コード例 #1
0
ファイル: smf_get_mask.c プロジェクト: bbrond/starlink
unsigned char *smf_get_mask( ThrWorkForce *wf, smf_modeltype mtype,
                             AstKeyMap *config, smfDIMMData *dat, int flags,
                             int *status ) {

/* Local Variables: */
   AstCircle *circle;         /* AST Region used to mask a circular area */
   AstKeyMap *akm;            /* KeyMap holding AST config values */
   AstKeyMap *subkm;          /* KeyMap holding model config values */
   char refparam[ DAT__SZNAM ];/* Name for reference NDF parameter */
   char words[100];           /* Buffer for variable message words */
   const char *cval;          /* The ZERO_MASK string value */
   const char *modname;       /* The name of the model  being masked */
   const char *skyrefis;      /* Pointer to SkyRefIs attribute value */
   dim_t i;                   /* Pixel index */
   double *pd;                /* Pointer to next element of map data */
   double *predef;            /* Pointer to mask defined by previous run */
   double *ptr;               /* Pointer to NDF  Data array */
   double *pv;                /* Pointer to next element of map variance */
   double centre[ 2 ];        /* Coords of circle centre in radians */
   double meanhits;           /* Mean hits in the map */
   double radius[ 1 ];        /* Radius of circle in radians */
   double zero_circle[ 3 ];   /* LON/LAT/Radius of circular mask */
   double zero_lowhits;       /* Fraction of mean hits at which to threshold */
   double zero_snr;           /* Higher SNR at which to threshold */
   double zero_snrlo;         /* Lower SNR at which to threshold */
   int *ph;                   /* Pointer to next hits value */
   int have_mask;             /* Did a mask already exist on entry? */
   int imask;                 /* Index of next mask type */
   int indf1;                 /* Id. for supplied reference NDF */
   int indf2;                 /* Id. for used section of reference NDF */
   int isstatic;              /* Are all used masks static? */
   int lbnd_grid[ 2 ];        /* Lower bounds of map in GRID coords */
   int mask_types[ NTYPE ];   /* Identifier for the types of mask to use */
   int munion;                /* Use union of supplied masks */
   int nel;                   /* Number of mapped NDF pixels */
   int nmask;                 /* The number of masks to be combined */
   int nsource;               /* No. of source pixels in final mask */
   int skip;                  /* No. of iters for which AST is not subtracted */
   int thresh;                /* Absolute threshold on hits */
   int ubnd_grid[ 2 ];        /* Upper bounds of map in GRID coords */
   int zero_c_n;              /* Number of zero circle parameters read */
   int zero_mask;             /* Use the reference NDF as a mask? */
   int zero_niter;            /* Only mask for the first "niter" iterations. */
   int zero_notlast;          /* Don't zero on last iteration? */
   size_t ngood;              /* Number good samples for stats */
   smf_qual_t *pq;            /* Pinter to map quality */
   unsigned char **mask;      /* Address of model's mask pointer */
   unsigned char *newmask;    /* Individual mask work space */
   unsigned char *pm;         /* Pointer to next returned mask pixel */
   unsigned char *pn;         /* Pointer to next new mask pixel */
   unsigned char *result;     /* Returned mask pointer */

/* Initialise returned values */
   result = NULL;

/* Check inherited status. Also check that a map is being created.  */
   if( *status != SAI__OK || !dat || !dat->map ) return result;

/* Begin an AST context. */
   astBegin;

/* Get the sub-keymap containing the configuration parameters for the
   requested model. Also get a pointer to the mask array to use (there is
   one for each maskable model)*/
   if( mtype == SMF__COM ) {
      modname = "COM";
      mask = &(dat->com_mask);
   } else if( mtype == SMF__AST ) {
      modname = "AST";
      mask = &(dat->ast_mask);
   } else if( mtype == SMF__FLT ) {
      modname = "FLT";
      mask = &(dat->flt_mask);
   } else {
      modname = NULL;
      mask = NULL;
      *status = SAI__ERROR;
      errRepf( " ", "smf_get_mask: Unsupported model type %d supplied - "
               "must be COM, FLT or AST.", status, mtype );
   }
   subkm = NULL;
   astMapGet0A( config, modname, &subkm );

/* Get the "ast.skip" value - when considering "zero_niter" and
   "zero_freeze", we only count iterations for which the AST model
   is subtracted (i.e. the ones following the initial "ast.skip"
   iterations). */
   astMapGet0A( config, "AST", &akm );
   astMapGet0I( akm, "SKIP", &skip );
   akm = astAnnul( akm );

/* Get the number of iterations over which the mask is to be applied. Zero
   means all. Return with no mask if this number of iterations has
   already been performed. */
   zero_niter = 0;
   astMapGet0I( subkm, "ZERO_NITER", &zero_niter );
   if( zero_niter == 0 || dat->iter < zero_niter + skip ) {

/* Only return a mask if this is not the last iteration, or if ZERO_NOTLAST
   is unset. */
      zero_notlast = 0;
      astMapGet0I( subkm, "ZERO_NOTLAST", &zero_notlast );
      if( !( flags & SMF__DIMM_LASTITER ) || !zero_notlast ) {

/* Create a list of the mask types to be combined to get the final mask by
   looking for non-default values for the corresponding configuration
   parameters in the supplied KeyMap. Static masks (predefined, circles
   or external NDFs) may be used on any iteration, but dynamic masks
   (lowhits, snr) will only be avialable once the map has been determined
   at the end of the first iteration. This means that when masking anything
   but the AST model (which is determined after the map), the dynamic masks
   cannot be used on the first iteration. Make a note if all masks being
   used are static. */

         isstatic = 1;
         nmask = 0;

         zero_lowhits = 0.0;
         astMapGet0D( subkm, "ZERO_LOWHITS", &zero_lowhits );
         if( zero_lowhits > 0.0 ) {
            if( mtype == SMF__AST || !( flags & SMF__DIMM_FIRSTITER ) ) {
               mask_types[ nmask++] = LOWHITS;
               isstatic = 0;
            }
         } else if( zero_lowhits <  0.0 && *status == SAI__OK ) {
            *status = SAI__ERROR;
            errRepf( " ", "Bad value for config parameter %s.ZERO_LOWHITS (%g) - "
                     "it must not be negative.", status, modname, zero_lowhits );
         }

         if( astMapGet1D( subkm, "ZERO_CIRCLE", 3, &zero_c_n, zero_circle ) ) {
            if( zero_c_n == 1 || zero_c_n == 3 ) {
               mask_types[ nmask++] = CIRCLE;
            } else if( *status == SAI__OK ) {
               *status = SAI__ERROR;
               errRepf( " ", "Bad number of values (%d) for config parameter "
                        "%s.ZERO_CIRCLE - must be 1 or 3.", status, zero_c_n,
                        modname );
            }
         }

         cval = NULL;
         astMapGet0C( subkm, "ZERO_MASK", &cval );
         if( cval ) {
            if( !astChrMatch( cval, "REF" ) &&
                !astChrMatch( cval, "MASK2" ) &&
                !astChrMatch( cval, "MASK3" ) ) {
               astMapGet0I( subkm, "ZERO_MASK", &zero_mask );
               cval = ( zero_mask > 0 ) ? "REF" : NULL;
            }
            if( cval ) {
               strcpy( refparam, cval );
               astChrCase( NULL, refparam, 1, 0 );
               mask_types[ nmask++] = REFNDF;
            }
         }

         zero_snr = 0.0;
         astMapGet0D( subkm, "ZERO_SNR", &zero_snr );
         if( zero_snr > 0.0 ) {
            if( mtype == SMF__AST || !( flags & SMF__DIMM_FIRSTITER ) ) {
               mask_types[ nmask++] = SNR;
               isstatic = 0;
            }
         } else if( zero_snr <  0.0 && *status == SAI__OK ) {
            *status = SAI__ERROR;
            errRepf( " ", "Bad value for config parameter %s.ZERO_SNR (%g) - "
                     "it must not be negative.", status, modname, zero_snr );
         }

         if( astMapHasKey( subkm, "ZERO_MASK_POINTER" ) ) {
            astMapGet0P( subkm, "ZERO_MASK_POINTER", (void **) &predef );
            if( predef ) mask_types[ nmask++] = PREDEFINED;
         }

/* No need to create a mask if no masking was requested or possible. */
         if( nmask > 0 ) {

/* Decide if we are using the union or intersection of the masks. */
            astMapGet0I( subkm, "ZERO_UNION", &munion );

/* Note if a mask existed on entry. If not, create a mask now, and
   initialise it to hold the mask defined by the initial sky map. */
            if( *mask == NULL ) {
               have_mask = 0;
               if( dat->initqual ) {
                  *mask = astMalloc( dat->msize*sizeof( **mask ) );
                  if( *mask ) {
                     pm = *mask;
                     pq = dat->initqual;
                     for( i = 0; i < dat->msize; i++ ) {
                        *(pm++) = ( *(pq++) != 0 );
                     }
                  }
               } else{
                  *mask = astCalloc( dat->msize, sizeof( **mask ) );
               }
            } else {
               have_mask = 1;
            }

/* If we are combining more than one mask, we need work space to hold
   an individual mask independently of the total mask. If we are using
   only one mask, then just use the main mask array. */
            if( nmask > 1 ) {
               newmask = astMalloc( dat->msize*sizeof( *newmask ) );
            } else {
               newmask = *mask;
            }

/* Get the number of iterations after which the mask is to be frozen.
   Zero means "never freeze the mask". */
            int zero_freeze = 0;
            astMapGet0I( subkm, "ZERO_FREEZE", &zero_freeze );

/* Loop round each type of mask to be used. */
            for( imask = 0; imask < nmask && *status == SAI__OK; imask++ ){

/* If the mask is now frozen, we just return the existing mask. So leave the
   loop. */
               if( zero_freeze != 0 && dat->iter > zero_freeze + skip ) {
                  break;

/* Low hits masking... */
               } else if( mask_types[ imask ] == LOWHITS ) {

