コード例 #1
0
ファイル: Dts_bkp2.cpp プロジェクト: metaheuristics/cgrasp
			*fXAux = fX;
			imprL = true;
			if (debug ==  DEBUG_LEVEL4_){	
				printf("\tLocalMelhorou "); Util::printX(xBestAux,n);  				 	
				printf(" = %lf \n\n", *fXAux);
 			}	
		}

		h /= 2.0;
	}

	Util::copy(x, xBestAux, n);
	return imprL;	
 }*/

 
 // Etapa de exploração do DTS
 bool Dts::explorationSearch(double *x, double *fXAux, double h){
	bool imprL = false;
	double *dir = new double[n];;
	double fAnt, *xAnt = new double[n];;

 	rSTR = h/2.0;
	rTR  = h/4.0;

	*fXAux = func->calc(x);
	//fAnt = *fXAux;
	//Util::copy(xAnt, x, n);
	if (debug ==  DEBUG_LEVEL4_){	
		printf("X ");
		Util::printX(x, n);
		printf(" = %lf \n", *fXAux);
	}
	
void LidarInpaintingHSVTextureVerification(TImage* const originalImage, Mask* const mask,
                                           const unsigned int patchHalfWidth, const unsigned int numberOfKNN,
                                           float slightBlurVariance = 1.0f, unsigned int searchRadius = 1000,
                                           float localRegionSizeMultiplier = 3.0f, float maxAllowedUsedPixelsRatio = 0.5f)
{
  itk::ImageRegion<2> fullRegion = originalImage->GetLargestPossibleRegion();

  // Extract the RGB image
  typedef itk::Image<itk::CovariantVector<float, 3>, 2> RGBImageType;
  std::vector<unsigned int> firstThreeChannels = {0,1,2};
  RGBImageType::Pointer rgbImage = RGBImageType::New();
  ITKHelpers::ExtractChannels(originalImage, firstThreeChannels, rgbImage.GetPointer());

  // Create the HSV image
  typedef itk::Image<itk::CovariantVector<float, 3>, 2> HSVImageType;
  HSVImageType::Pointer hsvImage = HSVImageType::New();
  ITKVTKHelpers::ConvertRGBtoHSV(rgbImage.GetPointer(), hsvImage.GetPointer());

  ITKHelpers::WriteImage(hsvImage.GetPointer(), "HSVImage.mha");

  // Stack the HSV image with the original rest of the channels
  typedef itk::Image<itk::CovariantVector<float, 5>, 2> HSVDxDyImageType;
  HSVDxDyImageType::Pointer hsvDxDyImage = HSVDxDyImageType::New();
  ITKHelpers::DeepCopy(originalImage, hsvDxDyImage.GetPointer());

  ITKHelpers::ReplaceChannels(hsvDxDyImage.GetPointer(), firstThreeChannels, hsvImage.GetPointer());

  // Blur the image for gradient computation stability (Criminisi's data term)
  RGBImageType::Pointer blurredRGBImage = RGBImageType::New();
  float blurVariance = 2.0f;
  MaskOperations::MaskedBlur(rgbImage.GetPointer(), mask, blurVariance, blurredRGBImage.GetPointer());

  ITKHelpers::WriteRGBImage(blurredRGBImage.GetPointer(), "BlurredRGBImage.png");

  // Blur the image slightly so that the SSD comparisons are not so noisy
  typename HSVDxDyImageType::Pointer slightlyBlurredHSVDxDyImage = TImage::New();
  MaskOperations::MaskedBlur(hsvDxDyImage.GetPointer(), mask, slightBlurVariance, slightlyBlurredHSVDxDyImage.GetPointer());

  ITKHelpers::WriteImage(slightlyBlurredHSVDxDyImage.GetPointer(), "SlightlyBlurredHSVDxDyImage.mha");

  // Create the graph
  typedef ImagePatchPixelDescriptor<TImage> ImagePatchPixelDescriptorType;

  typedef boost::grid_graph<2> VertexListGraphType;

  // We can't make this a signed type (size_t versus int) because we allow negative
  boost::array<std::size_t, 2> graphSideLengths = { { fullRegion.GetSize()[0],
                                                      fullRegion.GetSize()[1] } };
  VertexListGraphType graph(graphSideLengths);
  typedef boost::graph_traits<VertexListGraphType>::vertex_descriptor VertexDescriptorType;
  typedef boost::graph_traits<VertexListGraphType>::vertex_iterator VertexIteratorType;

  // Get the index map
  typedef boost::property_map<VertexListGraphType, boost::vertex_index_t>::const_type IndexMapType;
  IndexMapType indexMap(get(boost::vertex_index, graph));

  // Create the descriptor map. This is where the data for each pixel is stored.
  typedef boost::vector_property_map<ImagePatchPixelDescriptorType, IndexMapType> ImagePatchDescriptorMapType;
  ImagePatchDescriptorMapType imagePatchDescriptorMap(num_vertices(graph), indexMap);

  // Create the patch inpainter.
  typedef PatchInpainter<TImage> OriginalImageInpainterType;
  OriginalImageInpainterType originalImagePatchInpainter(patchHalfWidth, originalImage, mask);
  originalImagePatchInpainter.SetDebugImages(true);
  originalImagePatchInpainter.SetImageName("RGB");

  // Create an inpainter for the HSV image.
  typedef PatchInpainter<HSVImageType> HSVImageInpainterType;
  HSVImageInpainterType hsvImagePatchInpainter(patchHalfWidth, hsvImage, mask);

  // Create an inpainter for the RGB image.
  typedef PatchInpainter<RGBImageType> RGBImageInpainterType;
  RGBImageInpainterType rgbImagePatchInpainter(patchHalfWidth, rgbImage, mask);

  // Create an inpainter for the blurred image.
  typedef PatchInpainter<RGBImageType> BlurredImageInpainterType;
  BlurredImageInpainterType blurredRGBImagePatchInpainter(patchHalfWidth, blurredRGBImage, mask);

  // Create an inpainter for the slightly blurred image.
  typedef PatchInpainter<TImage> SlightlyBlurredHSVDxDyImageImageInpainterType;
  SlightlyBlurredHSVDxDyImageImageInpainterType slightlyBlurredHSVDxDyImageImagePatchInpainter(patchHalfWidth, slightlyBlurredHSVDxDyImage, mask);

