コード例 #1
0
ファイル: bnflog.c プロジェクト: jpflori/pari
/* K number field, pr a maximal ideal, let K_pr be the attached local
 * field, K_pr = Q_p[X] / (T), T irreducible. Return \tilde{e}(K_pr/Q_p) */
static long
etilde(GEN nf, GEN pr, GEN T)
{
  GEN gp = pr_get_p(pr);
  ulong e = pr_get_e(pr);
  long v, voo, vmin, p, k;

  if (!u_pval(e, gp))
  {
    v = u_pval(pr_get_f(pr), gp);
    return itou( mului(e, powiu(gp, v)) );
  }
  nf = checknf(nf);
  p = itou(gp);
  k = e / (p-1) + 1;
  /* log Norm_{F_P/Q_p} (1 + P^k) = Tr(P^k) = p^[(k + v(Diff))/ e] Z_p */
  voo = (k + idealval(nf, nf_get_diff(nf), pr)) / e;
  vmin = vlognorm(nf, T, pr_get_gen(pr), gp, voo);
  if (k > 1)
  {
    GEN U = idealprincipalunits(nf, pr, k);
    GEN gen = abgrp_get_gen(U), cyc = abgrp_get_cyc(U);
    long i, l = lg(cyc);
    for (i = 1; i < l; i++)
    {
      if (voo - Z_lval(gel(cyc,i), p) >= vmin) break;
      vmin = vlognorm(nf, T, gel(gen,i), gp, vmin);
    }
  }
  v = u_lval(degpol(T), p) + (p == 2UL? 2 : 1) - vmin;
  (void)u_lvalrem(e, p, &e);
  return e * upowuu(p,v);
}
コード例 #2
0
ファイル: bnflog.c プロジェクト: jpflori/pari
static long
nfislocalpower_i(GEN nf, GEN pr, GEN a, GEN n)
{
  long v, e, t;
  GEN p, G;
  a = nf_to_scalar_or_basis(nf,a);
  checkprid(pr);
  if (!signe(n)) return isint1(a);
  v = nfvalrem(nf, a, pr, &a);
  p = pr_get_p(pr);
  if (!dvdsi(v, n)) return 0;
  v = Z_pvalrem(n, p, &n);
  if (!equali1(n))
  {
    GEN T, modpr = zk_to_Fq_init(nf, &pr, &T, &p);
    GEN ap = nf_to_Fq(nf, a, modpr);
    if (!Fq_ispower(ap, n, T, p)) return 0;
  }
  if (!v) return 1;
  e = pr_get_e(pr);
  if (v == 1) /* optimal formula */
    t = itos( divii(mului(e,p), subiu(p,1)) ) + 1;
  else /* straight Hensel */
    t = 2 * e * v + 1;
  G = Idealstarprk(nf, pr, t, nf_INIT);
  return (ZV_pval(ideallog(nf, a, G), p) >= v);
}
コード例 #3
0
ファイル: gcdext.c プロジェクト: jpflori/pari
GEN
bezout(GEN a, GEN b, GEN *pu, GEN *pv)
{
  GEN t,u,u1,v,v1,d,d1,q,r;
  GEN *pt;
  pari_sp av, av1;
  long s, sa, sb;
  ulong g;
  ulong xu,xu1,xv,xv1;                /* Lehmer stage recurrence matrix */
  int lhmres;                        /* Lehmer stage return value */

  s = abscmpii(a,b);
  if (s < 0)
  {
    t=b; b=a; a=t;
    pt=pu; pu=pv; pv=pt;
  }
  /* now |a| >= |b| */

  sa = signe(a); sb = signe(b);
  if (!sb)
  {
    if (pv) *pv = gen_0;
    switch(sa)
    {
    case  0: if (pu) *pu = gen_0; return gen_0;
    case  1: if (pu) *pu = gen_1; return icopy(a);
    case -1: if (pu) *pu = gen_m1; return(negi(a));
    }
  }
  if (s == 0)                        /* |a| == |b| != 0 */
  {
    if (pu) *pu = gen_0;
    if (sb > 0)
    { if (pv) *pv = gen_1; return icopy(b); }
    else
    { if (pv) *pv = gen_m1; return(negi(b)); }
  }
  /* now |a| > |b| > 0 */

