int main(void) { int i; flint_rand_t state; flint_randinit(state); printf("init/clear...."); fflush(stdout); for (i = 0; i < 10000; i++) { nmod_poly_mat_t a; mp_limb_t mod; long j, k; long rows = n_randint(state, 100); long cols = n_randint(state, 100); mod = n_randtest_prime(state, 0); nmod_poly_mat_init(a, rows, cols, mod); for (j = 0; j < rows; j++) for (k = 0; k < cols; k++) nmod_poly_zero(nmod_poly_mat_entry(a, j, k)); nmod_poly_mat_clear(a); } flint_randclear(state); printf("PASS\n"); return 0; }
void nmod_poly_factor_set(nmod_poly_factor_t res, const nmod_poly_factor_t fac) { if (res != fac) { if (fac->num == 0) { nmod_poly_factor_clear(res); nmod_poly_factor_init(res); } else { slong i; nmod_poly_factor_fit_length(res, fac->num); for (i = 0; i < fac->num; i++) { nmod_poly_set(res->p + i, fac->p + i); (res->p + i)->mod = (fac->p + i)->mod; res->exp[i] = fac->exp[i]; } for ( ; i < res->num; i++) { nmod_poly_zero(res->p + i); res->exp[i] = 0; } res->num = fac->num; } } }
void nmod_poly_cosh_series(nmod_poly_t g, const nmod_poly_t h, long n) { mp_ptr g_coeffs, h_coeffs; nmod_poly_t t1; long h_len; h_len = h->length; if (h_len > 0 && h->coeffs[0] != 0UL) { printf("Exception: nmod_poly_cosh_series: constant term != 0\n"); abort(); } if (h_len == 1 || n < 2) { nmod_poly_zero(g); if (n > 0) nmod_poly_set_coeff_ui(g, 0, 1UL); return; } if (h_len < n) { h_coeffs = _nmod_vec_init(n); mpn_copyi(h_coeffs, h->coeffs, h_len); mpn_zero(h_coeffs + h_len, n - h_len); } else h_coeffs = h->coeffs; if (h == g && h_len >= n) { nmod_poly_init2(t1, h->mod.n, n); g_coeffs = t1->coeffs; } else { nmod_poly_fit_length(g, n); g_coeffs = g->coeffs; } _nmod_poly_cosh_series(g_coeffs, h_coeffs, n, h->mod); if (h == g && h_len >= n) { nmod_poly_swap(g, t1); nmod_poly_clear(t1); } g->length = n; if (h_len < n) _nmod_vec_free(h_coeffs); _nmod_poly_normalise(g); }
void nmod_poly_divrem_newton(nmod_poly_t Q, nmod_poly_t R, const nmod_poly_t A, const nmod_poly_t B) { const long lenA = A->length, lenB = B->length; mp_ptr q, r; if (lenB == 0) { printf("Exception: division by zero in nmod_poly_divrem_newton\n"); abort(); } if (lenA < lenB) { nmod_poly_set(R, A); nmod_poly_zero(Q); return; } if (Q == A || Q == B) { q = _nmod_vec_init(lenA - lenB + 1); } else { nmod_poly_fit_length(Q, lenA - lenB + 1); q = Q->coeffs; } if (R == A || R == B) { r = _nmod_vec_init(lenB - 1); } else { nmod_poly_fit_length(R, lenB - 1); r = R->coeffs; } _nmod_poly_divrem_newton(q, r, A->coeffs, lenA, B->coeffs, lenB, B->mod); if (Q == A || Q == B) { _nmod_vec_clear(Q->coeffs); Q->coeffs = q; Q->alloc = lenA - lenB + 1; } if (R == A || R == B) { _nmod_vec_clear(R->coeffs); R->coeffs = r; R->alloc = lenB - 1; } Q->length = lenA - lenB + 1; R->length = lenB - 1; _nmod_poly_normalise(R); }
int pq_nmod_inv(pq_nmod_elt_t res, const pq_nmod_elt_t x, const pq_nmod_t A) { _pq_nmod_insure_mono(x, A); if (nmod_poly_invmod(res->mono, x->mono, A->M)) { nmod_poly_zero(res->dual); return 1; } else { return 0; } }
void nmod_poly_compose_series_horner(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, long n) { long len1 = poly1->length; long len2 = poly2->length; long lenr; if (len2 != 0 && poly2->coeffs[0] != 0) { printf("exception: nmod_poly_compose_series_horner: inner polynomial " "must have zero constant term\n"); abort(); } if (len1 == 0 || n == 0) { nmod_poly_zero(res); return; } if (len2 == 0 || len1 == 1) { nmod_poly_fit_length(res, 1); res->coeffs[0] = poly1->coeffs[0]; res->length = 1; _nmod_poly_normalise(res); return; } lenr = FLINT_MIN((len1 - 1) * (len2 - 1) + 1, n); len1 = FLINT_MIN(len1, lenr); len2 = FLINT_MIN(len2, lenr); if ((res != poly1) && (res != poly2)) { nmod_poly_fit_length(res, lenr); _nmod_poly_compose_series_horner(res->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, lenr, res->mod); res->length = lenr; _nmod_poly_normalise(res); } else { nmod_poly_t t; nmod_poly_init2_preinv(t, res->mod.n, res->mod.ninv, lenr); _nmod_poly_compose_series_horner(t->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, lenr, res->mod); t->length = lenr; _nmod_poly_normalise(t); nmod_poly_swap(res, t); nmod_poly_clear(t); } }
void nmod_poly_div_basecase(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B) { mp_ptr Q_coeffs, W; nmod_poly_t t1; long Alen, Blen; Blen = B->length; if (Blen == 0) { printf("Exception: division by zero in nmod_poly_div_basecase\n"); abort(); } Alen = A->length; if (Alen < Blen) { nmod_poly_zero(Q); return; } if (Q == A || Q == B) { nmod_poly_init2_preinv(t1, B->mod.n, B->mod.ninv, Alen - Blen + 1); Q_coeffs = t1->coeffs; } else { nmod_poly_fit_length(Q, Alen - Blen + 1); Q_coeffs = Q->coeffs; } W = _nmod_vec_init(NMOD_DIV_BC_ITCH(Alen, Blen, A->mod)); _nmod_poly_div_basecase(Q_coeffs, W, A->coeffs, Alen, B->coeffs, Blen, B->mod); if (Q == A || Q == B) { nmod_poly_swap(Q, t1); nmod_poly_clear(t1); } Q->length = Alen - Blen + 1; _nmod_vec_clear(W); _nmod_poly_normalise(Q); }
void embeddings_isomorphism(nmod_poly_t G, mp_srcptr F, const embeddings_t FP, const embeddings_t FQ, const embeddings_t FR){ long m = nmod_poly_degree(FP->P); long n = nmod_poly_degree(FQ->P); long i; nmod_poly_t tmpF, tmpG, S, X; nmod_t mod = FP->P->mod; nmod_poly_init(tmpF, mod.n); nmod_poly_init(tmpG, mod.n); nmod_poly_init(S, mod.n); nmod_poly_init(X, mod.n); nmod_poly_zero(G); nmod_poly_zero(X); nmod_poly_set_coeff_ui(X, 1, 1); embeddings_embed(S, X, FP, FQ, FR); for (i = m-1; i >= 0; i--){ nmod_poly_fit_length(tmpF, n); long j; long offset = i*n; for (j = 0; j < n; j++) tmpF->coeffs[j] = F[offset+j]; tmpF->length = n; _nmod_poly_normalise(tmpF); embeddings_embed(tmpG, tmpF, FQ, FP, FR); nmod_poly_mulmod(G, G, S, FR->P); nmod_poly_add(G, G, tmpG); } nmod_poly_clear(tmpF); nmod_poly_clear(tmpG); nmod_poly_clear(X); nmod_poly_clear(S); }
void nmod_poly_pow(nmod_poly_t res, const nmod_poly_t poly, ulong e) { const slong len = poly->length; slong rlen; if ((len < 2) | (e < UWORD(3))) { if (len == 0) nmod_poly_zero(res); else if (len == 1) { nmod_poly_fit_length(res, 1); res->coeffs[0] = n_powmod2_ui_preinv(poly->coeffs[0], e, poly->mod.n, poly->mod.ninv); res->length = 1; _nmod_poly_normalise(res); } else if (e == UWORD(0)) { nmod_poly_set_coeff_ui(res, 0, UWORD(1)); res->length = 1; _nmod_poly_normalise(res); } else if (e == UWORD(1)) nmod_poly_set(res, poly); else /* e == UWORD(2) */ nmod_poly_mul(res, poly, poly); return; } rlen = (slong) e * (len - 1) + 1; if (res != poly) { nmod_poly_fit_length(res, rlen); _nmod_poly_pow(res->coeffs, poly->coeffs, len, e, poly->mod); } else { nmod_poly_t t; nmod_poly_init2(t, poly->mod.n, rlen); _nmod_poly_pow(t->coeffs, poly->coeffs, len, e, poly->mod); nmod_poly_swap(res, t); nmod_poly_clear(t); } res->length = rlen; _nmod_poly_normalise(res); }