  // Create a composite inpainter. (Note: the mask is inpainted in InpaintingVisitor::FinishVertex)
  CompositePatchInpainter inpainter;
  inpainter.AddInpainter(&originalImagePatchInpainter);
  inpainter.AddInpainter(&hsvImagePatchInpainter);
  inpainter.AddInpainter(&blurredRGBImagePatchInpainter);
  inpainter.AddInpainter(&slightlyBlurredHSVDxDyImageImagePatchInpainter);
  inpainter.AddInpainter(&rgbImagePatchInpainter);

  // Create the priority function
  typedef PriorityCriminisi<RGBImageType> PriorityType;
  PriorityType priorityFunction(blurredRGBImage, mask, patchHalfWidth);
//  priorityFunction.SetDebugLevel(1);

  // Queue
  typedef IndirectPriorityQueue<VertexListGraphType> BoundaryNodeQueueType;
  BoundaryNodeQueueType boundaryNodeQueue(graph);

  // Create the descriptor visitor (used for SSD comparisons).
  typedef ImagePatchDescriptorVisitor<VertexListGraphType, TImage, ImagePatchDescriptorMapType>
      ImagePatchDescriptorVisitorType;
//  ImagePatchDescriptorVisitorType imagePatchDescriptorVisitor(originalImage, mask,
//                                  imagePatchDescriptorMap, patchHalfWidth); // Use the non-blurred image for the SSD comparisons
  ImagePatchDescriptorVisitorType imagePatchDescriptorVisitor(slightlyBlurredHSVDxDyImage, mask,
                                  imagePatchDescriptorMap, patchHalfWidth); // Use the slightly blurred HSV image for the SSD comparisons. Make sure to use a *HSVSSD difference functor so the H differences are treated appropriately!

  typedef DefaultAcceptanceVisitor<VertexListGraphType> AcceptanceVisitorType;
  AcceptanceVisitorType acceptanceVisitor;

  // Create the inpainting visitor. (The mask is inpainted in FinishVertex)
  typedef InpaintingVisitor<VertexListGraphType, BoundaryNodeQueueType,
      ImagePatchDescriptorVisitorType, AcceptanceVisitorType, PriorityType, TImage>
      InpaintingVisitorType;
  InpaintingVisitorType inpaintingVisitor(mask, boundaryNodeQueue,
                                          imagePatchDescriptorVisitor, acceptanceVisitor,
                                          &priorityFunction, patchHalfWidth, "InpaintingVisitor", originalImage);
  inpaintingVisitor.SetDebugImages(true); // This produces PatchesCopied* images showing where patches were copied from/to at each iteration
//  inpaintingVisitor.SetAllowNewPatches(false);
  inpaintingVisitor.SetAllowNewPatches(true); // we can do this as long as we use one of the LinearSearchKNNProperty*Reuse (like LinearSearchKNNPropertyLimitLocalReuse) in the steps below

  InitializePriority(mask, boundaryNodeQueue, &priorityFunction);

  // Initialize the boundary node queue from the user provided mask image.
  InitializeFromMaskImage<InpaintingVisitorType, VertexDescriptorType>(mask, &inpaintingVisitor);
  std::cout << "PatchBasedInpaintingNonInteractive: There are " << boundaryNodeQueue.CountValidNodes()
            << " nodes in the boundaryNodeQueue" << std::endl;

#define DUseWeightedDifference

#ifdef DUseWeightedDifference
  // The absolute value of the depth derivative range is usually about [0,12], so to make
  // it comparable to to the color image channel range of [0,255], we multiply by 255/12 ~= 20.
//  float depthDerivativeWeight = 20.0f;

  // This should not be computed "by eye" by looking at the Dx and Dy channels of the PTX scan, because there are typically
  // huge depth discontinuties around the objects that are going to be inpainted. We'd have to look at the masked version of this
  // image to determine the min/max values of the unmasked pixels. They will be much smaller than the min/max values of the original
  // image, which will make the depth derivative weights much higher (~100 or so)

//  std::vector<typename TImage::PixelType> channelMins = ITKHelpers::ComputeMinOfAllChannels(originalImage);
//  std::vector<typename TImage::PixelType> channelMaxs = ITKHelpers::ComputeMaxOfAllChannels(originalImage);
  typename TImage::PixelType channelMins;
  ITKHelpers::ComputeMinOfAllChannels(originalImage, channelMins);

  typename TImage::PixelType channelMaxs;
  ITKHelpers::ComputeMaxOfAllChannels(originalImage, channelMaxs);

  float minX = fabs(channelMins[3]);
  float maxX = fabs(channelMaxs[3]);
  float maxValueX = std::max(minX, maxX);
  std::cout << "maxValueX = " << maxValueX << std::endl;
  float depthDerivativeWeightX = 255.0f / maxValueX;
  std::cout << "Computed depthDerivativeWeightX = " << depthDerivativeWeightX << std::endl;

  float minY = fabs(channelMins[4]);
  float maxY = fabs(channelMaxs[4]);
  float maxValueY = std::max(minY, maxY);
  std::cout << "maxValueY = " << maxValueY << std::endl;
  float depthDerivativeWeightY = 255.0f / maxValueY;
  std::cout << "Computed depthDerivativeWeightY = " << depthDerivativeWeightY << std::endl;

  // Use all channels
  std::vector<float> weights = {1.0f, 1.0f, 1.0f, depthDerivativeWeightX, depthDerivativeWeightY};
  //  typedef WeightedSumSquaredPixelDifference<typename TImage::PixelType> PixelDifferenceType;
  typedef WeightedHSVSSDFull<typename TImage::PixelType> FullPixelDifferenceType;
  FullPixelDifferenceType fullPixelDifferenceFunctor(weights);

  typedef ImagePatchDifference<ImagePatchPixelDescriptorType,
      FullPixelDifferenceType > FullPatchDifferenceType;
  FullPatchDifferenceType fullPatchDifferenceFunctor(fullPixelDifferenceFunctor);