  if (lgefint(a) == 3)                /* single-word affair */
  {
    g = xxgcduu(uel(a,2), uel(b,2), 0, &xu, &xu1, &xv, &xv1, &s);
    sa = s > 0 ? sa : -sa;
    sb = s > 0 ? -sb : sb;
    if (pu)
    {
      if (xu == 0) *pu = gen_0; /* can happen when b divides a */
      else if (xu == 1) *pu = sa < 0 ? gen_m1 : gen_1;
      else if (xu == 2) *pu = sa < 0 ? gen_m2 : gen_2;
      else
      {
        *pu = cgeti(3);
        (*pu)[1] = evalsigne(sa)|evallgefint(3);
        (*pu)[2] = xu;
      }
    }
    if (pv)
    {
      if (xv == 1) *pv = sb < 0 ? gen_m1 : gen_1;
      else if (xv == 2) *pv = sb < 0 ? gen_m2 : gen_2;
      else
      {
        *pv = cgeti(3);
        (*pv)[1] = evalsigne(sb)|evallgefint(3);
        (*pv)[2] = xv;
      }
    }
    if      (g == 1) return gen_1;
    else if (g == 2) return gen_2;
    else return utoipos(g);
  }

  /* general case */
  av = avma;
  (void)new_chunk(lgefint(b) + (lgefint(a)<<1)); /* room for u,v,gcd */
  /* if a is significantly larger than b, calling lgcdii() is not the best
   * way to start -- reduce a mod b first
   */
  if (lgefint(a) > lgefint(b))
  {
    d = absi(b), q = dvmdii(absi(a), d, &d1);
    if (!signe(d1))                /* a == qb */
    {
      avma = av;
      if (pu) *pu = gen_0;
      if (pv) *pv = sb < 0 ? gen_m1 : gen_1;
      return (icopy(d));
    }
    else
    {
      u = gen_0;
      u1 = v = gen_1;
      v1 = negi(q);
    }
    /* if this results in lgefint(d) == 3, will fall past main loop */
  }
  else
  {
    d = absi(a); d1 = absi(b);
    u = v1 = gen_1; u1 = v = gen_0;
  }
  av1 = avma;

  /* main loop is almost identical to that of invmod() */
  while (lgefint(d) > 3 && signe(d1))
  {
    lhmres = lgcdii((ulong *)d, (ulong *)d1, &xu, &xu1, &xv, &xv1, ULONG_MAX);
    if (lhmres != 0)                /* check progress */
    {                                /* apply matrix */
      if ((lhmres == 1) || (lhmres == -1))
      {
        if (xv1 == 1)
        {
          r = subii(d,d1); d=d1; d1=r;
          a = subii(u,u1); u=u1; u1=a;
          a = subii(v,v1); v=v1; v1=a;
        }
        else
        {
          r = subii(d, mului(xv1,d1)); d=d1; d1=r;
          a = subii(u, mului(xv1,u1)); u=u1; u1=a;
          a = subii(v, mului(xv1,v1)); v=v1; v1=a;
        }
      }
      else
      {
        r  = subii(muliu(d,xu),  muliu(d1,xv));
        d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r;
        a  = subii(muliu(u,xu),  muliu(u1,xv));
        u1 = subii(muliu(u,xu1), muliu(u1,xv1)); u = a;
        a  = subii(muliu(v,xu),  muliu(v1,xv));
        v1 = subii(muliu(v,xu1), muliu(v1,xv1)); v = a;
        if (lhmres&1) { togglesign(d);  togglesign(u);  togglesign(v); }
        else          { togglesign(d1); togglesign(u1); togglesign(v1); }
      }
    }
    if (lhmres <= 0 && signe(d1))
    {
      q = dvmdii(d,d1,&r);
      a = subii(u,mulii(q,u1));
      u=u1; u1=a;
      a = subii(v,mulii(q,v1));
      v=v1; v1=a;
      d=d1; d1=r;
    }
    if (gc_needed(av,1))
    {
      if(DEBUGMEM>1) pari_warn(warnmem,"bezout");
      gerepileall(av1,6, &d,&d1,&u,&u1,&v,&v1);
    }
  } /* end while */