/* Set hits pixels with 0 hits to VAL__BADI so that stats1 ignores them */
                  ph = dat->hitsmap;
                  for( i = 0; i < dat->msize; i++,ph++ ) {
                     if( *ph == 0 ) *ph = VAL__BADI;
                  }

/* Find the mean hits in the map */
                  smf_stats1I( dat->hitsmap, 1, dat->msize, NULL, 0, 0, &meanhits,
                               NULL, NULL, &ngood, status );
                  msgOutiff( MSG__DEBUG, " ", "smf_get_mask: mean hits = %lf, ngood "
                             "= %zd", status, meanhits, ngood );

/* Create the mask */
                  thresh = meanhits*zero_lowhits;
                  ph = dat->hitsmap;
                  pn = newmask;
                  for( i = 0; i < dat->msize; i++,ph++ ) {
                     *(pn++) = ( *ph != VAL__BADI && *ph < thresh ) ? 1 : 0;
                  }

/* Report masking info. */
                  msgOutiff( MSG__DEBUG, " ", "smf_get_mask: masking %s "
                             "model at hits = %d.", status, modname, thresh );

/* Circle masking... */
               } else if( mask_types[ imask ] == CIRCLE ) {

/* If we had a mask on entry, then there is no need to create a new one
   since it will not have changed. But we need to recalculate the circle
   mask if are combining it with any non-static masks. */
                  if( ! have_mask || ! isstatic ) {

/* If only one parameter supplied it is radius, assume reference
   LON/LAT from the frameset to get the centre. If the SkyFrame
   represents offsets from the reference position (i.e. the source is
   moving), assume the circle is to be centred on the origin.  */
                     if( zero_c_n == 1 ) {
                        zero_circle[ 2 ] = zero_circle[ 0 ];

                        skyrefis = astGetC( dat->outfset, "SkyRefIs" );
                        if( skyrefis && !strcmp( skyrefis, "Origin" ) ) {
                           zero_circle[ 0 ] = 0.0;
                           zero_circle[ 1 ] = 0.0;
                        } else {
                           zero_circle[ 0 ] = astGetD( dat->outfset, "SkyRef(1)" );
                           zero_circle[ 1 ] = astGetD( dat->outfset, "SkyRef(2)" );
                        }

                        zero_circle[ 0 ] *= AST__DR2D;
                        zero_circle[ 1 ] *= AST__DR2D;
                     }

/* The supplied bounds are for pixel coordinates... we need bounds for grid
    coordinates which have an offset */
                     lbnd_grid[ 0 ] = 1;
                     lbnd_grid[ 1 ] = 1;
                     ubnd_grid[ 0 ] = dat->ubnd_out[ 0 ] - dat->lbnd_out[ 0 ] + 1;
                     ubnd_grid[ 1 ] = dat->ubnd_out[ 1 ] - dat->lbnd_out[ 1 ] + 1;

/* Coordinates & radius of the circular region converted from degrees
   to radians */
                     centre[ 0 ] = zero_circle[ 0 ]*AST__DD2R;
                     centre[ 1 ] = zero_circle[ 1 ]*AST__DD2R;
                     radius[ 0 ] = zero_circle[ 2 ]*AST__DD2R;

/* Create the Circle, defined in the current Frame of the FrameSet (i.e.
   the sky frame). */
                     circle = astCircle( astGetFrame( dat->outfset, AST__CURRENT), 1,
                                         centre, radius, NULL, " " );

/* Fill the mask with zeros. */
                     memset( newmask, 0, sizeof( *newmask )*dat->msize );

/* Get the mapping from the sky frame (current) to the grid frame (base),
   and then set the mask to 1 for all of the values outside this circle */
                     astMaskUB( circle, astGetMapping( dat->outfset, AST__CURRENT,
                                                       AST__BASE ),
                                0, 2, lbnd_grid, ubnd_grid, newmask, 1 );

/* Report masking info. */
                     if( zero_niter == 0 ) {
                        sprintf( words, "on each iteration" );
                     } else {
                        sprintf( words, "for %d iterations", zero_niter );
                     }

                     msgOutiff( MSG__DEBUG, " ", "smf_get_mask: The %s model will"
                                " be masked %s using a circle of "
                                "radius %g arc-secs, centred at %s=%s, %s=%s.",
                                status, modname, words, radius[0]*AST__DR2D*3600,
                                astGetC( dat->outfset, "Symbol(1)" ),
                                astFormat( dat->outfset, 1, centre[ 0 ] ),
                                astGetC( dat->outfset, "Symbol(2)" ),
                                astFormat( dat->outfset, 2, centre[ 1 ] ) );
                  }

/* Reference NDF masking... */
               } else if( mask_types[ imask ] == REFNDF ) {

/* If we had a mask on entry, then there is no need to create a new one
   since it will not have changed. But we need to recalculate the NDF
   mask if are combining it with any non-static masks. */
                  if( ! have_mask || ! isstatic ) {

/* Begin an NDF context. */
                     ndfBegin();

/* Get an identifier for the NDF using the associated ADAM parameter. */
                     ndfAssoc( refparam, "READ", &indf1, status );

/* Get a section from this NDF that matches the bounds of the map. */
                     ndfSect( indf1, 2, dat->lbnd_out, dat->ubnd_out, &indf2,
                              status );

/* Map the section. */
                     ndfMap( indf2, "DATA", "_DOUBLE", "READ", (void **) &ptr,
                             &nel, status );

/* Check we can use the pointer safely. */
                     if( *status == SAI__OK ) {

/* Find bad pixels in the NDF and set those pixels to 1 in the mask. */
                        pn = newmask;
                        for( i = 0; i < dat->msize; i++ ) {
                           *(pn++) = ( *(ptr++) == VAL__BADD ) ? 1 : 0;
                        }

/* Report masking info. */
                        ndfMsg( "N", indf2 );
                        msgSetc( "M", modname );
                        if( zero_niter == 0 ) {
                           msgOutiff( MSG__DEBUG, " ", "smf_get_mask: The ^M "
                                      "model will be masked on each iteration "
                                      "using the bad pixels in NDF '^N'.",
                                      status );
                        } else {
                           msgSeti( "I", zero_niter );
                           msgOutiff( MSG__DEBUG, " ", "smf_get_mask: The ^M "
                                      "model will be masked for ^I iterations "
                                      "using the bad pixels in NDF '^N'.",
                                      status );
                        }
                     }

/* End the NDF context. */
                     ndfEnd( status );
                  }

/* SNR masking... */
               } else if( mask_types[ imask ] == SNR ) {

/* Get the lower SNR limit. */
                  zero_snrlo = 0.0;
                  astMapGet0D( subkm, "ZERO_SNRLO", &zero_snrlo );
                  if( zero_snrlo <= 0.0 ) {
                     zero_snrlo = zero_snr;
                  } else if( zero_snrlo > zero_snr && *status == SAI__OK ) {
                     *status = SAI__ERROR;
                     errRepf( " ", "Bad value for config parameter "
                              "%s.ZERO_SNRLO (%g) - it must not be higher "
                              "than %s.ZERO_SNR (%g).", status, modname,
                              zero_snrlo, modname, zero_snr );
                  }

/* If the higher and lower SNR limits are equal, just do a simple
   threshold on the SNR values to get the mask. */
                  if( zero_snr == zero_snrlo ) {
                     pd = dat->map;
                     pv = dat->mapvar;
                     pn = newmask;
                     for( i = 0; i < dat->msize; i++,pd++,pv++ ) {
                        *(pn++) = ( *pd != VAL__BADD && *pv != VAL__BADD &&
                                    *pv >= 0.0 && *pd < zero_snr*sqrt( *pv ) ) ? 1 : 0;
                     }

/* Report masking info. */
                     if( !have_mask ) {
                        if( zero_niter == 0 ) {
                           sprintf( words, "on each iteration" );
                        } else {
                           sprintf( words, "for %d iterations", zero_niter );
                        }
                        msgOutiff( MSG__DEBUG, " ", "smf_get_mask: The %s model "
                                   "will be masked %s using an SNR limit of %g.",
                                   status, modname, words, zero_snr );
                     }

/* If the higher and lower SNR limits are different, create an initial
   mask by thresholding at the ZERO_SNR value, and then extend the source
   areas within the mask down to an SNR limit of ZERO_SNRLO. */
                  } else {
                     smf_snrmask( wf, dat->map, dat->mapvar, dat->mdims,
                                  zero_snr, zero_snrlo, newmask, status );

/* Report masking info. */
                     if( !have_mask ) {
                        if( zero_niter == 0 ) {
                           sprintf( words, "on each iteration" );
                        } else {
                           sprintf( words, "for %d iterations", zero_niter );
                        }
                        msgOutiff( MSG__DEBUG, " ", "smf_get_mask: The %s model "
                                   "will be masked %s using an SNR limit of %g "
                                   "extended down to %g.", status, modname,
                                   words, zero_snr, zero_snrlo );
                     }
                  }

/* Predefined masking... */
               } else if( mask_types[ imask ] == PREDEFINED ) {

/* If we had a mask on entry, then there is no need to create a new one
   since it will not have changed. But we need to recalculate the
   mask if are combining it with any non-static masks. */
                  if( ! have_mask || ! isstatic ) {

/* Find bad pixels in the predefined array and set those pixels to 1 in
   the mask. */
                     pn = newmask;
                     for( i = 0; i < dat->msize; i++ ) {
                        *(pn++) = ( *(predef++) == VAL__BADD ) ? 1 : 0;
                     }

/* Report masking info. */
                     if( zero_niter == 0 ) {
                        sprintf( words, "on each iteration" );
                     } else {
                        sprintf( words, "for %d iterations", zero_niter );
                     }
                     msgOutiff( MSG__DEBUG, " ", "smf_get_mask: The %s model "
                                "will be masked %s using a smoothed form of "
                                "the final mask created with the previous map.",
                                status, modname, words );
                  }
               }