  // Use only the first 3 channels
  typedef HSVSSD<typename TImage::PixelType> First3PixelDifferenceType;
  First3PixelDifferenceType first3PixelDifferenceFunctor;

  typedef ImagePatchDifference<ImagePatchPixelDescriptorType,
      First3PixelDifferenceType > First3PatchDifferenceType;
  First3PatchDifferenceType first3PatchDifferenceFunctor(first3PixelDifferenceFunctor);
#else
  // Use an unweighted pixel difference
  typedef ImagePatchDifference<ImagePatchPixelDescriptorType,
      SumSquaredPixelDifference<typename TImage::PixelType> > PatchDifferenceType;

  PatchDifferenceType patchDifferenceFunctor;
#endif

//#define DAllowReuse // comment/uncomment this line to toggle allowing patches to be used as the source patch more than once

#ifdef DAllowReuse
  // Create the first (KNN) neighbor finder
  typedef LinearSearchKNNProperty<ImagePatchDescriptorMapType, PatchDifferenceType> KNNSearchType;
  KNNSearchType linearSearchKNN(imagePatchDescriptorMap, numberOfKNN, patchDifferenceFunctor);
#else

  typedef LinearSearchKNNPropertyLimitLocalReuse<ImagePatchDescriptorMapType, FullPatchDifferenceType, RGBImageType> KNNSearchType;
  KNNSearchType linearSearchKNN(imagePatchDescriptorMap, mask, numberOfKNN, localRegionSizeMultiplier, maxAllowedUsedPixelsRatio,
                                fullPatchDifferenceFunctor, inpaintingVisitor.GetSourcePixelMapImage(),
                                rgbImage.GetPointer());
  linearSearchKNN.SetDebugImages(true);
  linearSearchKNN.SetDebugScreenOutputs(true);
#endif
//#else // This works the best, but is less useful for demonstrations

//  typedef LinearSearchKNNPropertyLimitLocalReuse<ImagePatchDescriptorMapType, FullPatchDifferenceType, RGBImageType> FullPixelKNNSearchType;
//  FullPixelKNNSearchType fullPixelSearchKNN(imagePatchDescriptorMap, mask, numberOfKNN, localRegionSizeMultiplier, maxAllowedUsedPixelsRatio,
//                                fullPatchDifferenceFunctor, inpaintingVisitor.GetSourcePixelMapImage(),
//                                rgbImage.GetPointer());
//  fullPixelSearchKNN.SetDebugImages(true);
//  fullPixelSearchKNN.SetDebugScreenOutputs(true);


//  typedef LinearSearchKNNPropertyLimitLocalReuse<ImagePatchDescriptorMapType, First3PatchDifferenceType, RGBImageType> First3PixelKNNSearchType;
//  First3PixelKNNSearchType first3SearchKNN(imagePatchDescriptorMap, mask, numberOfKNN, localRegionSizeMultiplier, maxAllowedUsedPixelsRatio,
//                                           first3PatchDifferenceFunctor, inpaintingVisitor.GetSourcePixelMapImage(),
//                                           rgbImage.GetPointer());
//  first3SearchKNN.SetDebugScreenOutputs(true);

////  typedef LinearSearchKNNProperty<ImagePatchDescriptorMapType, First3PatchDifferenceType> First3PixelKNNSearchType;
////  First3PixelKNNSearchType first3SearchKNN(imagePatchDescriptorMap, numberOfKNN,
////                                first3PatchDifferenceFunctor);

////  first3SearchKNN.SetDebugImages(true);

//  typedef LinearSearchKNNPropertyCombine<FullPixelKNNSearchType, First3PixelKNNSearchType> KNNSearchType;
//  KNNSearchType linearSearchKNN(fullPixelSearchKNN, first3SearchKNN);
//#endif

  // Setup the second (1-NN) neighbor finder
  typedef std::vector<VertexDescriptorType>::iterator VertexDescriptorVectorIteratorType;

  // This is templated on TImage because we need it to write out debug patches from this searcher (since we are not using an RGB image to compute the histograms)
//  typedef LinearSearchBestTexture<ImagePatchDescriptorMapType, HSVImageType,
//      VertexDescriptorVectorIteratorType, TImage> BestSearchType; // Use the histogram of the gradient magnitudes of a scalar represetnation of the image (e.g. magnitude image)
//  typedef LinearSearchBestLidarTextureDerivatives<ImagePatchDescriptorMapType, HSVImageType,
//      VertexDescriptorVectorIteratorType, TImage> BestSearchType; // Use the concatenated histograms of the absolute value of the derivatives of each channel
//  typedef LinearSearchBestLidarHSVTextureGradient<ImagePatchDescriptorMapType, HSVDxDyImageType,
//      VertexDescriptorVectorIteratorType, RGBImageType> BestSearchType; // Use the concatenated histograms of the gradient magnitudes of each channel. This HSVDxDyImageType must match the hsvDxDyImage provided below
  typedef LinearSearchBestLidarHSVTextureGradientWithSort<ImagePatchDescriptorMapType, HSVDxDyImageType,
      VertexDescriptorVectorIteratorType, RGBImageType> BestSearchType; // Use the concatenated histograms of the gradient magnitudes of each channel. This HSVDxDyImageType must match the hsvDxDyImage provided below. Also sort the patches for demonstrative output purposes.

//  BestSearchType linearSearchBest(imagePatchDescriptorMap, hsvDxDyImage.GetPointer(), mask); // use non-blurred for texture sorting
  Debug bestSearchTypeDebug;
  bestSearchTypeDebug.SetDebugScreenOutputs(true);
//  bestSearchTypeDebug.SetDebugImages(true);
//  linearSearchBest.SetDebugOutputs(true);
//  linearSearchBest.SetDebugImages(true);

   // use slightly blurred for texture sorting
  BestSearchType linearSearchBest(imagePatchDescriptorMap, slightlyBlurredHSVDxDyImage.GetPointer(),
                                  mask, rgbImage.GetPointer(), bestSearchTypeDebug);
//  linearSearchBest.SetDebugImages(false);
  linearSearchBest.SetDebugImages(true); // This produces BestPatch* images showing the list of the top K patches that were passed to the BestSearch functor