  /* Postprocessing - final sprint */
  if (signe(d1))
  {
    /* Assertions: lgefint(d)==lgefint(d1)==3, and
     * gcd(d,d1) is nonzero and fits into one word
     */
    g = xxgcduu(uel(d,2), uel(d1,2), 0, &xu, &xu1, &xv, &xv1, &s);
    u = subii(muliu(u,xu), muliu(u1, xv));
    v = subii(muliu(v,xu), muliu(v1, xv));
    if (s < 0) { sa = -sa; sb = -sb; }
    avma = av;
    if (pu) *pu = sa < 0 ? negi(u) : icopy(u);
    if (pv) *pv = sb < 0 ? negi(v) : icopy(v);
    if (g == 1) return gen_1;
    else if (g == 2) return gen_2;
    else return utoipos(g);
  }
  /* get here when the final sprint was skipped (d1 was zero already).
   * Now the matrix is final, and d contains the gcd.
   */
  avma = av;
  if (pu) *pu = sa < 0 ? negi(u) : icopy(u);
  if (pv) *pv = sb < 0 ? negi(v) : icopy(v);
  return icopy(d);
}
コード例 #4
0
ファイル: ratlift.c プロジェクト: BENGMN/soen490
int
ratlift(GEN x, GEN m, GEN *a, GEN *b, GEN amax, GEN bmax)
{
  GEN d,d1,v,v1,q,r;
  pari_sp av = avma, av1, lim;
  long lb,lr,lbb,lbr,s,s0;
  ulong vmax;
  ulong xu,xu1,xv,xv1;		/* Lehmer stage recurrence matrix */
  int lhmres;			/* Lehmer stage return value */

  if ((typ(x) | typ(m) | typ(amax) | typ(bmax)) != t_INT) pari_err(arither1);
  if (signe(bmax) <= 0)
    pari_err(talker, "ratlift: bmax must be > 0, found\n\tbmax=%Z\n", bmax);
  if (signe(amax) < 0)
    pari_err(talker, "ratilft: amax must be >= 0, found\n\tamax=%Z\n", amax);
  /* check 2*amax*bmax < m */
  if (cmpii(shifti(mulii(amax, bmax), 1), m) >= 0)
    pari_err(talker, "ratlift: must have 2*amax*bmax < m, found\n\tamax=%Z\n\tbmax=%Z\n\tm=%Z\n", amax,bmax,m);
  /* we _could_ silently replace x with modii(x,m) instead of the following,
   * but let's leave this up to the caller
   */
  avma = av; s = signe(x);
  if (s < 0 || cmpii(x,m) >= 0)
    pari_err(talker, "ratlift: must have 0 <= x < m, found\n\tx=%Z\n\tm=%Z\n", x,m);

  /* special cases x=0 and/or amax=0 */
  if (s == 0)
  {
    if (a != NULL) *a = gen_0;
    if (b != NULL) *b = gen_1;
    return 1;
  }
  else if (signe(amax)==0)
    return 0;
  /* assert: m > x > 0, amax > 0 */

  /* check here whether a=x, b=1 is a solution */
  if (cmpii(x,amax) <= 0)
  {
    if (a != NULL) *a = icopy(x);
    if (b != NULL) *b = gen_1;
    return 1;
  }

  /* There is no special case for single-word numbers since this is
   * mainly meant to be used with large moduli.
   */
  (void)new_chunk(lgefint(bmax) + lgefint(amax)); /* room for a,b */
  d = m; d1 = x;
  v = gen_0; v1 = gen_1;
  /* assert d1 > amax, v1 <= bmax here */
  lb = lgefint(bmax);
  lbb = bfffo(*int_MSW(bmax));
  s = 1;
  av1 = avma; lim = stack_lim(av, 1);