/* If required, add the new mask into the returned mask. If this is the
   first mask, we just copy the new mask to form the returned mask.
   Otherwise, we combine it with the existing returned mask. */
               if( ! have_mask || ! isstatic ) {
                  if( nmask > 1 ) {
                     if( imask == 0 ) {
                        memcpy( *mask, newmask, dat->msize*sizeof(*newmask));
                     } else {
                        pm = *mask;
                        pn = newmask;
                        if( munion ) {
                           for( i = 0; i < dat->msize; i++,pm++ ) {
                              if( *(pn++) == 0 ) *pm = 0;
                           }
                        } else {
                           for( i = 0; i < dat->msize; i++,pm++ ) {
                              if( *(pn++) == 1 ) *pm = 1;
                           }
                        }
                     }
                  }
               }
            }

/* Free the individual mask work array if it was used. */
            if( nmask > 1 ) newmask = astFree( newmask );

/* Check that the mask has some source pixels (i.e. pixels that have non-bad data values -
   we do not also check variance values since they are not available until the second
   iteration). */
            if( *status == SAI__OK ) {
               nsource = 0;
               pm = *mask;
               pd = dat->map;
               for( i = 0; i < dat->msize; i++,pd++,pv++,pm++ ) {
                  if( *pd != VAL__BADD && *pm == 0 ) nsource++;
               }
               if( nsource < 5 && *status == SAI__OK ) {
                  *status = SAI__ERROR;
                  errRepf( "", "The %s mask being used has fewer than 5 "
                           "source pixels.", status, modname );
                  if( zero_snr > 0.0 ) {
                     errRepf( "", "Maybe your zero_snr value (%g) is too high?",
                              status, zero_snr );
                  }
               }
            }

/* Return the mask pointer if all has gone well. */
            if( *status == SAI__OK ) result = *mask;
         }
      }
   }

/* End the AST context, annulling all AST Objects created in the context. */
   astEnd;

/* Return the pointer to the boolean mask. */
   return result;
}
コード例 #2
0
ファイル: smurf_unmakemap.c プロジェクト: wadawson/starlink
void smurf_unmakemap( int *status ) {

/* Local Variables */
   AstFrameSet *wcsin = NULL; /* WCS Frameset for input cube */
   AstMapping *skymap;        /* GRID->SkyFrame Mapping from input WCS */
   AstSkyFrame *abskyfrm;     /* Input SkyFrame (always absolute) */
   AstSkyFrame *skyfrm = NULL;/* SkyFrame from the input WCS Frameset */
   Grp *igrp1 = NULL;         /* Group of input sky files */
   Grp *igrp2 = NULL;         /* Group of input template files */
   Grp *igrpc = NULL;         /* Group of input COM files */
   Grp *igrpg = NULL;         /* Group of input GAI files */
   Grp *igrpq = NULL;         /* Group of input Q  sky files */
   Grp *igrpu = NULL;         /* Group of input U sky files */
   Grp *ogrp = NULL;          /* Group containing output file */
   HDSLoc *cloc = NULL;       /* HDS locator for component ipdata structure */
   HDSLoc *iploc = NULL;      /* HDS locator for top level ipdata structure */
   ThrWorkForce *wf = NULL;   /* Pointer to a pool of worker threads */
   char ipdata[ 200 ];        /* Text buffer for IPDATA value */
   char pabuf[ 10 ];          /* Text buffer for parameter value */
   char subarray[ 5 ];        /* Name of SCUBA-2 subarray (s8a,s8b,etc) */
   dim_t iel;                 /* Index of next element */
   dim_t ndata;               /* Number of elements in array */
   dim_t ntslice;             /* Number of time slices in array */
   double *ang_data = NULL;   /* Pointer to the FP orientation angles */
   double *angc_data = NULL;  /* Pointer to the instrumental ANGC data */
   double *c0_data = NULL;    /* Pointer to the instrumental C0 data */
   double *gai_data = NULL;   /* Pointer to the input GAI map */
   double *in_data = NULL;    /* Pointer to the input I sky map */
   double *inc_data = NULL;   /* Pointer to the input COM data */
   double *inq_data = NULL;   /* Pointer to the input Q sky map */
   double *inu_data = NULL;   /* Pointer to the input U sky map */
   double *outq_data = NULL;  /* Pointer to the Q time series data */
   double *outu_data = NULL;  /* Pointer to the U time series data */
   double *p0_data = NULL;    /* Pointer to the instrumental P0 data */
   double *p1_data = NULL;    /* Pointer to the instrumental P1 data */
   double *pd;                /* Pointer to next element */
   double *pq = NULL;         /* Pointer to next Q time series value */
   double *pu = NULL;         /* Pointer to next U time series value */
   double *qinst_data = NULL; /* Pointer to the instrumental Q data */
   double *uinst_data = NULL; /* Pointer to the instrumental U data */
   double amp16;              /* Amplitude of 16 Hz signal */
   double amp2;               /* Amplitude of 2 Hz signal */
   double amp4;               /* Amplitude of 4 Hz signal */
   double angrot;             /* Angle from focal plane X axis to fixed analyser */
   double paoff;              /* WPLATE value corresponding to POL_ANG=0.0 */
   double params[ 4 ];        /* astResample parameters */
   double phase16;            /* Phase of 16 Hz signal */
   double phase2;             /* Phase of 2 Hz signal */
   double phase4;             /* Phase of 4 Hz signal */
   double sigma;              /* Standard deviation of noise to add to output */
   int alignsys;              /* Align data in the map's system? */
   int cdims[ 3 ];            /* Common-mode NDF dimensions */
   int dims[ NDF__MXDIM ];    /* NDF dimensions */
   int flag;                  /* Was the group expression flagged? */
   int gdims[ 3 ];            /* GAI model NDF dimensions */
   int harmonic;              /* The requested harmonic */
   int ifile;                 /* Input file index */
   int indf;                  /* Input sky map NDF identifier */
   int indfangc;              /* IP ANGC values NDF identifier */
   int indfc0;                /* IP C0 values NDF identifier */
   int indfc;                 /* Input COM NDF identifier */
   int indfcs;                /* NDF identifier for matching section of COM */
   int indfg;                 /* Input GAI NDF identifier */
   int indfin;                /* Input template cube NDF identifier */
   int indfiq;                /* Input instrumental Q NDF */
   int indfiu;                /* Input instrumental U NDF */
   int indfout;               /* Output cube NDF identifier */
   int indfp0;                /* IP P0 values NDF identifier */
   int indfp1;                /* IP P1 values NDF identifier */
   int indfq;                 /* Input Q map NDF identifier */
   int indfu;                 /* Input U map NDF identifier */
   int interp = 0;            /* Pixel interpolation method */
   int lbndc[ 3 ];            /* Array of lower bounds of COM NDF */
   int moving;                /* Is the telescope base position changing? */
   int ndim;                  /* Number of pixel axes in NDF */
   int ndimc;                 /* Number of pixel axes in common-mode NDF */
   int ndimg;                 /* Number of pixel axes in GAI NDF */
   int nel;                   /* Number of elements in array */
   int nelc;                  /* Number of elements in COM array */
   int nelg;                  /* Number of elements in GAI array */
   int nelqu;                 /* Number of elements in Q or U array */
   int ngood;                 /* No. of good values in putput cube */
   int nparam = 0;            /* No. of parameters required for interpolation scheme */
   int pasign;                /* Indicates sense of POL_ANG value */
   int sdim[ 2 ];             /* Array of significant pixel axes */
   int slbnd[ 2 ];            /* Array of lower bounds of input map */
   int subnd[ 2 ];            /* Array of upper bounds of input map */
   int ubndc[ 3 ];            /* Array of upper bounds of COM NDF */
   size_t ncom;               /* Number of com files */
   size_t ngai;               /* Number of gai files */
   size_t nskymap;            /* Number of supplied sky cubes */
   size_t outsize;            /* Number of files in output group */
   size_t size;               /* Number of files in input group */
   smfData *odata = NULL;     /* Pointer to output data struct */

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* Begin an AST context */
   astBegin;

/* Begin an NDF context. */
   ndfBegin();

/* Find the number of cores/processors available and create a pool of
   threads of the same size. */
   wf = thrGetWorkforce( thrGetNThread( SMF__THREADS, status ), status );

/* Get an identifier for the input NDF. We use NDG (via kpg1Rgndf)
   instead of calling ndfAssoc directly since NDF/HDS has problems with
   file names containing spaces, which NDG does not have. */
   kpg1Rgndf( "IN", 1, 1, "", &igrp1, &nskymap, status );
   ndgNdfas( igrp1, 1, "READ", &indf, status );

/* Map the data array in the input sky map. */
   ndfMap( indf, "DATA", "_DOUBLE", "READ", (void **) &in_data, &nel,
           status );

/* Get the WCS FrameSet from the sky map, together with its pixel index
   bounds. */
   kpg1Asget( indf, 2, 0, 1, 1, sdim, slbnd, subnd, &wcsin, status );

/* Check the current Frame is a SKY frame. */
   skyfrm = astGetFrame( wcsin, AST__CURRENT );
   if( !astIsASkyFrame( skyfrm ) && *status == SAI__OK ) {
      ndfMsg( "N", indf );
      *status = SAI__ERROR;
      errRep( " ", " Current Frame in ^N is not a SKY Frame.", status );
   }

/* Get a copy of the current frame that represents absolute coords rather
   than offsets. We assume the target is moving if the map represents
   offsets. */
   moving = ( *status == SAI__OK &&
              !strcmp( astGetC( skyfrm, "SkyRefIs" ), "Origin" ) ) ? 1 : 0;
   abskyfrm = astCopy( skyfrm );
   astClear( abskyfrm, "SkyRefIs" );

/* If the ALIGNSYS parameter is TRUE then we align the raw data with the
   map in the current system of the map, rather than the default ICRS. */
   parGet0l( "ALIGNSYS", &alignsys, status );
   if( alignsys ) astSetC( abskyfrm, "AlignSystem", astGetC( abskyfrm,
                                                             "System" ) );

/* Get the Mapping from the Sky Frame to grid axis in the iput map. */
   skymap = astGetMapping( wcsin, AST__CURRENT, AST__BASE );