  // Setup the two step neighbor finder
  TwoStepNearestNeighbor<KNNSearchType, BestSearchType>
      twoStepNearestNeighbor(linearSearchKNN, linearSearchBest);

  // #define DFullSearch // comment/uncomment this line to set the search region

#ifdef DFullSearch
  // Perform the inpainting (full search)
  InpaintingAlgorithm(graph, inpaintingVisitor, &boundaryNodeQueue,
                      twoStepNearestNeighbor, &inpainter);
#else

  NeighborhoodSearch<VertexDescriptorType, ImagePatchDescriptorMapType> neighborhoodSearch(originalImage->GetLargestPossibleRegion(),
                                                              searchRadius, imagePatchDescriptorMap);

  // Perform the inpainting (local search)
  bool algorithmDebug = true;
  InpaintingAlgorithmWithLocalSearch(graph, inpaintingVisitor, &boundaryNodeQueue,
                                     twoStepNearestNeighbor, &inpainter, neighborhoodSearch, algorithmDebug);
#endif

}
コード例 #3
0
// Run with: Data/trashcan.mha Data/trashcan_mask.mha 15 filled.mha
int main(int argc, char *argv[])
{
  // Verify arguments
  if(argc != 6)
    {
    std::cerr << "Required arguments: image.mha imageMask.mha patchHalfWidth neighborhoodRadius output.mha" << std::endl;
    std::cerr << "Input arguments: ";
    for(int i = 1; i < argc; ++i)
      {
      std::cerr << argv[i] << " ";
      }
    return EXIT_FAILURE;
    }

  // Parse arguments
  std::string imageFileName = argv[1];
  std::string maskFileName = argv[2];

  std::stringstream ssPatchRadius;
  ssPatchRadius << argv[3];
  unsigned int patchHalfWidth = 0;
  ssPatchRadius >> patchHalfWidth;

  // The percent of the image size to use as the neighborhood (0 - 1)
  std::stringstream ssNeighborhoodPercent;
  ssNeighborhoodPercent << argv[4];
  float neighborhoodPercent = 0;
  ssNeighborhoodPercent >> neighborhoodPercent;

  std::string outputFileName = argv[5];

  // Output arguments
  std::cout << "Reading image: " << imageFileName << std::endl;
  std::cout << "Reading mask: " << maskFileName << std::endl;
  std::cout << "Patch half width: " << patchHalfWidth << std::endl;
  std::cout << "Neighborhood percent: " << neighborhoodPercent << std::endl;
  std::cout << "Output: " << outputFileName << std::endl;

  typedef itk::Image<itk::CovariantVector<int, 3>, 2> ImageType;

  typedef  itk::ImageFileReader<ImageType> ImageReaderType;
  ImageReaderType::Pointer imageReader = ImageReaderType::New();
  imageReader->SetFileName(imageFileName);
  imageReader->Update();

  ImageType::Pointer image = ImageType::New();
  ITKHelpers::DeepCopy(imageReader->GetOutput(), image.GetPointer());

  Mask::Pointer mask = Mask::New();
  mask->Read(maskFileName);

  std::cout << "hole pixels: " << mask->CountHolePixels() << std::endl;
  std::cout << "valid pixels: " << mask->CountValidPixels() << std::endl;

  typedef ImagePatchPixelDescriptor<ImageType> ImagePatchPixelDescriptorType;

  // Create the graph
  typedef boost::grid_graph<2> VertexListGraphType;
  boost::array<std::size_t, 2> graphSideLengths = { { imageReader->GetOutput()->GetLargestPossibleRegion().GetSize()[0],
                                                      imageReader->GetOutput()->GetLargestPossibleRegion().GetSize()[1] } };
//  VertexListGraphType graph(graphSideLengths);
  std::shared_ptr<VertexListGraphType> graph(new VertexListGraphType(graphSideLengths));
  typedef boost::graph_traits<VertexListGraphType>::vertex_descriptor VertexDescriptorType;


  //ImagePatchDescriptorMapType smallImagePatchDescriptorMap(num_vertices(graph), indexMap);

  // Create the patch inpainter. The inpainter needs to know the status of each pixel to determine if they should be inpainted.

  typedef PatchInpainter<ImageType> ImageInpainterType;
  std::shared_ptr<ImageInpainterType> imagePatchInpainter(new
      ImageInpainterType(patchHalfWidth, image, mask));

  // Create the priority function
   typedef PriorityRandom PriorityType;
   std::shared_ptr<PriorityType> priorityFunction(new PriorityType);
//  typedef PriorityCriminisi<ImageType> PriorityType;
//  std::shared_ptr<PriorityType> priorityFunction(new PriorityType(image, mask, patchHalfWidth));

  typedef IndirectPriorityQueue<VertexListGraphType> BoundaryNodeQueueType;
  std::shared_ptr<BoundaryNodeQueueType> boundaryNodeQueue(new BoundaryNodeQueueType(*graph));

  // Create the descriptor map. This is where the data for each pixel is stored.
  typedef boost::vector_property_map<ImagePatchPixelDescriptorType, BoundaryNodeQueueType::IndexMapType> ImagePatchDescriptorMapType;
//  ImagePatchDescriptorMapType imagePatchDescriptorMap(num_vertices(graph), indexMap);
  std::shared_ptr<ImagePatchDescriptorMapType> imagePatchDescriptorMap(new
      ImagePatchDescriptorMapType(num_vertices(*graph), *(boundaryNodeQueue->GetIndexMap())));

  // Create the descriptor visitor
  typedef ImagePatchDescriptorVisitor<VertexListGraphType, ImageType, ImagePatchDescriptorMapType>
          ImagePatchDescriptorVisitorType;
//  ImagePatchDescriptorVisitorType imagePatchDescriptorVisitor(image, mask, imagePatchDescriptorMap, patchHalfWidth);
  std::shared_ptr<ImagePatchDescriptorVisitorType> imagePatchDescriptorVisitor(new
      ImagePatchDescriptorVisitorType(image.GetPointer(), mask,
                                      imagePatchDescriptorMap, patchHalfWidth));
/*   ImagePatchDescriptorVisitor(TImage* const in_image, Mask* const in_mask,
  std::shared_ptr<TDescriptorMap> in_descriptorMap,
  const unsigned int in_half_width) : */
  typedef ImagePatchDifference<ImagePatchPixelDescriptorType, SumAbsolutePixelDifference<ImageType::PixelType> >
            ImagePatchDifferenceType;