  /* general case: Euclidean division chain starting with m div x, and
   * with bounds on the sequence of convergents' denoms v_j.
   * Just to be different from what invmod and bezout are doing, we work
   * here with the all-nonnegative matrices [u,u1;v,v1]=prod_j([0,1;1,q_j]).
   * Loop invariants:
   * (a) (sign)*[-v,v1]*x = [d,d1] (mod m)  (componentwise)
   * (sign initially +1, changes with each Euclidean step)
   * so [a,b] will be obtained in the form [-+d,v] or [+-d1,v1];
   * this congruence is a consequence of
   * (b) [x,m]~ = [u,u1;v,v1]*[d1,d]~,
   * where u,u1 is the usual numerator sequence starting with 1,0
   * instead of 0,1  (just multiply the eqn on the left by the inverse
   * matrix, which is det*[v1,-u1;-v,u], where "det" is the same as the
   * "(sign)" in (a)).  From m = v*d1 + v1*d and
   * (c) d > d1 >= 0, 0 <= v < v1,
   * we have d >= m/(2*v1), so while v1 remains smaller than m/(2*amax),
   * the pair [-(sign)*d,v] satisfies (1) but violates (2) (d > amax).
   * Conversely, v1 > bmax indicates that no further solutions will be
   * forthcoming;  [-(sign)*d,v] will be the last, and first, candidate.
   * Thus there's at most one point in the chain division where a solution
   * can live:  v < bmax, v1 >= m/(2*amax) > bmax,  and this is acceptable
   * iff in fact d <= amax  (e.g. m=221, x=34 or 35, amax=bmax=10 fail on
   * this count while x=32,33,36,37 succeed).  However, a division may leave
   * a zero residue before we ever reach this point  (consider m=210, x=35,
   * amax=bmax=10),  and our caller may find that gcd(d,v) > 1  (numerous
   * examples -- keep m=210 and consider any of x=29,31,32,33,34,36,37,38,
   * 39,40,41).
   * Furthermore, at the start of the loop body we have in fact
   * (c') 0 <= v < v1 <= bmax, d > d1 > amax >= 0,
   * (and are never done already).
   *
   * Main loop is similar to those of invmod() and bezout(), except for
   * having to determine appropriate vmax bounds, and checking termination
   * conditions.  The signe(d1) condition is only for paranoia
   */
  while (lgefint(d) > 3 && signe(d1))
  {
    /* determine vmax for lgcdii so as to ensure v won't overshoot.
     * If v+v1 > bmax, the next step would take v1 beyond the limit, so
     * since [+-d1,v1] is not a solution, we give up.  Otherwise if v+v1
     * is way shorter than bmax, use vmax=MAXULUNG.  Otherwise, set vmax
     * to a crude lower approximation of bmax/(v+v1), or to 1, which will
     * allow the inner loop to do one step
     */
    r = addii(v,v1);
    lr = lb - lgefint(r);
    lbr = bfffo(*int_MSW(r));
    if (cmpii(r,bmax) > 0)	/* done, not found */
    {
      avma = av;
      return 0;
    }
    else if (lr > 1)		/* still more than a word's worth to go */
    {
      vmax = MAXULONG;
    }
    else			/* take difference of bit lengths */
    {
      lr = (lr << TWOPOTBITS_IN_LONG) - lbb + lbr;
      if ((ulong)lr > BITS_IN_LONG)
	vmax = MAXULONG;
      else if (lr == 0)
	vmax = 1UL;
      else
	vmax = 1UL << (lr-1);
      /* the latter is pessimistic but faster than a division */
    }
    /* do a Lehmer-Jebelean round */
    lhmres = lgcdii((ulong *)d, (ulong *)d1, &xu, &xu1, &xv, &xv1, vmax);
    if (lhmres != 0)		/* check progress */
    {				/* apply matrix */
      if ((lhmres == 1) || (lhmres == -1))
      {
	s = -s;
	if (xv1 == 1)
	{
	  /* re-use v+v1 computed above */
	  v=v1; v1=r;
	  r = subii(d,d1); d=d1; d1=r;
	}
	else
	{
	  r = subii(d, mului(xv1,d1)); d=d1; d1=r;
	  r = addii(v, mului(xv1,v1)); v=v1; v1=r;
	}
      }
      else
      {
	r  = subii(muliu(d,xu),  muliu(d1,xv));
	d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r;
	r  = addii(muliu(v,xu),  muliu(v1,xv));
	v1 = addii(muliu(v,xu1), muliu(v1,xv1)); v = r;
        if (lhmres&1)
	{
          setsigne(d,-signe(d));
	  s = -s;
        }
        else if (signe(d1))
	{
          setsigne(d1,-signe(d1));
        }
      }
      /* check whether we're done.  Assert v <= bmax here.  Examine v1:
       * if v1 > bmax, check d and return 0 or 1 depending on the outcome;
       * if v1 <= bmax, check d1 and return 1 if d1 <= amax, otherwise
       * proceed.
       */
      if (cmpii(v1,bmax) > 0) /* certainly done */
      {
	avma = av;
	if (cmpii(d,amax) <= 0) /* done, found */
	{
	  if (a != NULL)
	  {
	    *a = icopy(d);
	    setsigne(*a,-s);	/* sign opposite to s */
	  }
	  if (b != NULL) *b = icopy(v);
	  return 1;
	}
	else			/* done, not found */
	  return 0;
      }
      else if (cmpii(d1,amax) <= 0) /* also done, found */
      {
	avma = av;
	if (a != NULL)
	{
	  if (signe(d1))
	  {
	    *a = icopy(d1);
	    setsigne(*a,s);	/* same sign as s */
	  }
	  else
	    *a = gen_0;
	}
	if (b != NULL) *b = icopy(v1);
	return 1;
      }
    } /* lhmres != 0 */