void pq_nmod_mul(pq_nmod_elt_t res, const pq_nmod_elt_t x, const pq_nmod_elt_t y, const pq_nmod_t A) { switch (nmod_poly_is_zero(y->mono) | (nmod_poly_is_zero(y->dual) << 1) | (nmod_poly_is_zero(x->mono) << 4) | (nmod_poly_is_zero(x->dual) << 5)) { const pq_nmod_elt_struct* tmp; case 0x22: // Both have only dual -> add mono to x _pq_nmod_insure_mono(x, A); case 0x12: case 0x32: // x has mono, y has dual -> swap them tmp = x; x = y; y = tmp; case 0x21: case 0x23: // y has mono, x has dual nmod_poly_fit_length(res->dual, A->degree); nmod_poly_tmulmod(res->dual->coeffs, x->dual->coeffs, y->mono, A->M, A->S); nmod_poly_zero(res->mono); break; case 0x11: case 0x13: case 0x31: case 0x33: // both have mono nmod_poly_mulmod(res->mono, x->mono, y->mono, A->M); nmod_poly_zero(res->dual); break; default: // in any other case, result is 0 nmod_poly_zero(res->mono); nmod_poly_zero(res->dual); break; } }
void nmod_poly_mulmod(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, const nmod_poly_t f) { long len1, len2, lenf; mp_ptr fcoeffs; lenf = f->length; len1 = poly1->length; len2 = poly2->length; if (lenf == 0) { printf("Exception: nmod_poly_mulmod: divide by zero\n"); abort(); } if (lenf == 1 || len1 == 0 || len2 == 0) { nmod_poly_zero(res); return; } if (len1 + len2 - lenf > 0) { if (f == res) { fcoeffs = flint_malloc(sizeof(mp_limb_t) * lenf); _nmod_vec_set(fcoeffs, f->coeffs, lenf); } else fcoeffs = f->coeffs; nmod_poly_fit_length(res, lenf - 1); _nmod_poly_mulmod(res->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, fcoeffs, lenf, res->mod); if (f == res) flint_free(fcoeffs); res->length = lenf - 1; _nmod_poly_normalise(res); } else { nmod_poly_mul(res, poly1, poly2); } }
void nmod_poly_mulhigh(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, long n) { long len1, len2, len_out; len1 = poly1->length; len2 = poly2->length; len_out = poly1->length + poly2->length - 1; if (n > len_out) n = len_out; if (len1 == 0 || len2 == 0 || n == 0) { nmod_poly_zero(res); return; } if (res == poly1 || res == poly2) { nmod_poly_t temp; nmod_poly_init2(temp, poly1->mod.n, len_out); if (len1 >= len2) _nmod_poly_mulhigh(temp->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, n, poly1->mod); else _nmod_poly_mulhigh(temp->coeffs, poly2->coeffs, len2, poly1->coeffs, len1, n, poly1->mod); nmod_poly_swap(temp, res); nmod_poly_clear(temp); } else { nmod_poly_fit_length(res, len_out); if (len1 >= len2) _nmod_poly_mulhigh(res->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, n, poly1->mod); else _nmod_poly_mulhigh(res->coeffs, poly2->coeffs, len2, poly1->coeffs, len1, n, poly1->mod); } res->length = len_out; _nmod_poly_normalise(res); }
void nmod_poly_mullow_classical(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong trunc) { slong len_out; if (poly1->length == 0 || poly2->length == 0 || trunc == 0) { nmod_poly_zero(res); return; } len_out = poly1->length + poly2->length - 1; if (trunc > len_out) trunc = len_out; if (res == poly1 || res == poly2) { nmod_poly_t temp; nmod_poly_init2_preinv(temp, poly1->mod.n, poly1->mod.ninv, trunc); if (poly1->length >= poly2->length) _nmod_poly_mullow_classical(temp->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length, trunc, poly1->mod); else _nmod_poly_mullow_classical(temp->coeffs, poly2->coeffs, poly2->length, poly1->coeffs, poly1->length, trunc, poly1->mod); nmod_poly_swap(res, temp); nmod_poly_clear(temp); } else { nmod_poly_fit_length(res, trunc); if (poly1->length >= poly2->length) _nmod_poly_mullow_classical(res->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length, trunc, poly1->mod); else _nmod_poly_mullow_classical(res->coeffs, poly2->coeffs, poly2->length, poly1->coeffs, poly1->length, trunc, poly1->mod); } res->length = trunc; _nmod_poly_normalise(res); }