/* Get the pixel interpolation scheme to use. */
   parChoic( "INTERP", "NEAREST", "NEAREST,LINEAR,SINC,"
             "SINCSINC,SINCCOS,SINCGAUSS,SOMB,SOMBCOS",
             1, pabuf, 10, status );

   if( !strcmp( pabuf, "NEAREST" ) ) {
      interp = AST__NEAREST;
      nparam = 0;

   } else if( !strcmp( pabuf, "LINEAR" ) ) {
      interp = AST__LINEAR;
      nparam = 0;

   } else if( !strcmp( pabuf, "SINC" ) ) {
      interp = AST__SINC;
      nparam = 1;

   } else if( !strcmp( pabuf, "SINCSINC" ) ) {
      interp = AST__SINCSINC;
      nparam = 2;

   } else if( !strcmp( pabuf, "SINCCOS" ) ) {
      interp = AST__SINCCOS;
      nparam = 2;

   } else if( !strcmp( pabuf, "SINCGAUSS" ) ) {
      interp = AST__SINCGAUSS;
      nparam = 2;

   } else if( !strcmp( pabuf, "SOMB" ) ) {
      interp = AST__SOMB;
      nparam = 1;

   } else if( !strcmp( pabuf, "SOMBCOS" ) ) {
      interp = AST__SOMBCOS;
      nparam = 2;

   } else if( *status == SAI__OK ) {
      nparam = 0;
      *status = SAI__ERROR;
      msgSetc( "V", pabuf );
      errRep( "", "Support not available for INTERP = ^V (programming "
              "error)", status );
   }

/* Get an additional parameter vector if required. */
   if( nparam > 0 ) parExacd( "PARAMS", nparam, params, status );

/* Get a group of reference time series files to use as templates for
   the output time series files.*/
   ndgAssoc( "REF", 1, &igrp2, &size, &flag, status );

/* Get output file(s) */
   kpg1Wgndf( "OUT", igrp2, size, size, "More output files required...",
              &ogrp, &outsize, status );

/* Get he noise level to add to the output data. */
   parGet0d( "SIGMA", &sigma, status );

/* Get any Q and U input maps. */
   if( *status == SAI__OK ) {

      kpg1Rgndf( "QIN", 1, 1, "", &igrpq, &nskymap, status );
      ndgNdfas( igrpq, 1, "READ", &indfq, status );
      ndfMap( indfq, "DATA", "_DOUBLE", "READ", (void **) &inq_data, &nelqu,
              status );
      if( nelqu != nel && *status == SAI__OK ) {
         ndfMsg( "Q", indfq );
         *status = SAI__ERROR;
         errRep( "", "Q image '^Q' is not the same size as the I image.",
                 status );
      }

      kpg1Rgndf( "UIN", 1, 1, "", &igrpu, &nskymap, status );
      ndgNdfas( igrpu, 1, "READ", &indfu, status );
      ndfMap( indfu, "DATA", "_DOUBLE", "READ", (void **) &inu_data, &nelqu,
              status );
      if( nelqu != nel && *status == SAI__OK ) {
         ndfMsg( "U", indfu );
         *status = SAI__ERROR;
         errRep( "", "U image '^U' is not the same size as the I image.",
                 status );
      }

      if( *status == PAR__NULL ) {
         ndfAnnul( &indfq, status );
         ndfAnnul( &indfu, status );
         inq_data = NULL;
         inu_data = NULL;
         errAnnul( status );
      } else {
         parGet0d( "ANGROT", &angrot, status );
         parGet0d( "PAOFF", &paoff, status );
         parGet0l( "PASIGN", &pasign, status );
      }
   }

/* Get any common-mode files. */
   if( *status == SAI__OK ) {
      kpg1Rgndf( "COM", size, size, "", &igrpc, &ncom, status );
      if( *status == PAR__NULL ) {
         errAnnul( status );
         ncom = 0;
      }
   }

/* Get any GAI files. */
   if( *status == SAI__OK ) {
      kpg1Rgndf( "GAI", size, size, "", &igrpg, &ngai, status );
      if( *status == PAR__NULL ) {
         errAnnul( status );
         ngai = 0;
      }
   }

/* Get any instrumental polarisation files. */
   if( *status == SAI__OK ) {

/* First see if the user wants to use the "INSTQ/INSTU" scheme for
   specifying instrumental polarisation. */
      ndfAssoc( "INSTQ", "Read", &indfiq, status );
      ndfAssoc( "INSTU", "Read", &indfiu, status );

      if( *status == PAR__NULL ) {
         ndfAnnul( &indfiq, status );
         ndfAnnul( &indfiu, status );
         errAnnul( status );

      } else {
         msgOut( " ", "Using user-defined IP model", status );

         ndfDim( indfiq, 2, dims, &ndim, status );
         if( dims[ 0 ] != 32 || dims[ 1 ] != 40 ) {
            *status = SAI__ERROR;
            ndfMsg( "N", indfiq );
            errRep( " ", "Instrumental polarisation file ^N has bad "
                    "dimensions - should be 32x40.", status );
         } else {
            ndfMap( indfiq, "DATA", "_DOUBLE", "READ", (void **) &qinst_data,
                    &nel, status );
         }

         ndfDim( indfiu, 2, dims, &ndim, status );
         if( dims[ 0 ] != 32 || dims[ 1 ] != 40 ) {
            *status = SAI__ERROR;
            ndfMsg( "N", indfiu );
            errRep( " ", "Instrumental polarisation file ^N has bad "
                    "dimensions - should be 32x40.", status );
         } else {
            ndfMap( indfiu, "DATA", "_DOUBLE", "READ", (void **) &uinst_data,
                    &nel, status );
         }
      }

/* If not, see if the user wants to use the Johnstone/Kennedy instrumental
   polarisation model. The IPDATA parameter gives the path to an HDS
   container file contining NDFs holding the required IP data for all
   subarrays. */
      if( !qinst_data ) {
         parGet0c( "IPDATA", ipdata, sizeof(ipdata), status );
         if( *status == PAR__NULL ) {
            errAnnul( status );
         } else {
            msgOutf( " ", "Using Johnstone/Kennedy IP model in %s",
                     status, ipdata );
            hdsOpen( ipdata, "READ", &iploc, status );
         }
      }
   }

/* Loop round all the template time series files. */
   for( ifile = 1; ifile <= (int) size && *status == SAI__OK; ifile++ ) {

/* Start a new NDF context. */
      ndfBegin();

/* Create the output NDF by propagating everything from the input, except
   for quality and variance. */
      ndgNdfas( igrp2, ifile, "READ", &indfin, status );

      ndfMsg( "FILE", indfin );
      msgSeti( "THISFILE", ifile );
      msgSeti( "NUMFILES", size );
      msgOutif( MSG__NORM, " ", "Simulating ^THISFILE/^NUMFILES ^FILE",
                status );

      ndgNdfpr( indfin, "DATA,HISTORY,LABEL,TITLE,WCS,UNITS,EXTENSION(*)",
                ogrp, ifile, &indfout, status );
      ndfAnnul( &indfin, status );
      ndfAnnul( &indfout, status );

/* We now re-open the output NDF and then modify its data values. */
      smf_open_file( wf, ogrp, ifile, "UPDATE", 0, &odata, status );

/* Issue a suitable message and abort if anything went wrong. */
      if( *status != SAI__OK ) {
         errRep( FUNC_NAME, "Could not open input template file.", status );
         break;

      } else {
         if( odata->file == NULL ) {
            *status = SAI__ERROR;
            errRep( FUNC_NAME, "No smfFile associated with smfData.",
                    status );
            break;

         } else if( odata->hdr == NULL ) {
            *status = SAI__ERROR;
            errRep( FUNC_NAME, "No smfHead associated with smfData.",
                    status );
            break;
         }
      }

/* Check the reference time series contains double precision values. */
      smf_dtype_check_fatal( odata, NULL, SMF__DOUBLE, status );

/* Get the total number of data elements, and the number of time slices. */
      smf_get_dims( odata, NULL, NULL, NULL, &ntslice, &ndata, NULL,
                    NULL, status );

/* Get the subarray name */
      smf_fits_getS( odata->hdr, "SUBARRAY", subarray, sizeof(subarray),
                     status );

/* If we are using the Johnstone/Kennedy IP model, open and map the
   relevant parameter NDFs within the IPDATA container file. */
      if( iploc ) {
         datFind( iploc, subarray, &cloc, status );

         ndfFind( cloc, "C0", &indfc0, status );
         ndfDim( indfc0, 2, dims, &ndim, status );
         if( dims[ 0 ] != 32 || dims[ 1 ] != 40 ) {
            *status = SAI__ERROR;
            ndfMsg( "N", indfc0 );
            errRep( " ", "Instrumental polarisation file ^N has bad "
                    "dimensions - should be 32x40.", status );
         } else {
            ndfMap( indfc0, "DATA", "_DOUBLE", "READ", (void **) &c0_data,
                    &nel, status );
         }

         ndfFind( cloc, "P0", &indfp0, status );
         ndfDim( indfp0, 2, dims, &ndim, status );
         if( dims[ 0 ] != 32 || dims[ 1 ] != 40 ) {
            *status = SAI__ERROR;
            ndfMsg( "N", indfp0 );
            errRep( " ", "Instrumental polarisation file ^N has bad "
                    "dimensions - should be 32x40.", status );
         } else {
            ndfMap( indfp0, "DATA", "_DOUBLE", "READ", (void **) &p0_data,
                    &nel, status );
         }

         ndfFind( cloc, "P1", &indfp1, status );
         ndfDim( indfp1, 2, dims, &ndim, status );
         if( dims[ 0 ] != 32 || dims[ 1 ] != 40 ) {
            *status = SAI__ERROR;
            ndfMsg( "N", indfp1 );
            errRep( " ", "Instrumental polarisation file ^N has bad "
                    "dimensions - should be 32x40.", status );
         } else {
            ndfMap( indfp1, "DATA", "_DOUBLE", "READ", (void **) &p1_data,
                    &nel, status );
         }

         ndfFind( cloc, "ANGC", &indfangc, status );
         ndfDim( indfangc, 2, dims, &ndim, status );
         if( dims[ 0 ] != 32 || dims[ 1 ] != 40 ) {
            *status = SAI__ERROR;
            ndfMsg( "N", indfangc );
            errRep( " ", "Instrumental polarisation file ^N has bad "
                    "dimensions - should be 32x40.", status );
         } else {
            ndfMap( indfangc, "DATA", "_DOUBLE", "READ", (void **) &angc_data,
                    &nel, status );
         }
      }

