コード例 #1
0
ファイル: rrt.cpp プロジェクト: gnunoe/Cf_ROS
void rrt_t::step()
{
	random_sample();
	nearest_vertex();
	if(propagate())
	{
		add_to_tree();
	}
}
コード例 #2
0
            void adaptive_sparse_rrt_t::step()
            {   
                //sample a state
                sampler->sample(state_space,sample_point);  

                //get the nearest state    
                tree_vertex_index_t nearest = nearest_vertex(sample_point);

                //propagate toward the sampled point
                plan_t plan;
                plan.link_control_space(control_space);
                state_t* end_state = pre_alloced_points[point_number];
                double prop_length=0;
                int attempts=0;
                trajectory.clear();
                do
                {
                    if(collision_checking)
                    {
                        plan.clear();
                        local_planner->steer(tree[nearest]->point,sample_point,plan,trajectory,false);
                        state_space->copy_point(end_state,trajectory[trajectory.size()-1]);
                        prop_length = plan.length();         
                    }
                    else
                    {
                        plan.clear();            
                        local_planner->steer(tree[nearest]->point,sample_point,plan,end_state,false);            
                        prop_length = plan.length();          
                    }
                    attempts++;
                }
                while(drain && attempts < max_attempts && ( metric->distance_function(tree[nearest]->point,end_state) < delta_drain || metric->distance_function(tree[nearest]->point,end_state) == PRX_INFINITY));
                count_of_failure += attempts-1;  

                //check if the trajectory is valid
                if(!collision_checking || (validity_checker->is_valid(trajectory) && trajectory.size()>1))
                {
                    std::vector<tree_vertex_index_t> X_near;
                    double new_cost = get_vertex(nearest)->cost + prop_length;
                    bool better_node = false;
                    //Check if a node inside the radius_nearest region
                    if(drain)
                    {
                        X_near = neighbors(end_state);
                        foreach(tree_vertex_index_t x_near, X_near)
                        {
                            if(get_vertex(x_near)->cost <= new_cost )
                            {
                                better_node = true;
                            }
                        }
                    }
                    if(!better_node)
                    {      
                        tree_vertex_index_t v = tree.add_vertex<adaptive_sparse_rrt_node_t,adaptive_sparse_rrt_edge_t>();
                        adaptive_sparse_rrt_node_t* node = get_vertex(v);
                        node->point = end_state;

            //            PRX_INFO_S("POINT: "<< state_space->print_point(end_state));
                        point_number++;
                        node->bridge = true;
                        node->cost = get_vertex(nearest)->cost + prop_length;   
                        tree_edge_index_t e = tree.add_edge<adaptive_sparse_rrt_edge_t>(nearest,v);
                        get_edge(e)->plan = plan;            
                        state_space->copy_point(states_to_check[0],end_state);
                        //check if better goal node
                        if(!real_solution && input_query->get_goal()->satisfied(end_state))
                        {
                            best_goal = v;
                            real_solution = true;
                        }
                        else if(real_solution && get_vertex(best_goal)->cost > get_vertex(v)->cost && input_query->get_goal()->satisfied(end_state) )
                        {
                            best_goal = v;
                        }

                        //check if we need to store trajectories for visualization
                        if(collision_checking && visualize_tree)
                        {
                            get_edge(e)->trajectory = trajectory;
                        }
                        else if(!collision_checking && visualize_tree)
                        {
                            if(trajectory.size()==0)
                                local_planner->propagate(get_vertex(nearest)->point,plan,trajectory);
                            get_edge(e)->trajectory = trajectory;
                        }   

                        if(drain)
                        {
                            foreach(tree_vertex_index_t x_near, X_near)
                            {
                                if(!get_vertex(x_near)->bridge )
                                {
                                    metric->remove_point(tree[x_near]);
                                    get_vertex(x_near)->bridge = true;
                                }
                                tree_vertex_index_t iter = x_near;
                                while( is_leaf(iter) && get_vertex(iter)->bridge && !is_best_goal(iter))
                                {
                                    tree_vertex_index_t next = get_vertex(iter)->get_parent();
                                    remove_leaf(iter);
                                    iter = next;
                                }             
                            }
                        }
                        get_vertex(v)->bridge = false;
                        metric->add_point(tree[v]);
                    }