void nmod_poly_mullow_KS(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, mp_bitcnt_t bits, long n) { long len_out; if ((poly1->length == 0) || (poly2->length == 0)) { nmod_poly_zero(res); return; } len_out = poly1->length + poly2->length - 1; if (n > len_out) n = len_out; if (res == poly1 || res == poly2) { nmod_poly_t temp; nmod_poly_init2_preinv(temp, poly1->mod.n, poly1->mod.ninv, len_out); if (poly1->length >= poly2->length) _nmod_poly_mullow_KS(temp->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length, bits, n, poly1->mod); else _nmod_poly_mullow_KS(temp->coeffs, poly2->coeffs, poly2->length, poly1->coeffs, poly1->length, bits, n, poly1->mod); nmod_poly_swap(res, temp); nmod_poly_clear(temp); } else { nmod_poly_fit_length(res, len_out); if (poly1->length >= poly2->length) _nmod_poly_mullow_KS(res->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length, bits, n, poly1->mod); else _nmod_poly_mullow_KS(res->coeffs, poly2->coeffs, poly2->length, poly1->coeffs, poly1->length, bits, n, poly1->mod); } res->length = n; _nmod_poly_normalise(res); }
void _fmpz_vec_get_nmod_poly(nmod_poly_t res, const fmpz * coeffs, slong len) { if (len == 0) { nmod_poly_zero(res); } else { slong i; nmod_poly_fit_length(res, len); for (i = 0; i < len; i++) res->coeffs[i] = fmpz_fdiv_ui(coeffs + i, res->mod.n); _nmod_poly_set_length(res, len); _nmod_poly_normalise(res); } }
void nmod_poly_interpolate_nmod_vec_barycentric(nmod_poly_t poly, mp_srcptr xs, mp_srcptr ys, slong n) { if (n == 0) { nmod_poly_zero(poly); } else { nmod_poly_fit_length(poly, n); poly->length = n; _nmod_poly_interpolate_nmod_vec_barycentric(poly->coeffs, xs, ys, n, poly->mod); _nmod_poly_normalise(poly); } }
void nmod_poly_div_divconquer(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B) { nmod_poly_t tQ; mp_ptr q; long Alen, Blen; Blen = B->length; if (Blen == 0) { printf("Exception: division by zero in nmod_poly_div_divconquer\n"); abort(); } Alen = A->length; if (Alen < Blen) { nmod_poly_zero(Q); return; } if (Q == A || Q == B) { nmod_poly_init2(tQ, A->mod.n, Alen - Blen + 1); q = tQ->coeffs; } else { nmod_poly_fit_length(Q, Alen - Blen + 1); q = Q->coeffs; } _nmod_poly_div_divconquer(q, A->coeffs, Alen, B->coeffs, Blen, A->mod); if (Q == A || Q == B) { nmod_poly_swap(tQ, Q); nmod_poly_clear(tQ); } Q->length = Alen - Blen + 1; }
void nmod_poly_compose_divconquer(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2) { const long len1 = poly1->length; const long len2 = poly2->length; long lenr; if (len1 == 0) { nmod_poly_zero(res); return; } if (len1 == 1 || len2 == 0) { nmod_poly_set_coeff_ui(res, 0, poly1->coeffs[0]); nmod_poly_truncate(res, 1); return; } lenr = (len1 - 1) * (len2 - 1) + 1; if (res != poly1 && res != poly2) { nmod_poly_fit_length(res, lenr); _nmod_poly_compose_divconquer(res->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, poly1->mod); } else { nmod_poly_t t; nmod_poly_init2(t, poly1->mod.n, lenr); _nmod_poly_compose_divconquer(t->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, poly1->mod); nmod_poly_swap(res, t); nmod_poly_clear(t); } res->length = lenr; _nmod_poly_normalise(res); }
void nmod_poly_exp_series_monomial_ui(nmod_poly_t res, mp_limb_t coeff, ulong power, slong n) { if (n == 0) { nmod_poly_zero(res); return; } if (coeff == UWORD(0)) { nmod_poly_fit_length(res, 1); res->coeffs[0] = UWORD(1); res->length = 1; return; } if (power == 0) { flint_printf("Exception (nmod_poly_exp_series_monomial_ui). \n" "Constant term != 0.\n"); abort(); } if (coeff != UWORD(1)) coeff = n_mod2_preinv(coeff, res->mod.n, res->mod.ninv); if (n == 1 || power >= n) { nmod_poly_fit_length(res, 1); res->coeffs[0] = UWORD(1); res->length = 1; } nmod_poly_fit_length(res, n); _nmod_poly_exp_series_monomial_ui(res->coeffs, coeff, power, n, res->mod); res->length = n; _nmod_poly_normalise(res); }