/* Open any COM file. */
      if( ncom ) {
         ndgNdfas( igrpc, ifile, "READ", &indfc, status );
         ndfDim( indfc, 3, cdims, &ndimc, status );

/* Check its dimensions. */
         if( *status == SAI__OK ) {
            if( ndimc == 1 ) {
               if( cdims[ 0 ] < (int) ntslice ) {
                  *status = SAI__ERROR;
                  ndfMsg( "C", indfc );
                  ndfMsg( "R", indfin );
                  msgSeti( "N", cdims[ 0 ] );
                  msgSeti( "M", ntslice );
                  errRep( " ", "Supplied COM file (^C) has ^N time-slices, but "
                          "the reference NDF (^R) has ^M time-slices.", status );
               } else {
                  ndfBound( indfc, 3, lbndc, ubndc, &ndimc, status );
                  ubndc[ 0 ] = lbndc[ 0 ] + ntslice - 1;
                  ndfSect( indfc, 1, lbndc, ubndc, &indfcs, status );
               }
            } else if( ndimc == 3 ) {
               if( cdims[ 0 ] != 1 || cdims[ 1 ] != 1 ) {
                  *status = SAI__ERROR;
                  ndfMsg( "C", indfc );
                  errRep( " ", "Supplied 3D COM file (^C) has bad "
                          "dimensions for axis 1 and/or 2 (should "
                          "both be 1 pixel long).", status );
               } else if( cdims[ 2 ] < (int) ntslice ) {
                  *status = SAI__ERROR;
                  ndfMsg( "C", indfc );
                  ndfMsg( "R", indfin );
                  msgSeti( "N", cdims[ 2 ] );
                  msgSeti( "M", ntslice );
                  errRep( " ", "Supplied COM file (^C) has ^N time-slices, but "
                          "the reference NDF (^R) has ^M time-slices.", status );
               } else {
                  ndfBound( indfc, 3, lbndc, ubndc, &ndimc, status );
                  ubndc[ 2 ] = lbndc[ 2 ] + ntslice - 1;
                  ndfSect( indfc, 3, lbndc, ubndc, &indfcs, status );
               }
            } else {
               *status = SAI__ERROR;
               ndfMsg( "C", indfc );
               msgSeti( "N", ndimc );
               errRep( " ", "Supplied COM file (^C) has ^N dimensions - "
                       "must be 3.", status );
            }
         }

         ndfMap( indfcs, "DATA", "_DOUBLE", "READ", (void **) &inc_data,
                 &nelc, status );

      } else {
         indfcs = NDF__NOID;
         inc_data = NULL;
      }

/* Open any GAI files. */
      if( ngai ) {
         ndgNdfas( igrpg, ifile, "READ", &indfg, status );
         ndfDim( indfg, 3, gdims, &ndimg, status );

/* Check its dimensions, and map it if OK. */
         if( *status == SAI__OK ) {
            if( ndimg != 2 ) {
               *status = SAI__ERROR;
               ndfMsg( "C", indfg );
               msgSeti( "N", ndimg );
               errRep( " ", "Supplied GAI file (^C) has ^N dimensions - "
                       "must be 2.", status );
            } else if( gdims[ 0 ] != 32 || gdims[ 1 ] != 40 ) {
               *status = SAI__ERROR;
               ndfMsg( "C", indfg );
               errRep( " ", "Supplied GAI file (^C) has has bad "
                       "dimensions - should be 32x40.", status );
            }
         }
         ndfMap( indfg, "DATA", "_DOUBLE", "READ", (void **) &gai_data,
                 &nelg, status );

      } else {
         indfg = NDF__NOID;
         gai_data = NULL;
      }

/* Fill the output with bad values. */
      if( *status == SAI__OK ) {
         pd = odata->pntr[ 0 ];
         for( iel = 0; iel < ndata; iel++ ) *(pd++) = VAL__BADD;
      }

/* Resample the sky map data into the output time series. */
      smf_resampmap( wf, odata, abskyfrm, skymap, moving, slbnd, subnd,
                     interp, params, sigma, in_data, odata->pntr[ 0 ],
                     NULL, &ngood, status );

/* Add on any COM data. */
      smf_addcom( wf, odata, inc_data, status );

/* Issue a wrning if there is no good data in the output cube. */
      if( ngood == 0 ) msgOutif( MSG__NORM, " ", "   Output contains no "
                                 "good data values.", status );

/* If Q and U maps have been given, allocate room to hold resampled Q and
   U values, and fill them with bad values. */
      if( inq_data && inu_data ) {
         pq = outq_data = astMalloc( ndata*sizeof( *outq_data ) );
         pu = outu_data = astMalloc( ndata*sizeof( *outu_data ) );
         if( *status == SAI__OK ) {
            for( iel = 0; iel < ndata; iel++ ) {
               *(pu++) = VAL__BADD;
               *(pq++) = VAL__BADD;
            }
         }

/* Determine the harmonic to use. */
         parGet0i( "HARMONIC", &harmonic, status );

/* If producing the normal 8 Hz harmonic, get the amplitude and phase of a
   other signals to add onto the 8 Hz signal. */
         if( harmonic == 4 ) {
            parGet0d( "AMP2", &amp2, status );
            parGet0d( "PHASE2", &phase2, status );
            parGet0d( "AMP4", &amp4, status );
            parGet0d( "PHASE4", &phase4, status );
            parGet0d( "AMP16", &amp16, status );
            parGet0d( "PHASE16", &phase16, status );
         } else {
            amp2 = 0.0;
            phase2 = 0.0;
            amp4 = 0.0;
            phase4 = 0.0;
            amp16 = 0.0;
            phase16 = 0.0;
         }

/* Allocate room for an array to hold the angle from the Y pixel axis
   in the sky map to the focal plane Y axis, in radians, at each time
   slice. Positive rotation is in the same sense as rotation from
   focal plane X to focal plane Y. */
         ang_data = astMalloc( ntslice*sizeof( *ang_data ) );

/* Resample them both into 3D time series. These Q/U values arw with
  respect to the sky image Y axis. */
         smf_resampmap( wf, odata, abskyfrm, skymap, moving, slbnd, subnd,
                        interp, params, sigma, inq_data, outq_data,
                        ang_data, &ngood, status );
         smf_resampmap( wf, odata, abskyfrm, skymap, moving, slbnd, subnd,
                        interp, params, sigma, inu_data, outu_data,
                        NULL, &ngood, status );

/* Combine these time series with the main output time series so that the
   main output is analysed intensity. */
         smf_uncalc_iqu( wf, odata, odata->pntr[ 0 ], outq_data, outu_data,
                         ang_data, pasign, AST__DD2R*paoff, AST__DD2R*angrot,
                         amp2, AST__DD2R*phase2, amp4, AST__DD2R*phase4,
                         amp16, AST__DD2R*phase16, qinst_data, uinst_data,
                         c0_data, p0_data, p1_data, angc_data, harmonic,
                         status );

/* Release work space. */
         outq_data = astFree( outq_data );
         outu_data = astFree( outu_data );
         ang_data = astFree( ang_data );
      }

/* Factor in any GAI data. */
      smf_addgai( wf, odata, gai_data, status );

/* Close the output time series file. */
      smf_close_file( wf, &odata, status );

/* Close the IP data container for the current subarray, if it is open. */
      if( cloc ) datAnnul( &cloc, status );

/* End the NDF context. */
      ndfEnd( status );
   }

/* Close any input data file that is still open due to an early exit from
   the above loop. */
   if( odata != NULL ) {
      smf_close_file( wf, &odata, status );
      odata = NULL;
   }

/* Free remaining resources. */
   if( igrp1 != NULL) grpDelet( &igrp1, status);
   if( igrp2 != NULL) grpDelet( &igrp2, status);
   if( igrpq != NULL) grpDelet( &igrpq, status);
   if( igrpu != NULL) grpDelet( &igrpu, status);
   if( igrpc != NULL) grpDelet( &igrpc, status);
   if( igrpg != NULL) grpDelet( &igrpg, status);
   if( ogrp != NULL) grpDelet( &ogrp, status);
   if( iploc ) datAnnul( &iploc, status );

/* End the NDF context. */
   ndfEnd( status );

/* End the tile's AST context. */
   astEnd;

/* Issue a status indication.*/
   if( *status == SAI__OK ) {
      msgOutif(MSG__VERB," ",TASK_NAME " succeeded, time series written.", status);
   } else {
      msgOutif(MSG__VERB," ",TASK_NAME " failed.", status);
   }
}
コード例 #3
0
ファイル: configecho.c プロジェクト: bbrond/starlink
F77_SUBROUTINE(configecho)( INTEGER(STATUS) ){
/*
*+
*  Name:
*     CONFIGECHO

*  Purpose:
*     Displays one or more configuration parameters.

*  Language:
*     C (designed to be called from Fortran)

*  Type of Module:
*     ADAM A-task

*  Invocation:
*     CALL CONFIGECHO( STATUS )

*  Arguments:
*     STATUS = INTEGER (Given and Returned)
*        The global status.

*  Description:
*     This application displays the name and value of one or all
*     configuration parameters, specified using Parameters CONFIG or
*     NDF. If a single parameter is displayed, its value is also
*     written to an output parameter. If the parameter value is not
*     specified by the CONFIG, NDF or DEFAULTS parameter, then the
*     value supplied for DEFVAL is displayed.
*
*     If an input NDF is supplied then configuration parameters
*     are read from its history (see Parameters NDF and APPLICATION).
*
*     If values are supplied for both CONFIG and NDF, then the
*     differences between the two sets of configuration parameters
*     are displayed (see Parameter NDF).