//  typedef CompositeDescriptorVisitor<VertexListGraphType> CompositeDescriptorVisitorType;
//  CompositeDescriptorVisitorType compositeDescriptorVisitor;
//  compositeDescriptorVisitor.AddVisitor(imagePatchDescriptorVisitor);

  // Create the descriptor visitor


//  typedef CompositeAcceptanceVisitor<VertexListGraphType> CompositeAcceptanceVisitorType;
//  CompositeAcceptanceVisitorType compositeAcceptanceVisitor;

  typedef DefaultAcceptanceVisitor<VertexListGraphType> AcceptanceVisitorType;
  std::shared_ptr<AcceptanceVisitorType> acceptanceVisitor(new AcceptanceVisitorType);

//  typedef AlwaysAccept<VertexListGraphType> AcceptanceVisitorType;
//  AcceptanceVisitorType acceptanceVisitor;



  // If the hole is less than 15% of the patch, always accept the initial best match
//  HoleSizeAcceptanceVisitor<VertexListGraphType> holeSizeAcceptanceVisitor(mask, patchHalfWidth, .15);
//  compositeAcceptanceVisitor.AddOverrideVisitor(&holeSizeAcceptanceVisitor);

//  AllQuadrantHistogramCompareAcceptanceVisitor<VertexListGraphType, ImageType>
//               allQuadrantHistogramCompareAcceptanceVisitor(image, mask, patchHalfWidth, 8.0f); // Crazy low
//  compositeAcceptanceVisitor.AddRequiredPassVisitor(&allQuadrantHistogramCompareAcceptanceVisitor);

//  template <typename TGraph, typename TBoundaryNodeQueue,
//            typename TDescriptorVisitor, typename TAcceptanceVisitor, typename TPriority>

  typedef InpaintingVisitor<VertexListGraphType, BoundaryNodeQueueType,
                            ImagePatchDescriptorVisitorType, AcceptanceVisitorType, PriorityType>
                            InpaintingVisitorType;
  std::shared_ptr<InpaintingVisitorType> inpaintingVisitor(new InpaintingVisitorType(mask, boundaryNodeQueue,
                                                                                     imagePatchDescriptorVisitor, acceptanceVisitor,
                                                                                     priorityFunction, patchHalfWidth, "InpaintingVisitor"));

//  typedef InpaintingVisitor<VertexListGraphType, BoundaryNodeQueueType,
//                            ImagePatchDescriptorVisitorType, AcceptanceVisitorType, PriorityType>
//                            InpaintingVisitorType;
//  std::shared_ptr<InpaintingVisitorType> inpaintingVisitor(new InpaintingVisitorType(mask, boundaryNodeQueue,
//                                          imagePatchDescriptorVisitor, acceptanceVisitor,
//                                          priorityFunction, patchHalfWidth, "InpaintingVisitor"));

//  typedef DebugVisitor<VertexListGraphType, ImageType, BoundaryStatusMapType, BoundaryNodeQueueType> DebugVisitorType;
//  DebugVisitorType debugVisitor(image, mask, patchHalfWidth, boundaryStatusMap, boundaryNodeQueue);

  LoggerVisitor<VertexListGraphType> loggerVisitor("log.txt");

  InitializePriority(mask, boundaryNodeQueue.get(), priorityFunction.get());
  // Initialize the boundary node queue from the user provided mask image.
  InitializeFromMaskImage<InpaintingVisitorType, VertexDescriptorType>(mask, inpaintingVisitor.get());

  // For debugging we use LinearSearchBestProperty instead of DefaultSearchBest because it can output the difference value.
  typedef LinearSearchBestProperty<ImagePatchDescriptorMapType,
                                   ImagePatchDifferenceType > BestSearchType;
  std::shared_ptr<BestSearchType> linearSearchBest(new BestSearchType(*imagePatchDescriptorMap));

  typedef NeighborhoodSearch<VertexDescriptorType, ImagePatchDescriptorMapType> NeighborhoodSearchType;
  NeighborhoodSearchType neighborhoodSearch(image->GetLargestPossibleRegion(), image->GetLargestPossibleRegion().GetSize()[0] * neighborhoodPercent, *imagePatchDescriptorMap);
  
  InpaintingAlgorithmWithLocalSearch<VertexListGraphType, InpaintingVisitorType,
                      BoundaryNodeQueueType, NeighborhoodSearchType,
                      ImageInpainterType, BestSearchType>(graph, inpaintingVisitor, boundaryNodeQueue,
                      linearSearchBest, imagePatchInpainter, neighborhoodSearch);

  // If the output filename is a png file, then use the RGBImage writer so that it is first
  // casted to unsigned char. Otherwise, write the file directly.
  if(Helpers::GetFileExtension(outputFileName) == "png")
  {
    ITKHelpers::WriteRGBImage(image.GetPointer(), outputFileName);
  }
  else
  {
    ITKHelpers::WriteImage(image.GetPointer(), outputFileName);
  }

  return EXIT_SUCCESS;
}
コード例 #4
0
// Run with: Data/trashcan.mha Data/trashcan_mask.mha 15 filled.mha
int main(int argc, char *argv[])
{
  // Verify arguments
  if(argc != 5)
    {
    std::cerr << "Required arguments: image.mha imageMask.mha patchHalfWidth output.mha" << std::endl;
    std::cerr << "Input arguments: ";
    for(int i = 1; i < argc; ++i)
      {
      std::cerr << argv[i] << " ";
      }
    return EXIT_FAILURE;
    }

  // Setup the GUI system
  QApplication app( argc, argv );

  // Parse arguments
  std::string imageFilename = argv[1];
  std::string maskFilename = argv[2];

  std::stringstream ssPatchRadius;
  ssPatchRadius << argv[3];
  unsigned int patchHalfWidth = 0;
  ssPatchRadius >> patchHalfWidth;

  std::string outputFilename = argv[4];