    if (lhmres <= 0 && signe(d1))
    {
      q = dvmdii(d,d1,&r);
#ifdef DEBUG_LEHMER
      fprintferr("Full division:\n");
      printf("  q = "); output(q); sleep (1);
#endif
      d=d1; d1=r;
      r = addii(v,mulii(q,v1));
      v=v1; v1=r;
      s = -s;
      /* check whether we are done now.  Since we weren't before the div, it
       * suffices to examine v1 and d1 -- the new d (former d1) cannot cut it
       */
      if (cmpii(v1,bmax) > 0) /* done, not found */
      {
	avma = av;
	return 0;
      }
      else if (cmpii(d1,amax) <= 0) /* done, found */
      {
	avma = av;
	if (a != NULL)
	{
	  if (signe(d1))
	  {
	    *a = icopy(d1);
	    setsigne(*a,s);	/* same sign as s */
	  }
	  else
	    *a = gen_0;
	}
	if (b != NULL) *b = icopy(v1);
	return 1;
      }
    }

    if (low_stack(lim, stack_lim(av,1)))
    {
      GEN *gptr[4]; gptr[0]=&d; gptr[1]=&d1; gptr[2]=&v; gptr[3]=&v1;
      if(DEBUGMEM>1) pari_warn(warnmem,"ratlift");
      gerepilemany(av1,gptr,4);
    }
  } /* end while */