*  Usage:
*     configecho name config [defaults] [select] [defval]

*  ADAM Parameters:
*     APPLICATION = LITERAL (Read)
*        When reading configuration parameters from the history
*        of an NDF, this parameter specifies the name of the application
*        to find in the history. There must be a history component
*        corresponding to the value of this parameter, and it must
*        include a CONFIG group. [current value]
*     CONFIG = GROUP (Read)
*        Specifies values for the configuration parameters. If the string
*        "def" (case-insensitive) or a null (!) value is supplied, the
*        configuration parameters are obtained using Parameter NDF. If
*        a null value is also supplied for NDF, a set of default
*        configuration parameter values will be used, as specified by
*        Parameter DEFAULTS.
*
*        The supplied value should be either a comma-separated list of
*        strings or the name of a text file preceded by an up-arrow
*        character "^", containing one or more comma-separated lists of
*        strings. Each string is either a "keyword=value" setting, or the
*        name of a text file preceded by an up-arrow character "^". Such
*        text files should contain further comma-separated lists which
*        will be read and interpreted in the same manner (any blank lines
*        or lines beginning with "#" are ignored). Within a text file,
*        newlines can be used as delimiters, as well as commas. Settings
*        are applied in the order in which they occur within the list,
*        with later settings overriding any earlier settings given for
*        the same keyword.
*
*        Each individual setting should be of the form "<keyword>=<value>".
*        If a non-null value is supplied for Parameter DEFAULTS, an error
*        will be reported if CONFIG includes values for any parameters
*        that are not included in DEFAULTS.
*     DEFAULTS = LITERAL (Read)
*        The path to a file containing the default value for every
*        allowed configuration parameter. If null (!) is supplied, no
*        defaults will be supplied for parameters that are not specified
*        by CONFIG, and no tests will be performed on the validity of
*        paramter names supplied by CONFIG. [!]
*     DEFVAL = LITERAL (Read)
*        The value to return if no value can be obtained for the named
*        parameter, or if the value is "<undef>".  [<***>]
*     NAME = LITERAL (Read)
*        The name of the configuration parameter to display.  If set to
*        null (!), then all parameters defined in the configuration are
*        displayed.
*     NDF = NDF (Read)
*        An NDF file containing history entries which include
*        configuration parameters. If not null (!) the history
*        of the NDF will be searched for a component corresponding
*        to the Parameter APPLICATION.  The Parameter CONFIG
*        is then optional, but if it too is not null (!) then
*        the output will show the differences between the configuration
*        stored in the NDF history and the given configuration:
*        new parameters and those different from the reference
*        configuration (given by Parameter CONFIG) are prefixed
*        with "+" and those which are the same as the reference
*        configuration are prefixed with "-". [!]
*     SELECT = GROUP (Read)
*        A group that specifies any alternative prefixes that can be
*        included at the start of any parameter name. For instance, if
*        this group contains the two entries "450=1" and "850=0", then
*        either CONFIG or DEFAULTS can specify two values for any single
*        parameter -- one for the parameter prefixed by "450." and another
*        for the parameter prefixed by "850.". Thus, for instance, if
*        DEFAULTS defines a parameter called "filter", it could include
*        "450.filter=300" and "850.filter=600". The CONFIG parameter could
*        then either set the filter parameter for a specific prefix (as
*        in "450.filter=234"); or it could leave the prefix unspecified,
*        in which case the prefix used is the first one with a
*        non-zero value in SELECT (450 in the case of this example - 850
*        has a value zero in SELECT). Thus the names of the items in
*        SELECT define the set of allowed alternative prefixes, and the
*        values indicate which one of these alternatives is to be used
*        (the first one with non-zero value). [!]
*     SORT = _LOGICAL (Read)
*        If TRUE then sort the listed parameters in to alphabetical order.
*        Otherwise, retain the order they have in the supplied
*        configuration. Only used if a null (!) value is supplied for
*        Parameter NAME. [FALSE]
*     VALUE = LITERAL (Write)
*        The value of the configuration parameter, or "<***>" if the
*        parameter has no value in CONFIG and DEFAULTS.

*  Examples:
*     configecho m81 ^myconf
*        Report the value of configuration parameter "m81" defined within
*        the file "myconf". If the file does not contain a value for
*        "m81", then "<***>" is displayed.
*     configecho type ^myconf select="m57=0,m31=1,m103=0"
*        Report the value of configuration parameter "type" defined within
*        the file "myconf". If the file does not contain a value for
*        "type", then the value of "m31.type" will be reported instead. If
*        neither is present, then "<***>" is displayed.
*     configecho flt.filt_edge_largescale \
*                config=^/star/share/smurf/dimmconfig.lis \
*                defaults=/star/bin/smurf/smurf_makemap.def \
*                select="450=1,850=0"
*        Report the value of configuration parameter "flt.filt_edge_largescale"
*        defined within the file "/star/share/smurf/dimmconfig.lis", using
*        defaults from the file "/star/bin/smurf/smurf_makemap.def". If
*        dimmconfig.lis does not contain a value for "flt.filt_edge_largescale"
*        then it is searched for "450.flt.filt_edge_largescale" instead. An
*        error is reported if dimmconfig.lis contains values for any
*        items that are not defined in smurf_makemap.def.
*     configecho ndf=omc1 config=^/star/share/smurf/dimmconfig.lis \
*                defaults=/star/bin/smurf/smurf_makemap.def \
*                application=makemap name=! sort select="450=0,850=1"
*        Show how the configuration used to generate the 850um map
*        of OMC1 differs from the basic dimmconfig.lis file.

*  Copyright:
*     Copyright (C) 2012-3 Science & Technology Facilities Council.
*     All Rights Reserved.

*  Licence:
*     This program is free software; you can redistribute it and/or
*     modify it under the terms of the GNU General Public License as
*     published by the Free Software Foundation; either Version 2 of
*     the License, or (at your option) any later version.
*
*     This program is distributed in the hope that it will be
*     useful, but WITHOUT ANY WARRANTY; without even the implied
*     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
*     PURPOSE. See the GNU General Public License for more details.
*
*     You should have received a copy of the GNU General Public License
*     along with this program; if not, write to the Free Software
*     Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
*     02110-1301, USA.

*  Authors:
*     DSB: David S. Berry
*     GSB: Graham S. Bell
*     {enter_new_authors_here}

*  History:
*     10-DEC-2012 (DSB):
*        Original version.
*     6-FEB-2013 (DSB):
*        Added parameter DEFVAL.
*     11-FEB-2013 (DSB):
*        Added parameter SORT and allow all parameters to be listed by
*        providing a null value for NAME.
*     11-FEB-2013 (GSB):
*        Added ability to read configuration from history entries.
*     13-FEB-2013 (DSB):
*        Nullify AST object pointers when the objects are annulled,
*        to avoid re-use of dead pointers.
*     14-FEB-2013 (DSB):
*        Allow the SELECT feature to be used even if no DEFAULTS file is
*        supplied (see the new entry in the "Examples:" section).
*     15-FEB-2013 (DSB):
*        Expand the prologue docs, and use NULL in place of zero for pointers.
*     22-FEB-2013 (DSB):
*        Guard against seg fault in HistoryKeymap when the NDF does 
*        not contain the required CONFIG entry in the History 
*        component.
*     {enter_further_changes_here}

*-
*/

   GENPTR_INTEGER(STATUS)

/* Local Variables: */
   AstKeyMap *keymap2;
   AstKeyMap *keymap;
   Grp *grp = NULL;
   char *dot;
   char *pname;
   char defs[250];
   char defval[250];
   char name[250];
   const char *value;
   const char *historyValue = NULL;
   int showall;
   int sort;
   size_t size;
   int indf = 0;
   int nrec;
   int i;
   char application[NDF__SZAPP];
   char applicationi[NDF__SZAPP];

/* Abort if an error has already occurred. */
   if( *STATUS != SAI__OK ) return;

/* Begin an AST context */
   astBegin;

/* Get the value to return if no value can be obtained for the named
   parameter, of it it has a value of <undef>. */
   parGet0c( "DEFVAL", defval, sizeof(defval), STATUS );

/* Get any defaults file, annuling the error if null (!) is supplied. */
   if( *STATUS == SAI__OK ) {
      parGet0c( "DEFAULTS", defs, sizeof(defs), STATUS );
      if( *STATUS == PAR__NULL ) {
         errAnnul( STATUS );
         defs[0] = 0;
      }
   }

/* Get the NDF identifier if requested. */
   ndfBegin();
   if (*STATUS == SAI__OK) {
      ndfAssoc("NDF", "READ", &indf, STATUS);
      if (*STATUS == PAR__NULL) {
         errAnnul(STATUS);
         indf = 0;
      }
      else {
         parGet0c("APPLICATION", application, sizeof(application), STATUS);
         /* Check now for error because the block below allowing an undefined
          * CONFIG clears this status otherwise. */
         if (*STATUS != SAI__OK) goto L999;
      }
   }

/* See if any alternate keyword prefixes are allowed, and if so determine
   which of the alternatices is to be displayed. */
   kpg1Gtgrp( "SELECT", &grp, &size, STATUS );
   if( *STATUS == PAR__NULL ) {
      grpDelet( &grp, STATUS );
      errAnnul( STATUS );
      keymap2 = NULL;
   } else {
      kpg1Kymap( grp, &keymap2, STATUS );
      grpDelet( &grp, STATUS );
   }

/* Create a KeyMap holding the selected alternative for each keyword, and
   also supply defaults for any missing values (if a defaults file was
   supplied by the user). */
   keymap = kpg1Config( "CONFIG", defs[0]?defs:NULL, keymap2, 0, STATUS );

/* Allow it to be NULL if we're reading an NDF because we'll replace
   keymap with historyConfig later if necessary. */
   if( indf && *STATUS == PAR__NULL ) {
      errAnnul(STATUS);
      keymap = NULL;
   }

