コード例 #1
0
ファイル: FFT.cpp プロジェクト: Adna1206/mixxx
void
FFT::process(bool p_bInverseTransform,
             const double *p_lpRealIn, const double *p_lpImagIn,
             double *p_lpRealOut, double *p_lpImagOut)
{
    if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;

//    std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl;

    unsigned int NumBits;
    unsigned int i, j, k, n;
    unsigned int BlockSize, BlockEnd;

    double angle_numerator = 2.0 * M_PI;
    double tr, ti;

    if( !MathUtilities::isPowerOfTwo(m_n) )
    {
        std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
                  << m_n << " not supported in this implementation"
                  << std::endl;
	return;
    }

    if( p_bInverseTransform ) angle_numerator = -angle_numerator;

    NumBits = numberOfBitsNeeded ( m_n );


    for( i=0; i < m_n; i++ )
    {
	j = reverseBits ( i, NumBits );
	p_lpRealOut[j] = p_lpRealIn[i];
	p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
    }


    BlockEnd = 1;
    for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 )
    {
	double delta_angle = angle_numerator / (double)BlockSize;
	double sm2 = -sin ( -2 * delta_angle );
	double sm1 = -sin ( -delta_angle );
	double cm2 = cos ( -2 * delta_angle );
	double cm1 = cos ( -delta_angle );
	double w = 2 * cm1;
	double ar[3], ai[3];

	for( i=0; i < m_n; i += BlockSize )
	{

	    ar[2] = cm2;
	    ar[1] = cm1;

	    ai[2] = sm2;
	    ai[1] = sm1;

	    for ( j=i, n=0; n < BlockEnd; j++, n++ )
	    {

		ar[0] = w*ar[1] - ar[2];
		ar[2] = ar[1];
		ar[1] = ar[0];

		ai[0] = w*ai[1] - ai[2];
		ai[2] = ai[1];
		ai[1] = ai[0];

		k = j + BlockEnd;
		tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
		ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];

		p_lpRealOut[k] = p_lpRealOut[j] - tr;
		p_lpImagOut[k] = p_lpImagOut[j] - ti;

		p_lpRealOut[j] += tr;
		p_lpImagOut[j] += ti;

	    }
	}

	BlockEnd = BlockSize;

    }


    if( p_bInverseTransform )
    {
	double denom = (double)m_n;

	for ( i=0; i < m_n; i++ )
	{
	    p_lpRealOut[i] /= denom;
	    p_lpImagOut[i] /= denom;
	}
    }
}
コード例 #2
0
bool FastFourierTransform::FFT(int NumSamples,bool InverseTransform,double *RealIn, double *ImagIn, double *RealOut, double *ImagOut){
    int NumBits;                 /* Number of bits needed to store indices */
    int i, j, k, n;
    int BlockSize, BlockEnd;
    
    double angle_numerator = 2.0 * PI;
    double tr, ti;                /* temp real, temp imaginary */
    
    if ( !isPowerOfTwo(NumSamples) ) {
        fprintf(stderr, "%d is not a power of two\n", NumSamples);
        return false;
    }
    
    if (!gFFTBitTable)
        initFFT();
    
    if (InverseTransform)
        angle_numerator = -angle_numerator;
    
    NumBits = numberOfBitsNeeded(NumSamples);
    
    //Simultaneously data copy and bit-reversal ordering into outputs...
    for(i = 0; i < NumSamples; i++) {
        j = fastReverseBits(i, NumBits);
        RealOut[j] = RealIn[i];
        ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i];
    }
    
    //Do the FFT
    BlockEnd = 1;
    for (BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) {
        
        double delta_angle = angle_numerator / (double) BlockSize;
        
        double sm2 = sin(-2 * delta_angle);
        double sm1 = sin(-delta_angle);
        double cm2 = cos(-2 * delta_angle);
        double cm1 = cos(-delta_angle);
        double w = 2 * cm1;
        double ar0, ar1, ar2, ai0, ai1, ai2;
        
        for (i = 0; i < NumSamples; i += BlockSize) {
            ar2 = cm2;
            ar1 = cm1;
            
            ai2 = sm2;
            ai1 = sm1;
            
            for (j = i, n = 0; n < BlockEnd; j++, n++) {
                ar0 = w * ar1 - ar2;
                ar2 = ar1;
                ar1 = ar0;
                
                ai0 = w * ai1 - ai2;
                ai2 = ai1;
                ai1 = ai0;
                
                k = j + BlockEnd;
                tr = ar0 * RealOut[k] - ai0 * ImagOut[k];
                ti = ar0 * ImagOut[k] + ai0 * RealOut[k];
                
                RealOut[k] = RealOut[j] - tr;
                ImagOut[k] = ImagOut[j] - ti;
                
                RealOut[j] += tr;
                ImagOut[j] += ti;
            }
        }
        
        BlockEnd = BlockSize;
    }
    
    //Need to normalize the results if we are computing the inverse transform
    if( InverseTransform ){
        double denom = (double) NumSamples;
        
        for(i = 0; i < NumSamples; i++) {
            RealOut[i] /= denom;
            ImagOut[i] /= denom;
        }
    }
    
    return true;
}