  /* Postprocessing - final sprint.  Since we usually underestimate vmax,
   * this function needs a loop here instead of a simple conditional.
   * Note we can only get here when amax fits into one word  (which will
   * typically not be the case!).  The condition is bogus -- d1 is never
   * zero at the start of the loop.  There will be at most a few iterations,
   * so we don't bother collecting garbage
   */
  while (signe(d1))
  {
    /* Assertions: lgefint(d)==lgefint(d1)==3.
     * Moreover, we aren't done already, or we would have returned by now.
     * Recompute vmax...
     */
#ifdef DEBUG_RATLIFT
    fprintferr("rl-fs: d,d1=%Z,%Z\n", d, d1);
    fprintferr("rl-fs: v,v1=%Z,%Z\n", v, v1);
#endif
    r = addii(v,v1);
    lr = lb - lgefint(r);
    lbr = bfffo(*int_MSW(r));
    if (cmpii(r,bmax) > 0)	/* done, not found */
    {
      avma = av;
      return 0;
    }
    else if (lr > 1)		/* still more than a word's worth to go */
    {
      vmax = MAXULONG;		/* (cannot in fact happen) */
    }
    else			/* take difference of bit lengths */
    {
      lr = (lr << TWOPOTBITS_IN_LONG) - lbb + lbr;
      if ((ulong)lr > BITS_IN_LONG)
	vmax = MAXULONG;
      else if (lr == 0)
	vmax = 1UL;
      else
	vmax = 1UL << (lr-1);	/* as above */
    }
#ifdef DEBUG_RATLIFT
    fprintferr("rl-fs: vmax=%lu\n", vmax);
#endif
    /* single-word "Lehmer", discarding the gcd or whatever it returns */
    (void)rgcduu((ulong)*int_MSW(d), (ulong)*int_MSW(d1), vmax, &xu, &xu1, &xv, &xv1, &s0);
#ifdef DEBUG_RATLIFT
    fprintferr("rl-fs: [%lu,%lu; %lu,%lu] %s\n",
	       xu, xu1, xv, xv1,
	       s0 < 0 ? "-" : "+");
#endif
    if (xv1 == 1)		/* avoid multiplications */
    {
      /* re-use v+v1 computed above */
      v=v1; v1=r;
      r = subii(d,d1); d=d1; d1=r;
      s = -s;
    }
    else if (xu == 0)		/* and xv==1, xu1==1, xv1 > 1 */
    {
      r = subii(d, mului(xv1,d1)); d=d1; d1=r;
      r = addii(v, mului(xv1,v1)); v=v1; v1=r;
      s = -s;
    }
    else
    {
      r  = subii(muliu(d,xu),  muliu(d1,xv));
      d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r;
      r  = addii(muliu(v,xu),  muliu(v1,xv));
      v1 = addii(muliu(v,xu1), muliu(v1,xv1)); v = r;
      if (s0 < 0)
      {
	setsigne(d,-signe(d));
	s = -s;
      }
      else if (signe(d1))		/* sic: might vanish now */
      {
	setsigne(d1,-signe(d1));
      }
    }
    /* check whether we're done, as above.  Assert v <= bmax.  Examine v1:
     * if v1 > bmax, check d and return 0 or 1 depending on the outcome;
     * if v1 <= bmax, check d1 and return 1 if d1 <= amax, otherwise proceed.
     */
    if (cmpii(v1,bmax) > 0) /* certainly done */
    {
      avma = av;
      if (cmpii(d,amax) <= 0) /* done, found */
      {
	if (a != NULL)
	{
	  *a = icopy(d);
	  setsigne(*a,-s);	/* sign opposite to s */
	}
	if (b != NULL) *b = icopy(v);
	return 1;
      }
      else			/* done, not found */
	return 0;
    }
    else if (cmpii(d1,amax) <= 0) /* also done, found */
    {
      avma = av;
      if (a != NULL)
      {
	if (signe(d1))
	{
	  *a = icopy(d1);
	  setsigne(*a,s);	/* same sign as s */
	}
	else
	  *a = gen_0;
      }
      if (b != NULL) *b = icopy(v1);
      return 1;
    }
  } /* while */

  /* get here when we have run into d1 == 0 before returning... in fact,
   * this cannot happen.
   */
  pari_err(talker, "ratlift failed to catch d1 == 0\n");
  /* NOTREACHED */
  return 0;
}
コード例 #5
0
ファイル: invmod.c プロジェクト: BENGMN/soen490
int
invmod(GEN a, GEN b, GEN *res)
#endif
{
  GEN v,v1,d,d1,q,r;
  pari_sp av, av1, lim;
  long s;
  ulong g;
  ulong xu,xu1,xv,xv1;		/* Lehmer stage recurrence matrix */
  int lhmres;			/* Lehmer stage return value */

  if (typ(a) != t_INT || typ(b) != t_INT) pari_err(arither1);
  if (!signe(b)) { *res=absi(a); return 0; }
  av = avma;
  if (lgefint(b) == 3) /* single-word affair */
  {
    ulong d1 = umodiu(a, (ulong)(b[2]));
    if (d1 == 0)
    {
      if (b[2] == 1L)
        { *res = gen_0; return 1; }
      else
        { *res = absi(b); return 0; }
    }
    g = xgcduu((ulong)(b[2]), d1, 1, &xv, &xv1, &s);
#ifdef DEBUG_LEHMER
    fprintferr(" <- %lu,%lu\n", (ulong)(b[2]), (ulong)(d1[2]));
    fprintferr(" -> %lu,%ld,%lu; %lx\n", g,s,xv1,avma);
#endif
    avma = av;
    if (g != 1UL) { *res = utoipos(g); return 0; }
    xv = xv1 % (ulong)(b[2]); if (s < 0) xv = ((ulong)(b[2])) - xv;
    *res = utoipos(xv); return 1;
  }