/* Abort if an error has occurred. */
   if( *STATUS != SAI__OK ) goto L999;

/* Get the name of the required parameter, and convert to upper case (if
   supplied). If not supplied, set a flag indicating that all parameters
   should be displayed. */
   parGet0c( "NAME", name, sizeof(name), STATUS );
   if( *STATUS == PAR__NULL ) {
      errAnnul( STATUS );
      showall = 1;
   } else {
      showall = 0;
      astChrCase( NULL, name, 1, 0 );
   }

/* Attempt to find the NDF's corresponding history record. */
   if (indf && *STATUS == SAI__OK) {
      ndfHnrec(indf, &nrec, STATUS);
      for (i = 0; i < nrec; i ++) {
         ndfHinfo(indf, "APPLICATION", i + 1, applicationi,
                  sizeof(applicationi), STATUS);
         if (! strncasecmp(application, applicationi, strlen(application))) {
            ndfHout(indf, i + 1, HistoryKeyMap, STATUS);
            break;
         }
      }

      if (*STATUS == SAI__OK && ! historyConfig) {
         *STATUS = SAI__ERROR;

         errRepf("CONFIGECHO_ERR", "CONFIGECHO: Failed to find %s "
                 "configuration in NDF history.", STATUS, application);
      }
      else if (! keymap) {
         keymap = historyConfig;
         historyConfig = NULL;
      }
   }

   if( *STATUS == SAI__OK ) {

/* First deal with cases where we are displaying a single parameter
   value. */
      if( !showall ) {

/* Loop round each section of the name that ends with a dot. */
         value = defval;
         pname = name;

         dot = strchr( pname, '.' );
         while( dot && keymap ) {

/* Get a nested keymap with the name that occurs prior to the dot. If
   found, use it in place of the parent keymap. */
            pname[ dot - pname ] = 0;
            if( astMapGet0A( keymap, pname, &keymap2 ) ) {
               astAnnul( keymap );
               keymap = keymap2;
            } else {
               keymap = astAnnul( keymap );
            }

/* If historyConfig exists, do the same there. */
            if (historyConfig) {
               if (astMapGet0A(historyConfig, pname, &keymap2)) {
                  astAnnul(historyConfig);
                  historyConfig = keymap2;
               }
               else {
                  historyConfig = astAnnul(historyConfig);
               }
            }

/* Re-instate the original dot, and move on to find the next dot. */
            pname[ dot - pname ] = '.';
            pname = dot + 1;
            dot = strchr( pname, '.' );
         }

/* Ensure no error is reported if the parameter is not found in the
   KeyMap. */
         if( keymap ) {
            astClear( keymap, "KeyError" );

/* Get the parameter value as a string. */
            astMapGet0C( keymap, pname, &value );
         }

         if (historyConfig) {
            astClear(historyConfig, "KeyError");
            astMapGet0C(historyConfig, pname, &historyValue);

/* In NDF history mode we only want to return a value if it
   was found in the configuration from the history. */

            if (historyValue) {
               if (strcmp(value, historyValue)) {
                  msgOutf("", "+ %s", STATUS, historyValue);
               }
               else {
                  msgOutf("", "- %s", STATUS, historyValue);
               }
               parPut0c("VALUE", historyValue, STATUS);
            }
         }
         else {
/* Display it. */
            msgOut( "", value, STATUS );

/* Write it to the output parameter. */
            parPut0c( "VALUE", value, STATUS );
         }

/* Now deal with cases were we are displaying all parameter values. */
      } else {

/* See if the values should be sorted. */
         parGet0l( "SORT", &sort, STATUS );

/* Display them. */
         if (historyConfig) {
            DisplayKeyMap( historyConfig , sort, "", keymap, STATUS );
         }
         else {
            DisplayKeyMap( keymap, sort, "", NULL, STATUS );
         }
      }
   }

/* Tidy up. */
L999:;

/* End the AST context */
   astEnd;

/* Close the NDF if open. */
   ndfEnd(STATUS);

/* If an error has occurred, issue another error report identifying the
   program which has failed (i.e. this one). */
   if( *STATUS != SAI__OK ) {
      errRep( "CONFIGECHO_ERR", "CONFIGECHO: Failed to echo configuration "
              "parameters.", STATUS );
   }

}
コード例 #4
0
ファイル: smf_initial_sky.c プロジェクト: astrobuff/starlink
int smf_initial_sky( ThrWorkForce *wf, AstKeyMap *keymap, smfDIMMData *dat,
                     int *iters, int *status ) {

/* Local Variables: */
   char refparam[ DAT__SZNAM ];/* Name for reference NDF parameter */
   const char *cval;          /* The IMPORTSKY string value */
   double *ptr;               /* Pointer to NDF Data array */
   double *vptr;              /* Pointer to NDF Variance array */
   int indf1;                 /* Id. for supplied reference NDF */
   int indf2;                 /* Id. for used section of reference NDF */
   int nel;                   /* Number of mapped NDF pixels */
   int result;                /* Returned flag */
   int there;                 /* Is there a smurf extension in the NDF? */
   int update;                /* Was NDF opened for UPDATE access? */
   size_t i;                  /* Loop count */
   size_t junk;               /* Unused value */

/* Initialise the returned value to indicate no sky has been subtractred. */
   result = 0;

/* Assume the sky map was not created by an interupted previous run of
   makemap. */
   *iters = -1;

/* Check inherited status. */
   if( *status != SAI__OK ) return result;

/* Begin an AST context. */
   astBegin;

/* The IMPORTSKY config parameter should have the name of the ADAM
   parameter to use for acquiring the NDF that contains the initial sky
   estimate. If IMPORTSKY is "1", use REF. */
   cval = NULL;
   astMapGet0C( keymap, "IMPORTSKY", &cval );
   if( cval ) {
      if( !astChrMatch( cval, "REF" ) &&
          !astChrMatch( cval, "MASK2" ) &&
          !astChrMatch( cval, "MASK3" ) ) {
         astMapGet0I( keymap, "IMPORTSKY", &result );
         cval = ( result > 0 ) ? "REF" : NULL;
      }
      if( cval ) {
         result = 1;
         strcpy( refparam, cval );
         astChrCase( NULL, refparam, 1, 0 );
      }
   }

/* Do nothing more if we are not subtracting an initial sky from the data. */
   if( result && *status == SAI__OK ) {

/* Begin an NDF context. */
      ndfBegin();

/* Get an identifier for the NDF using the associated ADAM parameter.
   First try UPDATE access. If this fails try READ access. */
      ndfAssoc( refparam, "UPDATE", &indf1, status );
      if( *status != SAI__OK ) {
         errAnnul( status );
         ndfAssoc( refparam, "READ", &indf1, status );
         update = 0;
      } else {
         update = 1;
      }

/* Tell the user what we are doing. */
      ndfMsg( "N", indf1 );
      msgOut( "", "Using ^N as the initial guess at the sky", status );

/* Get a section from this NDF that matches the bounds of the map. */
      ndfSect( indf1, 2, dat->lbnd_out, dat->ubnd_out, &indf2, status );

/* Ensure masked values are not set bad in the mapped data array. */
      ndfSbb( 0, indf2, status );

/* Map the data array section, and copy it into the map buffer. */
      ndfMap( indf2, "DATA", "_DOUBLE", "READ", (void **) &ptr, &nel, status );
      if( *status == SAI__OK ) {
         memcpy( dat->map, ptr, dat->msize*sizeof(*ptr));
      }

/* Map the variance array section, and copy it into the map buffer. */
      ndfState( indf2, "VARIANCE", &there, status );
      if( there ) {
         ndfMap( indf2, "VARIANCE", "_DOUBLE", "READ", (void **) &vptr, &nel, status );
         if( *status == SAI__OK ) {
            memcpy( dat->mapvar, vptr, dat->msize*sizeof(*vptr));
         }
      }

/* If the NDF was created by a previous run of makemap that was interupted
   using control-C, it will contain a NUMITER item in the smurf extension,
   which gives the number of iterations that were completed before the
   map was created. Obtain and return this value, if it exists. */
      ndfXstat( indf1, SMURF__EXTNAME, &there, status );
      if( there ) ndfXgt0i( indf1, SMURF__EXTNAME, "NUMITER", iters,
                            status );

/* If the NDF has a Quality component, import it and create initial AST,
   FLT, PCA, SSN and COM masks from it. These will often be over-ridden by
   new masks calculated with smf_calcmodel_ast below, but will not be
   over-written if the masks have been frozen by xxx.zero_freeze. */
      ndfState( indf2, "Quality", &there, status );
      if( there && dat->mapqual ) {
         smf_qual_t *qarray = smf_qual_map( wf, indf2, "Read", NULL, &junk,
                                            status );
         if( *status == SAI__OK ) {
            smf_qual_t *pq = qarray;
            for( i = 0; i < dat->msize; i++,pq++ ) {
               if( *pq & SMF__MAPQ_AST ) {
                  if( !dat->ast_mask ) dat->ast_mask = astCalloc( dat->msize,
                                                  sizeof( *(dat->ast_mask) ) );
                  (dat->ast_mask)[ i ] = 1;
               }
               if( *pq & SMF__MAPQ_FLT ) {
                  if( !dat->flt_mask ) dat->flt_mask = astCalloc( dat->msize,
                                                  sizeof( *(dat->flt_mask) ) );
                  (dat->flt_mask)[ i ] = 1;
               }
               if( *pq & SMF__MAPQ_COM ) {
                  if( !dat->com_mask ) dat->com_mask = astCalloc( dat->msize,
                                                  sizeof( *(dat->com_mask) ) );
                  (dat->com_mask)[ i ] = 1;
               }
               if( *pq & SMF__MAPQ_SSN ) {
                  if( !dat->ssn_mask ) dat->ssn_mask = astCalloc( dat->msize,
                                                  sizeof( *(dat->ssn_mask) ) );
                  (dat->ssn_mask)[ i ] = 1;
               }
               if( *pq & SMF__MAPQ_PCA ) {
                  if( !dat->pca_mask ) dat->pca_mask = astCalloc( dat->msize,
                                                  sizeof( *(dat->pca_mask) ) );
                  (dat->pca_mask)[ i ] = 1;
               }
            }
         }
         qarray = astFree( qarray );
      }

