double NumberOfLinks::compute( const unsigned& tindex, AtomValuePack& myatoms ) const { if( getBaseMultiColvar(0)->getNumberOfQuantities()<3 ) return 1.0; unsigned ncomp=getBaseMultiColvar(0)->getNumberOfQuantities(); std::vector<double> orient0( ncomp ), orient1( ncomp ); getVectorForTask( myatoms.getIndex(0), true, orient0 ); getVectorForTask( myatoms.getIndex(1), true, orient1 ); double dot=0; for(unsigned k=2;k<orient0.size();++k){ dot+=orient0[k]*orient1[k]; } if( !doNotCalculateDerivatives() ){ unsigned nder=myatoms.getNumberOfDerivatives(); //getNumberOfDerivatives(); MultiValue myder0(ncomp,nder), myder1(ncomp,nder); getVectorDerivatives( myatoms.getIndex(0), true, myder0 ); mergeVectorDerivatives( 1, 2, orient1.size(), myatoms.getIndex(0), orient1, myder0, myatoms ); getVectorDerivatives( myatoms.getIndex(1), true, myder1 ); mergeVectorDerivatives( 1, 2, orient0.size(), myatoms.getIndex(1), orient0, myder1, myatoms ); } return dot; }
double OrientationSphere::compute( const unsigned& tindex, multicolvar::AtomValuePack& myatoms ) const { // Make sure derivatives for central atom are only calculated once VectorMultiColvar* vv = dynamic_cast<VectorMultiColvar*>( getBaseMultiColvar(0) ); vv->firstcall=true; double d2, sw, value=0, denom=0, dot, f_dot, dot_df, dfunc; unsigned ncomponents=getBaseMultiColvar(0)->getNumberOfQuantities(); unsigned nder=myatoms.getNumberOfDerivatives(); std::vector<double> catom_orient( ncomponents ), this_orient( ncomponents ), catom_der( ncomponents ); Vector catom_pos = myatoms.getPosition(0); getVectorForTask( myatoms.getIndex(0), true, catom_orient ); multicolvar::CatomPack atom0; MultiValue myder0(0,0), myder1(0,0); if( !doNotCalculateDerivatives() ){ myder0.resize( ncomponents,nder ); myder1.resize(ncomponents,nder); atom0=getCentralAtomPackFromInput( myatoms.getIndex(0) ); getVectorDerivatives( myatoms.getIndex(0), true, myder0 ); } for(unsigned i=1;i<myatoms.getNumberOfAtoms();++i){ Vector& distance=myatoms.getPosition(i); if ( (d2=distance[0]*distance[0])<rcut2 && (d2+=distance[1]*distance[1])<rcut2 && (d2+=distance[2]*distance[2])<rcut2) { sw = switchingFunction.calculateSqr( d2, dfunc ); getVectorForTask( myatoms.getIndex(i), true, this_orient ); // Calculate the dot product wrt to this position dot=0; for(unsigned k=2;k<catom_orient.size();++k) dot+=catom_orient[k]*this_orient[k]; f_dot = transformDotProduct( dot, dot_df ); if( !doNotCalculateDerivatives() ){ // N.B. We are assuming here that the imaginary part of the dot product is zero for(unsigned k=2;k<catom_orient.size();++k){ this_orient[k]*=sw*dot_df; catom_der[k]=sw*dot_df*catom_orient[k]; } getVectorDerivatives( myatoms.getIndex(i), true, myder1 ); mergeVectorDerivatives( 1, 2, this_orient.size(), myatoms.getIndex(0), this_orient, myder0, myatoms ); mergeVectorDerivatives( 1, 2, catom_der.size(), myatoms.getIndex(i), catom_der, myder1, myatoms ); myatoms.addComDerivatives( 1, f_dot*(-dfunc)*distance, atom0 ); addAtomDerivatives( 1, i, f_dot*(dfunc)*distance, myatoms ); myatoms.addBoxDerivatives( 1, (-dfunc)*f_dot*Tensor(distance,distance) ); myder1.clearAll(); myatoms.addComDerivatives( -1, (-dfunc)*distance, atom0 ); addAtomDerivatives( -1, i, (dfunc)*distance, myatoms ); myatoms.addTemporyBoxDerivatives( (-dfunc)*Tensor(distance,distance) ); } value += sw*f_dot; denom += sw; } } double rdenom, df2, pref=calculateCoordinationPrefactor( denom, df2 ); if( fabs(denom)>epsilon ){ rdenom = 1.0 / denom; } else { plumed_assert(fabs(value)<epsilon); rdenom=1.0; } // Now divide everything double rdenom2=rdenom*rdenom; updateActiveAtoms( myatoms ); MultiValue& myvals=myatoms.getUnderlyingMultiValue(); for(unsigned i=0;i<myvals.getNumberActive();++i){ unsigned ider=myvals.getActiveIndex(i); double dgd=myvals.getTemporyDerivative(ider); myvals.setDerivative( 1, ider, rdenom*(pref*myvals.getDerivative(1,ider)+value*df2*dgd) - (value*pref*dgd)*rdenom2 ); } return pref*rdenom*value; }