  (void)new_chunk(lgefint(b));
  d = absi(b); d1 = modii(a,d);

  v=gen_0; v1=gen_1;	/* general case */
#ifdef DEBUG_LEHMER
  fprintferr("INVERT: -------------------------\n");
  output(d1);
#endif
  av1 = avma; lim = stack_lim(av,1);

  while (lgefint(d) > 3 && signe(d1))
  {
#ifdef DEBUG_LEHMER
    fprintferr("Calling Lehmer:\n");
#endif
    lhmres = lgcdii((ulong*)d, (ulong*)d1, &xu, &xu1, &xv, &xv1, MAXULONG);
    if (lhmres != 0)		/* check progress */
    {				/* apply matrix */
#ifdef DEBUG_LEHMER
      fprintferr("Lehmer returned %d [%lu,%lu;%lu,%lu].\n",
	      lhmres, xu, xu1, xv, xv1);
#endif
      if ((lhmres == 1) || (lhmres == -1))
      {
	if (xv1 == 1)
	{
	  r = subii(d,d1); d=d1; d1=r;
	  a = subii(v,v1); v=v1; v1=a;
	}
	else
	{
	  r = subii(d, mului(xv1,d1)); d=d1; d1=r;
	  a = subii(v, mului(xv1,v1)); v=v1; v1=a;
	}
      }
      else
      {
	r  = subii(muliu(d,xu),  muliu(d1,xv));
	a  = subii(muliu(v,xu),  muliu(v1,xv));
	d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r;
	v1 = subii(muliu(v,xu1), muliu(v1,xv1)); v = a;
        if (lhmres&1)
	{
          setsigne(d,-signe(d));
          setsigne(v,-signe(v));
        }
        else
	{
          if (signe(d1)) { setsigne(d1,-signe(d1)); }
          setsigne(v1,-signe(v1));
        }
      }
    }
#ifdef DEBUG_LEHMER
    else
      fprintferr("Lehmer returned 0.\n");
    output(d); output(d1); output(v); output(v1);
    sleep(1);
#endif

    if (lhmres <= 0 && signe(d1))
    {
      q = dvmdii(d,d1,&r);
#ifdef DEBUG_LEHMER
      fprintferr("Full division:\n");
      printf("  q = "); output(q); sleep (1);
#endif
      a = subii(v,mulii(q,v1));
      v=v1; v1=a;
      d=d1; d1=r;
    }
    if (low_stack(lim, stack_lim(av,1)))
    {
      GEN *gptr[4]; gptr[0]=&d; gptr[1]=&d1; gptr[2]=&v; gptr[3]=&v1;
      if(DEBUGMEM>1) pari_warn(warnmem,"invmod");
      gerepilemany(av1,gptr,4);
    }
  } /* end while */

  /* Postprocessing - final sprint */
  if (signe(d1))
  {
    /* Assertions: lgefint(d)==lgefint(d1)==3, and
     * gcd(d,d1) is nonzero and fits into one word
     */
    g = xxgcduu((ulong)d[2], (ulong)d1[2], 1, &xu, &xu1, &xv, &xv1, &s);
#ifdef DEBUG_LEHMER
    output(d);output(d1);output(v);output(v1);
    fprintferr(" <- %lu,%lu\n", (ulong)d[2], (ulong)d1[2]);
    fprintferr(" -> %lu,%ld,%lu; %lx\n", g,s,xv1,avma);
#endif
    if (g != 1UL) { avma = av; *res = utoipos(g); return 0; }
    /* (From the xgcduu() blurb:)
     * For finishing the multiword modinv, we now have to multiply the
     * returned matrix  (with properly adjusted signs)  onto the values
     * v' and v1' previously obtained from the multiword division steps.
     * Actually, it is sufficient to take the scalar product of [v',v1']
     * with [u1,-v1], and change the sign if s==1.
     */
    v = subii(muliu(v,xu1),muliu(v1,xv1));
    if (s > 0) setsigne(v,-signe(v));
    avma = av; *res = modii(v,b);
#ifdef DEBUG_LEHMER
    output(*res); fprintfderr("============================Done.\n");
    sleep(1);
#endif
    return 1;
  }
  /* get here when the final sprint was skipped (d1 was zero already) */
  avma = av;
  if (!equalii(d,gen_1)) { *res = icopy(d); return 0; }
  *res = modii(v,b);
#ifdef DEBUG_LEHMER
  output(*res); fprintferr("============================Done.\n");
  sleep(1);
#endif
  return 1;
}