/* Indicate the map arrays within the supplied smfDIMMData structure now
   contain usable values. We need to do this before calling
   smf_calcmodel_ast below so that the right mask gets used in
   smf_calcmodel_ast. */
      dat->mapok = 1;

/* Apply any existinction correction to the cleaned bolometer data. */
      if( dat->ext ) smf_calcmodel_ext( wf, dat, 0, keymap, dat->ext, 0,
                                        status);

/* Sample the above map at the position of each bolometer sample and
   subtract the sampled value from the cleaned bolometer value. */
      smf_calcmodel_ast( wf, dat, 0, keymap, NULL, SMF__DIMM_PREITER, status);

/* Remove any existinction correction to the modifed bolometer data. */
      if( dat->ext ) smf_calcmodel_ext( wf, dat, 0, keymap, dat->ext,
                                        SMF__DIMM_INVERT, status);

/* If the NDF was opened with UPDATE access, update the quality array in
   the NDF to reflect the AST mask created by smf_calcmodel_ast above. */
      if( update ) {
         smf_qual_t *qarray = astStore( NULL, dat->mapqual, dat->msize*sizeof(*qarray) );
         qarray = smf_qual_unmap( wf, indf2, SMF__QFAM_MAP, qarray, status );
      }

/* End the NDF context. */
      ndfEnd( status );
   }

/* End the AST context. */
   astEnd;

/* Return the pointer to the boolean mask. */
   return result;
}
コード例 #5
0
ファイル: smf_getrefwcs.c プロジェクト: astrobuff/starlink
void smf_getrefwcs( const char *param, Grp *igrp, AstFrameSet **specwcs,
                    AstFrameSet **spacewcs, int *isjsa, int *status ){

/* Local Variables */
   AstFrame *frm = NULL;
   AstFrameSet *refwcs = NULL;  /* The WCS FrameSet from the reference NDF */
   AstRegion *circle;
   char text[ 255 ];            /* Parameter value */
   int *tiles;
   int i;
   int jsatiles;
   int lbnd[2];                 /* Lower pixel index bounds of mid tile */
   int ntile;
   int perm[ 2 ];
   int refndf;                  /* NDF identifier for the refence NDF */
   int ubnd[2];                 /* Upper pixel index bounds of mid tile */
   size_t code;
   smfData *data = NULL;        /* Structure describing 1st input file */
   smfJSATiling skytiling;
   smf_inst_t inst = SMF__INST_NONE;
   smf_jsaproj_t proj;          /* Specific JSA projection to use */
   smf_subinst_t subinst;

/* Initialise the returned values. */
   *specwcs = NULL;
   *spacewcs = NULL;
   *isjsa = 0;

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* Begin an AST context. */
   astBegin;

/* If the JSAILES parameter is TRUE, then we use the JSA all-sky pixel
   grid regardless of the setting of REF. */
   parGet0l( "JSATILES", &jsatiles, status );
   if( jsatiles ) {
      strcpy( text, "JSA" );
      *isjsa = 1;

/* Otherwise, first get the parameter value as a string. Use subpar to avoid problem
   caused by interpretion of the text within the parameter system. */
   } else {
      subParFindpar( param, &code, status );
      subParGetname( code, text, sizeof(text), status );
   }

/* If no value was supplied, annul the error and do nothing more. */
   if( *status == PAR__NULL ) {
      errAnnul( status );

/* If it is "JSA", or one of the JSA projection codes, we return WCS that
   describes one of the the JSA all-sky pixel grids. */
   } else if( *status == SAI__OK ) {
      proj = smf_jsaproj_fromstr( text, 0, status );
      if( astChrMatch( text, "JSA" ) || proj != SMF__JSA_NULL ) {
         *isjsa = 1;

/* Report an error if the instrument cannot be determined. */
         if( !igrp ) {
            *status = SAI__ERROR;
            errRep( "", "smf_getrefwcs: Cannot use the JSA all-sky pixel "
                    "grid since no input group has been supplied (possibly "
                    "programming error).", status );
         } else {

/* Open the first input file. */
            smf_open_file( NULL, igrp, 1, "READ", SMF__NOCREATE_DATA, &data,
                           status );
            if( *status == SAI__OK ) {

/* Get the instrument. */
               if( data->hdr->instrument == INST__SCUBA2 ) {
                  subinst = smf_calc_subinst( data->hdr, status );
                  if( subinst == SMF__SUBINST_850 ) {
                     inst = SMF__INST_SCUBA_2_850;
                  } else {
                     inst = SMF__INST_SCUBA_2_450;
                  }

               } else if( data->hdr->instrument == INST__ACSIS ) {
                  inst = SMF__INST_ACSIS;

               } else if( *status == SAI__OK ) {
                  *status = SAI__ERROR;
                  if( data->file ) {
                     smf_smfFile_msg( data->file, "FILE", 1, "one or more of "
                                      "the input data files" );
                  } else {
                     msgSetc( "FILE", "one or more of the input data files" );
                  }
                  errRep( "", "No tiles are yet defined for the instrument that "
                          "created ^FILE.", status );
               }

/* Get the parameters that define the layout of sky tiles for the
   instrument. */
               smf_jsatiling( inst, &skytiling, status );

/* For "JSA" - choose the best projection. */
               if( astChrMatch( text, "JSA" ) ) {

/* Use the FITS headers in the first raw data file to create an AST Circle
   describing the approximate area of the observation within the tracking
   system. */
                  circle = smf_mapregion_approx( igrp, status );

/* Convert the circle to ICRS (as used by the JSA all-sky grid). */
                  astSetC( circle, "System", "ICRS" );

/* Get a list of the tiles that touch this circle. */
                  tiles = smf_jsatiles_region( circle, &skytiling,
                                               &ntile, status );

/* Choose the best projection (i.e. the projection that puts the circle
   furthest away from any singularities). */
                  proj = smf_jsaproj( ntile, tiles, &skytiling, status);

/* Free resources. */
                  tiles = astFree( tiles );
                  circle = astAnnul( circle );

/* If a good projection was specified, use it. Otherwise report an error. */
               } else if( proj == SMF__JSA_NULL && *status == SAI__OK ) {
                  *status = SAI__ERROR;
                  errRepf( "", "Bad value '%s' supplied for parameter %s.",
                           status, text, param );
               }

/* Report the projection type. */
               msgOutf( " ", "The %s will be created on the JSA %s "
                        "pixel grid.", status,
                        (data->hdr->instrument==INST__ACSIS)?"cube":"map",
                        smf_jsaproj_tostr( proj ) );

/* All tiles within the same JSA projection use the same WCS, so we get
   the WCS FrameSet for an arbitrary central tile, and use it for the
   full map. The exception is that tiles within the HPX facet that is
   split between bottom-left and top-right, use a different WCS (they
   have different reference points). But our choice of projection should
   mean that the map never falls in that facet. The base Frame will be
   GRID coords within the tile, and the current Frame will be ICRS
   (RA,Dec). */
               smf_jsatile( ((skytiling.ntpf * skytiling.ntpf - 1) * 2) / 3,
                            &skytiling, 0, proj, NULL, spacewcs, NULL, lbnd,
                            ubnd, status );

/* Change the base Frame to be PIXEL. */
               for( i = 1; i <= astGetI( *spacewcs, "NFrame" ); i++ ) {
                  frm = astGetFrame( *spacewcs, i );
                  if( astChrMatch( astGetC( frm, "Domain" ), "PIXEL" ) ) {
                     astSetI( *spacewcs, "Base", i );
                  }
                  frm = astAnnul( frm );
               }
            }

/* Close the current input data file. */
            smf_close_file( NULL, &data, status);
         }

/* Otherwise get the parameter value as an NDF. */
      } else {
         ndfAssoc( param, "READ", &refndf, status );

/* Get the WCS FrameSet from the reference NDF. */
         ndfGtwcs( refndf, &refwcs, status );

/* Attempt to extract a new FrameSet from this WCS FrameSet, in which the
   current Frame is a SkyFrame, and the base Frame is a 2D PIXEL Frame.
   Since the NDF library sets the GRID Frame to be the Base Frame, we need
   to make the PIXEL Frame the base Frame first. The NDF library ensures
   that the pixel Frame is Frame 2. */
         astSetI( refwcs, "Base", 2 );
         *spacewcs = atlFrameSetSplit( refwcs, "SKY", NULL, NULL, status );
         if( !(*spacewcs) ) {
            if( *status == SAI__OK ) {
               ndfMsg( "N", refndf );
               *status = SAI__ERROR;
               errRep( "", "The supplied reference NDF (^N) either has no "
                       "celestial WCS axes, or the celestial axes cannot "
                       "be separated from the non-celestial axes.", status );
            }

/* The rest of makemap assumes that the sky frame axes are in the default
   order (lon,lat). If this is not the case, permute them. */
         } else if( astGetI( *spacewcs, "IsLatAxis(1)" ) ) {
            perm[ 0 ] = 2;
            perm[ 1 ] = 1;
            astPermAxes( *spacewcs, perm );
         }

/* Now look for the spectral WCS (described by a DSBSpecFrame). */
         smf_getspectralwcs( refwcs, 1, specwcs, status );

/* We no longer need the NDF so annul it. */
         ndfAnnul( &refndf, status );
      }
   }

/* If no error has occurred, export any returned FrameSet pointers from
   the current AST context so that it will not be annulled when the AST
   context is ended. Otherwise, ensure a null pointer is returned. */
   if( *status == SAI__OK ) {
      if( *spacewcs ) astExport( *spacewcs );
      if( *specwcs ) astExport( *specwcs );
   } else {
      if( *spacewcs ) *spacewcs = astAnnul( *spacewcs );
      if( *specwcs ) *specwcs = astAnnul( *specwcs );
   }

/* End the AST context. This will annul all AST objects created within the
   context (except for those that have been exported from the context). */
   astEnd;

}