  // Output arguments
  std::cout << "Reading image: " << imageFilename << std::endl;
  std::cout << "Reading mask: " << maskFilename << std::endl;
  std::cout << "Patch half width: " << patchHalfWidth << std::endl;
  std::cout << "Output: " << outputFilename << std::endl;

  typedef FloatVectorImageType ImageType;

  typedef  itk::ImageFileReader<ImageType> ImageReaderType;
  ImageReaderType::Pointer imageReader = ImageReaderType::New();
  imageReader->SetFileName(imageFilename);
  imageReader->Update();

  ImageType* image = imageReader->GetOutput();
  itk::ImageRegion<2> fullRegion = imageReader->GetOutput()->GetLargestPossibleRegion();

  Mask::Pointer mask = Mask::New();
  mask->Read(maskFilename);

  std::cout << "hole pixels: " << mask->CountHolePixels() << std::endl;
  std::cout << "valid pixels: " << mask->CountValidPixels() << std::endl;

  std::cout << "image has " << image->GetNumberOfComponentsPerPixel() << " components." << std::endl;

  typedef ImagePatchPixelDescriptor<ImageType> ImagePatchPixelDescriptorType;

  // Create the graph
  typedef boost::grid_graph<2> VertexListGraphType;
  boost::array<std::size_t, 2> graphSideLengths = { { fullRegion.GetSize()[0],
                                                      fullRegion.GetSize()[1] } };
  VertexListGraphType graph(graphSideLengths);
  typedef boost::graph_traits<VertexListGraphType>::vertex_descriptor VertexDescriptorType;

  // Get the index map
  typedef boost::property_map<VertexListGraphType, boost::vertex_index_t>::const_type IndexMapType;
  IndexMapType indexMap(get(boost::vertex_index, graph));

  // Create the priority map
  typedef boost::vector_property_map<float, IndexMapType> PriorityMapType;
  PriorityMapType priorityMap(num_vertices(graph), indexMap);

  // Create the boundary status map. A node is on the current boundary if this property is true.
  // This property helps the boundaryNodeQueue because we can mark here if a node has become no longer
  // part of the boundary, so when the queue is popped we can check this property to see if it should
  // actually be processed.
  typedef boost::vector_property_map<bool, IndexMapType> BoundaryStatusMapType;
  BoundaryStatusMapType boundaryStatusMap(num_vertices(graph), indexMap);

  // Create the descriptor map. This is where the data for each pixel is stored.
  typedef boost::vector_property_map<ImagePatchPixelDescriptorType, IndexMapType> ImagePatchDescriptorMapType;
  ImagePatchDescriptorMapType imagePatchDescriptorMap(num_vertices(graph), indexMap);

  //ImagePatchDescriptorMapType smallImagePatchDescriptorMap(num_vertices(graph), indexMap);

  // Create the patch inpainter. The inpainter needs to know the status of each
  // pixel to determine if they should be inpainted.
  typedef MaskImagePatchInpainter InpainterType;
  MaskImagePatchInpainter patchInpainter(patchHalfWidth, mask);

  // Create the priority function
//   typedef PriorityRandom PriorityType;
//   PriorityType priorityFunction;
  typedef PriorityOnionPeel PriorityType;
  PriorityType priorityFunction(mask, patchHalfWidth);

  // Create the boundary node queue. The priority of each node is used to order the queue.
  typedef boost::vector_property_map<std::size_t, IndexMapType> IndexInHeapMap;
  IndexInHeapMap index_in_heap(indexMap);

  // Create the priority compare functor (we want the highest priority nodes to be first in the queue)
  typedef std::greater<float> PriorityCompareType;
  PriorityCompareType lessThanFunctor;

  typedef boost::d_ary_heap_indirect<VertexDescriptorType, 4, IndexInHeapMap, PriorityMapType, PriorityCompareType>
                                    BoundaryNodeQueueType;
  BoundaryNodeQueueType boundaryNodeQueue(priorityMap, index_in_heap, lessThanFunctor);

  // Create the descriptor visitor
  typedef ImagePatchDescriptorVisitor<VertexListGraphType, ImageType, ImagePatchDescriptorMapType>
          ImagePatchDescriptorVisitorType;
  ImagePatchDescriptorVisitorType imagePatchDescriptorVisitor(image, mask, imagePatchDescriptorMap, patchHalfWidth);
  //ImagePatchDescriptorVisitorType imagePatchDescriptorVisitor(cielabImage,
  //                                                            mask, imagePatchDescriptorMap, patchHalfWidth);

  typedef ImagePatchDifference<ImagePatchPixelDescriptorType, SumAbsolutePixelDifference<ImageType::PixelType> >
            ImagePatchDifferenceType;
  ImagePatchDifferenceType imagePatchDifferenceFunction;

//   typedef WeightedSumAbsolutePixelDifference<ImageType::PixelType> PixelDifferenceFunctorType;
//   PixelDifferenceFunctorType pixelDifferenceFunctor;
//   std::vector<float> weights;
//   weights.push_back(1.0f);
//   weights.push_back(1.0f);
//   weights.push_back(1.0f);
//   float gradientWeight = 500.0f;
//   weights.push_back(gradientWeight);
//   weights.push_back(gradientWeight);
//   pixelDifferenceFunctor.Weights = weights;
//   std::cout << "Weights: ";
//   OutputHelpers::OutputVector(pixelDifferenceFunctor.Weights);

//   typedef ImagePatchDifference<ImagePatchPixelDescriptorType, PixelDifferenceFunctorType >
//           ImagePatchDifferenceType;
// 
//   ImagePatchDifferenceType imagePatchDifferenceFunction(pixelDifferenceFunctor);

  typedef CompositeDescriptorVisitor<VertexListGraphType> CompositeDescriptorVisitorType;
  CompositeDescriptorVisitorType compositeDescriptorVisitor;
  compositeDescriptorVisitor.AddVisitor(&imagePatchDescriptorVisitor);

  typedef CompositeAcceptanceVisitor<VertexListGraphType> CompositeAcceptanceVisitorType;
  CompositeAcceptanceVisitorType compositeAcceptanceVisitor;

  typedef InpaintingVisitor<VertexListGraphType, ImageType, BoundaryNodeQueueType,
                            CompositeDescriptorVisitorType, CompositeAcceptanceVisitorType, PriorityType,
                            PriorityMapType, BoundaryStatusMapType>
                            InpaintingVisitorType;
  InpaintingVisitorType inpaintingVisitor(image, mask, boundaryNodeQueue,
                                          compositeDescriptorVisitor, compositeAcceptanceVisitor, priorityMap,
                                          &priorityFunction, patchHalfWidth,
                                          boundaryStatusMap, outputFilename);

  typedef DisplayVisitor<VertexListGraphType, ImageType> DisplayVisitorType;
  DisplayVisitorType displayVisitor(image, mask, patchHalfWidth);

  typedef DebugVisitor<VertexListGraphType, ImageType, BoundaryStatusMapType, BoundaryNodeQueueType>
          DebugVisitorType;
  DebugVisitorType debugVisitor(image, mask, patchHalfWidth, boundaryStatusMap, boundaryNodeQueue);

