map[i];
			if (new_i != -1) {
				/* We have to follow chains of doubles (merge start/end especially is likely to create some),
				 * those are not supported at all by CDDM_merge_verts! */
				while (!ELEM(full_doubles_map[new_i], -1, new_i)) {
					new_i = full_doubles_map[new_i];
				}
				if (i == new_i) {
					full_doubles_map[i] = -1;
				}
				else {
					full_doubles_map[i] = new_i;
					tot_doubles++;
				}
			}
		}
		if (tot_doubles > 0) {
			result = CDDM_merge_verts(result, full_doubles_map, tot_doubles, CDDM_MERGE_VERTS_DUMP_IF_EQUAL);
		}
		MEM_freeN(full_doubles_map);
	}

	/* In case org dm has dirty normals, or we made some merging, mark normals as dirty in new dm!
	 * TODO: we may need to set other dirty flags as well?
	 */
	if (use_recalc_normals) {
		result->dirty |= DM_DIRTY_NORMALS;
	}

	if (vgroup_start_cap_remap) {
		MEM_freeN(vgroup_start_cap_remap);
	}
	if (vgroup_end_cap_remap) {
		MEM_freeN(vgroup_end_cap_remap);
	}

	return result;
}
コード例 #7
0
/**
 * Iterates over ALL objects in the scene and all of its sets, including
 * making all duplis(not only metas). Copies metas to mainb array.
 * Computes bounding boxes for building BVH. */
static void init_meta(EvaluationContext *eval_ctx, PROCESS *process, Scene *scene, Object *ob)
{
	Scene *sce_iter = scene;
	Base *base;
	Object *bob;
	MetaBall *mb;
	const MetaElem *ml;
	float obinv[4][4], obmat[4][4];
	unsigned int i;
	int obnr, zero_size = 0;
	char obname[MAX_ID_NAME];
	SceneBaseIter iter;

	copy_m4_m4(obmat, ob->obmat);   /* to cope with duplicators from BKE_scene_base_iter_next */
	invert_m4_m4(obinv, ob->obmat);

	BLI_split_name_num(obname, &obnr, ob->id.name + 2, '.');

	/* make main array */
	BKE_scene_base_iter_next(eval_ctx, &iter, &sce_iter, 0, NULL, NULL);
	while (BKE_scene_base_iter_next(eval_ctx, &iter, &sce_iter, 1, &base, &bob)) {
		if (bob->type == OB_MBALL) {
			zero_size = 0;
			ml = NULL;

			if (bob == ob && (base->flag & OB_FROMDUPLI) == 0) {
				mb = ob->data;

				if (mb->editelems) ml = mb->editelems->first;
				else ml = mb->elems.first;
			}
			else {
				char name[MAX_ID_NAME];
				int nr;

				BLI_split_name_num(name, &nr, bob->id.name + 2, '.');
				if (STREQ(obname, name)) {
					mb = bob->data;

					if (mb->editelems) ml = mb->editelems->first;
					else ml = mb->elems.first;
				}
			}

			/* when metaball object has zero scale, then MetaElem to this MetaBall
			 * will not be put to mainb array */
			if (has_zero_axis_m4(bob->obmat)) {
				zero_size = 1;
			}
			else if (bob->parent) {
				struct Object *pob = bob->parent;
				while (pob) {
					if (has_zero_axis_m4(pob->obmat)) {
						zero_size = 1;
						break;
					}
					pob = pob->parent;
				}
			}

			if (zero_size) {
				while (ml) {
					ml = ml->next;
				}
			}
			else {
				while (ml) {
					if (!(ml->flag & MB_HIDE)) {
						float pos[4][4], rot[4][4];
						float expx, expy, expz;
						float tempmin[3], tempmax[3];

						MetaElem *new_ml;

						/* make a copy because of duplicates */
						new_ml = BLI_memarena_alloc(process->pgn_elements, sizeof(MetaElem));
						*(new_ml) = *ml;
						new_ml->bb = BLI_memarena_alloc(process->pgn_elements, sizeof(BoundBox));
						new_ml->mat = BLI_memarena_alloc(process->pgn_elements, 4 * 4 * sizeof(float));
						new_ml->imat = BLI_memarena_alloc(process->pgn_elements, 4 * 4 * sizeof(float));