void nmod_poly_div_newton(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B) { const slong lenA = A->length, lenB = B->length, lenQ = lenA - lenB + 1; mp_ptr q; if (lenB == 0) { flint_printf("Exception (nmod_poly_div_newton). Division by zero.\n"); abort(); } if (lenA < lenB) { nmod_poly_zero(Q); return; } if (Q == A || Q == B) { q = flint_malloc(lenQ * sizeof(mp_limb_t)); } else { nmod_poly_fit_length(Q, lenQ); q = Q->coeffs; } _nmod_poly_div_newton(q, A->coeffs, lenA, B->coeffs, lenB, B->mod); if (Q == A || Q == B) { flint_free(Q->coeffs); Q->coeffs = q; Q->alloc = lenQ; } Q->length = lenQ; }
void nmod_poly_mat_randtest_sparse(nmod_poly_mat_t A, flint_rand_t state, long len, float density) { long i, j; for (i = 0; i < A->r; i++) { for (j = 0; j < A->c; j++) { if (n_randint(state, 1000) < density * 1000) { long l = n_randint(state, len + 1); l = FLINT_MAX(l, 1); nmod_poly_randtest(nmod_poly_mat_entry(A, i, j), state, l); } else { nmod_poly_zero(nmod_poly_mat_entry(A, i, j)); } } } }
void nmod_poly_asin_series(nmod_poly_t g, const nmod_poly_t h, slong n) { mp_ptr h_coeffs; slong h_len = h->length; if (h_len > 0 && h->coeffs[0] != UWORD(0)) { flint_printf("Exception (nmod_poly_asin_series). Constant term != 0.\n"); abort(); } if (h_len == 1 || n < 2) { nmod_poly_zero(g); return; } nmod_poly_fit_length(g, n); if (h_len < n) { h_coeffs = _nmod_vec_init(n); flint_mpn_copyi(h_coeffs, h->coeffs, h_len); flint_mpn_zero(h_coeffs + h_len, n - h_len); } else h_coeffs = h->coeffs; _nmod_poly_asin_series(g->coeffs, h_coeffs, n, h->mod); if (h_len < n) _nmod_vec_clear(h_coeffs); g->length = n; _nmod_poly_normalise(g); }
void nmod_poly_tanh_series(nmod_poly_t g, const nmod_poly_t h, long n) { mp_ptr h_coeffs; long h_len = h->length; if (h_len > 0 && h->coeffs[0] != 0UL) { printf("Exception: nmod_poly_tanh_series: constant term != 0\n"); abort(); } if (h_len == 1 || n < 2) { nmod_poly_zero(g); return; } nmod_poly_fit_length(g, n); if (h_len < n) { h_coeffs = _nmod_vec_init(n); mpn_copyi(h_coeffs, h->coeffs, h_len); mpn_zero(h_coeffs + h_len, n - h_len); } else h_coeffs = h->coeffs; _nmod_poly_tanh_series(g->coeffs, h_coeffs, n, h->mod); if (h_len < n) _nmod_vec_free(h_coeffs); g->length = n; _nmod_poly_normalise(g); }
/*------------------------------------------------------------*/ void check(int opt){ mp_limb_t n = 12345; nmod_t Zn; nmod_init(&Zn, n); sage_output_init(Zn); nmod_poly_t a; nmod_poly_init2(a, n, 10); long i; for (i = 0; i < 10; i++) a->coeffs[i] = i; a->length = 10; _nmod_poly_normalise(a); sage_output_print_poly(a); printf("\n"); nmod_poly_zero(a); sage_output_print_poly(a); printf("\n"); nmod_poly_clear(a); }
void nmod_poly_exp_series(nmod_poly_t f, const nmod_poly_t h, long n) { mp_ptr f_coeffs, h_coeffs; nmod_poly_t t1; long hlen, k; nmod_poly_fit_length(f, n); hlen = h->length; if (hlen > 0 && h->coeffs[0] != 0UL) { printf("Exception: nmod_poly_exp_series: constant term != 0\n"); abort(); } if (n <= 1 || hlen == 0) { if (n == 0) { nmod_poly_zero(f); } else { f->coeffs[0] = 1UL; f->length = 1; } return; } /* Handle monomials */ for (k = 0; h->coeffs[k] == 0UL && k < n - 1; k++); if (k == hlen - 1 || k == n - 1) { hlen = FLINT_MIN(hlen, n); _nmod_poly_exp_series_monomial_ui(f->coeffs, h->coeffs[hlen-1], hlen - 1, n, f->mod); f->length = n; _nmod_poly_normalise(f); return; } if (n < NMOD_NEWTON_EXP_CUTOFF2) { _nmod_poly_exp_series_basecase(f->coeffs, h->coeffs, hlen, n, f->mod); f->length = n; _nmod_poly_normalise(f); return; } if (hlen < n) { h_coeffs = _nmod_vec_init(n); mpn_copyi(h_coeffs, h->coeffs, hlen); mpn_zero(h_coeffs + hlen, n - hlen); } else h_coeffs = h->coeffs; if (h == f && hlen >= n) { nmod_poly_init2(t1, h->mod.n, n); f_coeffs = t1->coeffs; } else { nmod_poly_fit_length(f, n); f_coeffs = f->coeffs; } _nmod_poly_exp_series(f_coeffs, h_coeffs, n, f->mod); if (h == f && hlen >= n) { nmod_poly_swap(f, t1); nmod_poly_clear(t1); } f->length = n; if (hlen < n) _nmod_vec_free(h_coeffs); _nmod_poly_normalise(f); }
void nmod_poly_xgcd_hgcd(nmod_poly_t G, nmod_poly_t S, nmod_poly_t T, const nmod_poly_t A, const nmod_poly_t B) { if (A->length < B->length) { nmod_poly_xgcd_hgcd(G, T, S, B, A); } else /* lenA >= lenB >= 0 */ { const slong lenA = A->length, lenB = B->length; mp_limb_t inv; if (lenA == 0) /* lenA = lenB = 0 */ { nmod_poly_zero(G); nmod_poly_zero(S); nmod_poly_zero(T); } else if (lenB == 0) /* lenA > lenB = 0 */ { inv = n_invmod(A->coeffs[lenA - 1], A->mod.n); nmod_poly_scalar_mul_nmod(G, A, inv); nmod_poly_zero(T); nmod_poly_set_coeff_ui(S, 0, inv); S->length = 1; } else if (lenB == 1) /* lenA >= lenB = 1 */ { nmod_poly_fit_length(T, 1); T->length = 1; T->coeffs[0] = n_invmod(B->coeffs[0], A->mod.n); nmod_poly_one(G); nmod_poly_zero(S); } else /* lenA >= lenB >= 2 */ { mp_ptr g, s, t; slong lenG; if (G == A || G == B) { g = _nmod_vec_init(FLINT_MIN(lenA, lenB)); } else { nmod_poly_fit_length(G, FLINT_MIN(lenA, lenB)); g = G->coeffs; } if (S == A || S == B) { s = _nmod_vec_init(FLINT_MAX(lenB - 1, 2)); } else { nmod_poly_fit_length(S, FLINT_MAX(lenB - 1, 2)); s = S->coeffs; } if (T == A || T == B) { t = _nmod_vec_init(FLINT_MAX(lenA - 1, 2)); } else { nmod_poly_fit_length(T, FLINT_MAX(lenA - 1, 2)); t = T->coeffs; } if (lenA >= lenB) lenG = _nmod_poly_xgcd_hgcd(g, s, t, A->coeffs, lenA, B->coeffs, lenB, A->mod); else lenG = _nmod_poly_xgcd_hgcd(g, t, s, B->coeffs, lenB, A->coeffs, lenA, A->mod); if (G == A || G == B) { flint_free(G->coeffs); G->coeffs = g; G->alloc = FLINT_MIN(lenA, lenB); } if (S == A || S == B) { flint_free(S->coeffs); S->coeffs = s; S->alloc = FLINT_MAX(lenB - 1, 2); } if (T == A || T == B) { flint_free(T->coeffs); T->coeffs = t; T->alloc = FLINT_MAX(lenA - 1, 2); } G->length = lenG; S->length = FLINT_MAX(lenB - lenG, 1); T->length = FLINT_MAX(lenA - lenG, 1); MPN_NORM(S->coeffs, S->length); MPN_NORM(T->coeffs, T->length); if (G->coeffs[lenG - 1] != 1) { inv = n_invmod(G->coeffs[lenG - 1], A->mod.n); nmod_poly_scalar_mul_nmod(G, G, inv); nmod_poly_scalar_mul_nmod(S, S, inv); nmod_poly_scalar_mul_nmod(T, T, inv); } } } }
int nmod_poly_mat_inv(nmod_poly_mat_t Ainv, nmod_poly_t den, const nmod_poly_mat_t A) { slong n = nmod_poly_mat_nrows(A); if (n == 0) { nmod_poly_one(den); return 1; } else if (n == 1) { nmod_poly_set(den, E(A, 0, 0)); nmod_poly_one(E(Ainv, 0, 0)); return !nmod_poly_is_zero(den); } else if (n == 2) { nmod_poly_mat_det(den, A); if (nmod_poly_is_zero(den)) { return 0; } else if (Ainv == A) { nmod_poly_swap(E(A, 0, 0), E(A, 1, 1)); nmod_poly_neg(E(A, 0, 1), E(A, 0, 1)); nmod_poly_neg(E(A, 1, 0), E(A, 1, 0)); return 1; } else { nmod_poly_set(E(Ainv, 0, 0), E(A, 1, 1)); nmod_poly_set(E(Ainv, 1, 1), E(A, 0, 0)); nmod_poly_neg(E(Ainv, 0, 1), E(A, 0, 1)); nmod_poly_neg(E(Ainv, 1, 0), E(A, 1, 0)); return 1; } } else { nmod_poly_mat_t LU, I; slong * perm; int result; perm = _perm_init(n); nmod_poly_mat_init_set(LU, A); result = (nmod_poly_mat_fflu(LU, den, perm, LU, 1) == n); if (result) { nmod_poly_mat_init(I, n, n, nmod_poly_mat_modulus(A)); nmod_poly_mat_one(I); nmod_poly_mat_solve_fflu_precomp(Ainv, perm, LU, I); nmod_poly_mat_clear(I); } else nmod_poly_zero(den); if (_perm_parity(perm, n)) { nmod_poly_mat_neg(Ainv, Ainv); nmod_poly_neg(den, den); } _perm_clear(perm); nmod_poly_mat_clear(LU); return result; } }