  LoggerVisitor<VertexListGraphType> loggerVisitor("log.txt");

  PaintPatchVisitor<VertexListGraphType, ImageType> inpaintRGBVisitor(image,
                                                                      mask.GetPointer(), patchHalfWidth);

  typedef CompositeInpaintingVisitor<VertexListGraphType> CompositeInpaintingVisitorType;
  CompositeInpaintingVisitorType compositeInpaintingVisitor;
  compositeInpaintingVisitor.AddVisitor(&inpaintingVisitor);
  //compositeInpaintingVisitor.AddVisitor(&inpaintRGBVisitor);
  compositeInpaintingVisitor.AddVisitor(&displayVisitor);
  compositeInpaintingVisitor.AddVisitor(&debugVisitor);
  //compositeInpaintingVisitor.AddVisitor(&loggerVisitor);

  InitializePriority(mask, boundaryNodeQueue, priorityMap, &priorityFunction, boundaryStatusMap);

  // Initialize the boundary node queue from the user provided mask image.
  InitializeFromMaskImage<CompositeInpaintingVisitorType, VertexDescriptorType>(mask, &compositeInpaintingVisitor);

  // Create the nearest neighbor finders
  typedef LinearSearchKNNProperty<ImagePatchDescriptorMapType,
                                  ImagePatchDifferenceType > KNNSearchType;
  KNNSearchType knnSearch(imagePatchDescriptorMap, 50000, 1, imagePatchDifferenceFunction);

  // For debugging we use LinearSearchBestProperty instead of DefaultSearchBest
  // because it can output the difference value.
  typedef LinearSearchBestProperty<ImagePatchDescriptorMapType,
                                   ImagePatchDifferenceType > BestSearchType;
  BestSearchType bestSearch(imagePatchDescriptorMap, imagePatchDifferenceFunction);

  BasicViewerWidget<ImageType> basicViewerWidget(image, mask);
  basicViewerWidget.show();
  
  // These connections are Qt::BlockingQueuedConnection because the algorithm quickly
  // goes on to fill the hole, and since we are sharing the image memory, we want to make sure these things are
  // refreshed at the right time, not after the hole has already been filled
  // (this actually happens, it is not just a theoretical thing).
  QObject::connect(&displayVisitor, SIGNAL(signal_RefreshImage()), &basicViewerWidget, SLOT(slot_UpdateImage()),
                   Qt::BlockingQueuedConnection);
  QObject::connect(&displayVisitor, SIGNAL(signal_RefreshSource(const itk::ImageRegion<2>&,
                                                                const itk::ImageRegion<2>&)),
                   &basicViewerWidget, SLOT(slot_UpdateSource(const itk::ImageRegion<2>&,
                                                              const itk::ImageRegion<2>&)),
                   Qt::BlockingQueuedConnection);
  QObject::connect(&displayVisitor, SIGNAL(signal_RefreshTarget(const itk::ImageRegion<2>&)),
                   &basicViewerWidget, SLOT(slot_UpdateTarget(const itk::ImageRegion<2>&)),
                   Qt::BlockingQueuedConnection);
  QObject::connect(&displayVisitor, SIGNAL(signal_RefreshResult(const itk::ImageRegion<2>&,
                                                                const itk::ImageRegion<2>&)),
                   &basicViewerWidget, SLOT(slot_UpdateResult(const itk::ImageRegion<2>&,
                                                              const itk::ImageRegion<2>&)),
                   Qt::BlockingQueuedConnection);

//   TopPatchesDialog<ImageType> topPatchesDialog(image, mask, patchHalfWidth, &basicViewerWidget);
//   typedef VisualSelectionBest<ImageType> ManualSearchType;
//   ManualSearchType manualSearchBest(image, mask, patchHalfWidth, &topPatchesDialog);

  typedef DefaultSearchBest ManualSearchType;
  DefaultSearchBest manualSearchBest;
  
  // By specifying the radius as the image size/8, we are searching up to 1/4 of the image each time
  typedef NeighborhoodSearch<VertexDescriptorType> NeighborhoodSearchType;
  NeighborhoodSearchType neighborhoodSearch(fullRegion, fullRegion.GetSize()[0]/8);

  // Run the remaining inpainting
  QtConcurrent::run(boost::bind(InpaintingAlgorithmWithLocalSearch<
                                VertexListGraphType, CompositeInpaintingVisitorType, BoundaryStatusMapType,
                                BoundaryNodeQueueType, NeighborhoodSearchType, KNNSearchType, BestSearchType,
                                ManualSearchType, InpainterType>,
                                graph, compositeInpaintingVisitor, &boundaryStatusMap, &boundaryNodeQueue,
                                neighborhoodSearch, knnSearch, bestSearch, boost::ref(manualSearchBest),
                                patchInpainter));

  return app.exec();
}
コード例 #5
0
void ClassicalImageInpainting(typename itk::SmartPointer<TImage> originalImage, Mask* const mask,
                              const unsigned int patchHalfWidth)
{
  itk::ImageRegion<2> fullRegion = originalImage->GetLargestPossibleRegion();

  // Blur the image
  typedef TImage BlurredImageType; // Usually the blurred image is the same type as the original image.
  typename BlurredImageType::Pointer blurredImage = BlurredImageType::New();
  float blurVariance = 2.0f;
  MaskOperations::MaskedBlur(originalImage.GetPointer(), mask, blurVariance, blurredImage.GetPointer());