						/* too big stiffness seems only ugly due to linear interpolation
						* no need to have possibility for too big stiffness */
						if (ml->s > 10.0f) new_ml->s = 10.0f;
						else new_ml->s = ml->s;

						/* if metaball is negative, set stiffness negative */
						if (new_ml->flag & MB_NEGATIVE) new_ml->s = -new_ml->s;

						/* Translation of MetaElem */
						unit_m4(pos);
						pos[3][0] = ml->x;
						pos[3][1] = ml->y;
						pos[3][2] = ml->z;

						/* Rotation of MetaElem is stored in quat */
						quat_to_mat4(rot, ml->quat);

						/* basis object space -> world -> ml object space -> position -> rotation -> ml local space */
						mul_m4_series((float(*)[4])new_ml->mat, obinv, bob->obmat, pos, rot);
						/* ml local space -> basis object space */
						invert_m4_m4((float(*)[4])new_ml->imat, (float(*)[4])new_ml->mat);

						/* rad2 is inverse of squared radius */
						new_ml->rad2 = 1 / (ml->rad * ml->rad);

						/* initial dimensions = radius */
						expx = ml->rad;
						expy = ml->rad;
						expz = ml->rad;

						switch (ml->type) {
							case MB_BALL:
								break;
							case MB_CUBE: /* cube is "expanded" by expz, expy and expx */
								expz += ml->expz;
								/* fall through */
							case MB_PLANE: /* plane is "expanded" by expy and expx */
								expy += ml->expy;
								/* fall through */
							case MB_TUBE: /* tube is "expanded" by expx */
								expx += ml->expx;
								break;
							case MB_ELIPSOID: /* ellipsoid is "stretched" by exp* */
								expx *= ml->expx;
								expy *= ml->expy;
								expz *= ml->expz;
								break;
						}

						/* untransformed Bounding Box of MetaElem */
						/* TODO, its possible the elem type has been changed and the exp* values can use a fallback */
						copy_v3_fl3(new_ml->bb->vec[0], -expx, -expy, -expz);  /* 0 */
						copy_v3_fl3(new_ml->bb->vec[1], +expx, -expy, -expz);  /* 1 */
						copy_v3_fl3(new_ml->bb->vec[2], +expx, +expy, -expz);  /* 2 */
						copy_v3_fl3(new_ml->bb->vec[3], -expx, +expy, -expz);  /* 3 */
						copy_v3_fl3(new_ml->bb->vec[4], -expx, -expy, +expz);  /* 4 */
						copy_v3_fl3(new_ml->bb->vec[5], +expx, -expy, +expz);  /* 5 */
						copy_v3_fl3(new_ml->bb->vec[6], +expx, +expy, +expz);  /* 6 */
						copy_v3_fl3(new_ml->bb->vec[7], -expx, +expy, +expz);  /* 7 */

						/* transformation of Metalem bb */
						for (i = 0; i < 8; i++)
							mul_m4_v3((float(*)[4])new_ml->mat, new_ml->bb->vec[i]);

						/* find max and min of transformed bb */
						INIT_MINMAX(tempmin, tempmax);
						for (i = 0; i < 8; i++) {
							DO_MINMAX(new_ml->bb->vec[i], tempmin, tempmax);
						}

						/* set only point 0 and 6 - AABB of Metaelem */
						copy_v3_v3(new_ml->bb->vec[0], tempmin);
						copy_v3_v3(new_ml->bb->vec[6], tempmax);

						/* add new_ml to mainb[] */
						if (UNLIKELY(process->totelem == process->mem)) {
							process->mem = process->mem * 2 + 10;
							process->mainb = MEM_reallocN(process->mainb, sizeof(MetaElem *) * process->mem);
						}
						process->mainb[process->totelem++] = new_ml;
					}
					ml = ml->next;
				}
			}
		}
	}

	/* compute AABB of all Metaelems */
	if (process->totelem > 0) {
		copy_v3_v3(process->allbb.min, process->mainb[0]->bb->vec[0]);
		copy_v3_v3(process->allbb.max, process->mainb[0]->bb->vec[6]);
		for (i = 1; i < process->totelem; i++)
			make_box_union(process->mainb[i]->bb, &process->allbb, &process->allbb);
	}
}