void nmod_poly_divrem_basecase(nmod_poly_t Q, nmod_poly_t R, const nmod_poly_t A, const nmod_poly_t B) { const slong lenA = A->length, lenB = B->length; mp_ptr Q_coeffs, R_coeffs, W; nmod_poly_t t1, t2; TMP_INIT; if (lenB == 0) { flint_printf("Exception (nmod_poly_divrem). Division by zero.\n"); abort(); } if (lenA < lenB) { nmod_poly_set(R, A); nmod_poly_zero(Q); return; } if (Q == A || Q == B) { nmod_poly_init2_preinv(t1, B->mod.n, B->mod.ninv, lenA - lenB + 1); Q_coeffs = t1->coeffs; } else { nmod_poly_fit_length(Q, lenA - lenB + 1); Q_coeffs = Q->coeffs; } if (R == A || R == B) { nmod_poly_init2_preinv(t2, B->mod.n, B->mod.ninv, lenB - 1); R_coeffs = t2->coeffs; } else { nmod_poly_fit_length(R, lenB - 1); R_coeffs = R->coeffs; } TMP_START; W = TMP_ALLOC(NMOD_DIVREM_BC_ITCH(lenA, lenB, A->mod)*sizeof(mp_limb_t)); _nmod_poly_divrem_basecase(Q_coeffs, R_coeffs, W, A->coeffs, lenA, B->coeffs, lenB, B->mod); if (Q == A || Q == B) { nmod_poly_swap(Q, t1); nmod_poly_clear(t1); } if (R == A || R == B) { nmod_poly_swap(R, t2); nmod_poly_clear(t2); } Q->length = lenA - lenB + 1; R->length = lenB - 1; TMP_END; _nmod_poly_normalise(R); }
void nmod_poly_compose_mod_horner(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, const nmod_poly_t poly3) { long len1 = poly1->length; long len2 = poly2->length; long len3 = poly3->length; long len = len3 - 1; mp_ptr ptr2; if (len3 == 0) { printf("exception: division by zero in nmod_poly_compose_mod_horner\n"); abort(); } if (len1 == 0 || len3 == 1) { nmod_poly_zero(res); return; } if (len1 == 1) { nmod_poly_set(res, poly1); return; } if (res == poly3 || res == poly1) { nmod_poly_t tmp; nmod_poly_init_preinv(tmp, res->mod.n, res->mod.ninv); nmod_poly_compose_mod_horner(tmp, poly1, poly2, poly3); nmod_poly_swap(tmp, res); nmod_poly_clear(tmp); return; } ptr2 = _nmod_vec_init(len); if (len2 <= len) { mpn_copyi(ptr2, poly2->coeffs, len2); mpn_zero(ptr2 + len2, len - len2); } else { _nmod_poly_rem(ptr2, poly2->coeffs, len2, poly3->coeffs, len3, res->mod); } nmod_poly_fit_length(res, len); _nmod_poly_compose_mod_horner(res->coeffs, poly1->coeffs, len1, ptr2, poly3->coeffs, len3, res->mod); res->length = len; _nmod_poly_normalise(res); _nmod_vec_clear(ptr2); }
int main(void) { int iter; flint_rand_t state; flint_randinit(state); printf("factor...."); fflush(stdout); /* Default algorithm */ for (iter = 0; iter < 100; iter++) { int result = 1; nmod_poly_t pol1, poly, quot, rem, product; nmod_poly_factor_t res; mp_limb_t modulus, lead = 1; long length, num, i, j; ulong exp[5], prod1; modulus = n_randtest_prime(state, 0); nmod_poly_init(pol1, modulus); nmod_poly_init(poly, modulus); nmod_poly_init(quot, modulus); nmod_poly_init(rem, modulus); nmod_poly_zero(pol1); nmod_poly_set_coeff_ui(pol1, 0, 1); length = n_randint(state, 7) + 2; do { nmod_poly_randtest(poly, state, length); if (poly->length) nmod_poly_make_monic(poly, poly); } while ((!nmod_poly_is_irreducible(poly)) || (poly->length < 2)); exp[0] = n_randint(state, 30) + 1; prod1 = exp[0]; for (i = 0; i < exp[0]; i++) nmod_poly_mul(pol1, pol1, poly); num = n_randint(state, 5) + 1; for (i = 1; i < num; i++) { do { length = n_randint(state, 7) + 2; nmod_poly_randtest(poly, state, length); if (poly->length) { nmod_poly_make_monic(poly, poly); nmod_poly_divrem(quot, rem, pol1, poly); } } while ((!nmod_poly_is_irreducible(poly)) || (poly->length < 2) || (rem->length == 0)); exp[i] = n_randint(state, 30) + 1; prod1 *= exp[i]; for (j = 0; j < exp[i]; j++) nmod_poly_mul(pol1, pol1, poly); } nmod_poly_factor_init(res); switch (n_randint(state, 3)) { case 0: lead = nmod_poly_factor(res, pol1); break; case 1: lead = nmod_poly_factor_with_berlekamp(res, pol1); break; case 2: if (modulus == 2) lead = nmod_poly_factor(res, pol1); else lead = nmod_poly_factor_with_cantor_zassenhaus(res, pol1); break; } result &= (res->num == num); if (!result) { printf("Error: number of factors incorrect, %ld, %ld\n", res->num, num); abort(); } nmod_poly_init(product, pol1->mod.n); nmod_poly_set_coeff_ui(product, 0, 1); for (i = 0; i < res->num; i++) for (j = 0; j < res->exp[i]; j++) nmod_poly_mul(product, product, res->p + i); nmod_poly_scalar_mul_nmod(product, product, lead); result &= nmod_poly_equal(pol1, product); if (!result) { printf("Error: product of factors does not equal original polynomial\n"); nmod_poly_print(pol1); printf("\n"); nmod_poly_print(product); printf("\n"); abort(); } nmod_poly_clear(product); nmod_poly_clear(quot); nmod_poly_clear(rem); nmod_poly_clear(pol1); nmod_poly_clear(poly); nmod_poly_factor_clear(res); } /* Test deflation trick */ for (iter = 0; iter < 100; iter++) { nmod_poly_t pol1, poly, quot, rem; nmod_poly_factor_t res, res2; mp_limb_t modulus; long length, num, i, j; long exp[5], prod1; ulong inflation; int found; do { modulus = n_randtest_prime(state, 0); } while (modulus == 2); /* To compare with CZ */ nmod_poly_init(pol1, modulus); nmod_poly_init(poly, modulus); nmod_poly_init(quot, modulus); nmod_poly_init(rem, modulus); nmod_poly_zero(pol1); nmod_poly_set_coeff_ui(pol1, 0, 1); inflation = n_randint(state, 7) + 1; length = n_randint(state, 7) + 2; do { nmod_poly_randtest(poly, state, length); if (poly->length) nmod_poly_make_monic(poly, poly); } while ((!nmod_poly_is_irreducible(poly)) || (poly->length < 2)); nmod_poly_inflate(poly, poly, inflation); exp[0] = n_randint(state, 6) + 1; prod1 = exp[0]; for (i = 0; i < exp[0]; i++) nmod_poly_mul(pol1, pol1, poly); num = n_randint(state, 5) + 1; for (i = 1; i < num; i++) { do { length = n_randint(state, 6) + 2; nmod_poly_randtest(poly, state, length); if (poly->length) { nmod_poly_make_monic(poly, poly); nmod_poly_divrem(quot, rem, pol1, poly); } } while ((!nmod_poly_is_irreducible(poly)) || (poly->length < 2) || (rem->length == 0)); exp[i] = n_randint(state, 6) + 1; prod1 *= exp[i]; nmod_poly_inflate(poly, poly, inflation); for (j = 0; j < exp[i]; j++) nmod_poly_mul(pol1, pol1, poly); } nmod_poly_factor_init(res); nmod_poly_factor_init(res2); switch (n_randint(state, 3)) { case 0: nmod_poly_factor(res, pol1); break; case 1: nmod_poly_factor_with_berlekamp(res, pol1); break; case 2: nmod_poly_factor_with_cantor_zassenhaus(res, pol1); break; } nmod_poly_factor_cantor_zassenhaus(res2, pol1); if (res->num != res2->num) { printf("FAIL: different number of factors found\n"); abort(); } for (i = 0; i < res->num; i++) { found = 0; for (j = 0; j < res2->num; j++) { if (nmod_poly_equal(res->p + i, res2->p + j) && res->exp[i] == res2->exp[j]) { found = 1; break; } } if (!found) { printf("FAIL: factor not found\n"); abort(); } } nmod_poly_clear(quot); nmod_poly_clear(rem); nmod_poly_clear(pol1); nmod_poly_clear(poly); nmod_poly_factor_clear(res); nmod_poly_factor_clear(res2); } flint_randclear(state); printf("PASS\n"); return 0; }