//  ITKHelpers::WriteRGBImage(blurredImage.GetPointer(), "BlurredImage.png");

  typedef ImagePatchPixelDescriptor<TImage> ImagePatchPixelDescriptorType;

  // Create the graph
  typedef boost::grid_graph<2> VertexListGraphType;
  boost::array<std::size_t, 2> graphSideLengths = { { fullRegion.GetSize()[0],
                                                      fullRegion.GetSize()[1] } };
  std::shared_ptr<VertexListGraphType> graph(new VertexListGraphType(graphSideLengths));
  typedef boost::graph_traits<VertexListGraphType>::vertex_descriptor VertexDescriptorType;
  typedef boost::graph_traits<VertexListGraphType>::vertex_iterator VertexIteratorType;

  // Queue
  typedef IndirectPriorityQueue<VertexListGraphType> BoundaryNodeQueueType;
  std::shared_ptr<BoundaryNodeQueueType> boundaryNodeQueue(new BoundaryNodeQueueType(*graph));

  // Create the descriptor map. This is where the data for each pixel is stored.
  typedef boost::vector_property_map<ImagePatchPixelDescriptorType,
      BoundaryNodeQueueType::IndexMapType> ImagePatchDescriptorMapType;
  std::shared_ptr<ImagePatchDescriptorMapType> imagePatchDescriptorMap(new
      ImagePatchDescriptorMapType(num_vertices(*graph), *(boundaryNodeQueue->GetIndexMap())));

  // Create the patch inpainter.
  typedef PatchInpainter<TImage> OriginalImageInpainterType;
  std::shared_ptr<OriginalImageInpainterType> originalImagePatchInpainter(new
      OriginalImageInpainterType(patchHalfWidth, originalImage, mask));
  // Show the inpainted image at each iteration
//  originalImagePatchInpainter.SetDebugImages(true);
//  originalImagePatchInpainter.SetImageName("RGB");

  // Create an inpainter for the blurred image.
  typedef PatchInpainter<BlurredImageType> BlurredImageInpainterType;
  std::shared_ptr<BlurredImageInpainterType> blurredImagePatchInpainter(new
     BlurredImageInpainterType(patchHalfWidth, blurredImage, mask));

  // Create a composite inpainter.
  std::shared_ptr<CompositePatchInpainter> inpainter(new CompositePatchInpainter);
  inpainter->AddInpainter(originalImagePatchInpainter);
  inpainter->AddInpainter(blurredImagePatchInpainter);

  // Create the priority function
  typedef PriorityCriminisi<BlurredImageType> PriorityType;
  std::shared_ptr<PriorityType> priorityFunction(new PriorityType(blurredImage, mask, patchHalfWidth));

  // Create the descriptor visitor
  typedef ImagePatchDescriptorVisitor<VertexListGraphType, TImage, ImagePatchDescriptorMapType>
      ImagePatchDescriptorVisitorType;
  std::shared_ptr<ImagePatchDescriptorVisitorType> imagePatchDescriptorVisitor(new
      ImagePatchDescriptorVisitorType(originalImage.GetPointer(), mask,
                                      imagePatchDescriptorMap, patchHalfWidth));

  typedef DefaultAcceptanceVisitor<VertexListGraphType> AcceptanceVisitorType;
  std::shared_ptr<AcceptanceVisitorType> acceptanceVisitor(new AcceptanceVisitorType);

  // Create the inpainting visitor
  typedef InpaintingVisitor<VertexListGraphType, BoundaryNodeQueueType,
                            ImagePatchDescriptorVisitorType, AcceptanceVisitorType, PriorityType>
                            InpaintingVisitorType;
  std::shared_ptr<InpaintingVisitorType> inpaintingVisitor(new InpaintingVisitorType(mask, boundaryNodeQueue,
                                          imagePatchDescriptorVisitor, acceptanceVisitor,
                                          priorityFunction, patchHalfWidth, "InpaintingVisitor"));
  inpaintingVisitor->SetAllowNewPatches(false);
//  inpaintingVisitor.SetDebugImages(true); // Write PatchesCopied images that show the source and target patch at each iteration

  InitializePriority(mask, boundaryNodeQueue.get(), priorityFunction.get());

  // Initialize the boundary node queue from the user provided mask image.
  InitializeFromMaskImage<InpaintingVisitorType, VertexDescriptorType>(mask, inpaintingVisitor.get());

  // Create the nearest neighbor finder
  typedef ImagePatchDifference<ImagePatchPixelDescriptorType,
      SumSquaredPixelDifference<typename TImage::PixelType> > PatchDifferenceType;

  // Create the best patch searcher
  typedef LinearSearchBestProperty<ImagePatchDescriptorMapType,
                                   PatchDifferenceType> BestSearchType;
  std::shared_ptr<BestSearchType> linearSearchBest(new BestSearchType(*imagePatchDescriptorMap));

  // By specifying the radius as the image size/8, we are searching up to 1/4 of the image each time
  typedef NeighborhoodSearch<VertexDescriptorType, ImagePatchDescriptorMapType> NeighborhoodSearchType;
  NeighborhoodSearchType neighborhoodSearch(fullRegion, fullRegion.GetSize()[0]/8, *imagePatchDescriptorMap);

  // Perform the inpainting
  InpaintingAlgorithmWithLocalSearch<VertexListGraphType, InpaintingVisitorType,
                      BoundaryNodeQueueType, NeighborhoodSearchType,
                      CompositePatchInpainter, BestSearchType>(graph, inpaintingVisitor, boundaryNodeQueue,
                      linearSearchBest, inpainter, neighborhoodSearch);

  /*template <typename TVertexListGraph, typename TInpaintingVisitor,
            typename TPriorityQueue, typename TSearchRegion,
            typename TPatchInpainter, typename TBestPatchFinder>
   InpaintingAlgorithmWithLocalSearch(TVertexListGraph& graph,
                                     TInpaintingVisitor visitor,
                                     TPriorityQueue* boundaryNodeQueue,
                                     TBestPatchFinder bestPatchFinder,
                                     TPatchInpainter* patchInpainter,
                                     TSearchRegion& searchRegion) */
}