コード例 #1
0
ファイル: MC.cpp プロジェクト: angjminer/mc
static void generate_voxels()
{
	Noise2D n2d(0);
	for (int z = 0; z < 65; z++) {
	for (int y = 0; y < 65; y++) {
	for (int x = 0; x < 65; x++) {
		const float fy = (float)y / 65.0f;
		const int offset = offset_3d({x, y, z}, Vec3i(65));
		const float v = n2d.get(x / 16.0f, z / 16.0f) * 0.25f;
		voxels[offset] = fy - 0.25f - v;
	}}}
}
コード例 #2
0
ファイル: qcdoc_recon.C プロジェクト: paboyle/BFM
void qcdoc_su3_recon( char *name)
{
    /****  This section defines all the registers and offsets I need ****/

    /*
     * This marks the argument registers as defined by ABI as off limits
     * to us until they are freed by "getarg()";
     */
    int dum = defargcount(4);

    /*Handle for the loop entry point*/
    int branchsite;
    int branchmu;
    int retno ;

    /*------------------------------------------------------------------
     * Floating point registers
     *------------------------------------------------------------------
     */

    // Reconstruct 8 registers for 4 spinor
    //  reg_array_2d(PSI,Fregs,4,2);
    reg_array_3d(PSI,Fregs,3,4,2);
    offset_3d(PSI_IMM,FourSpinType,4,3,2);    /*Offsets within 4 spinor*/

    // Reconstruct 2 spinor registers
#define  NEO 2
    reg_array_3d(Atmp,Fregs,1,2,2); /*CHIplus  regs */
    reg_array_3d(Btmp,Fregs,1,2,2); /*CHIminus regs */
    int A[NEO][2][2] = {
        Atmp[0][0][0],    Atmp[0][0][1],
        Atmp[0][1][0],    Atmp[0][1][1],
        -1,-1,-1,-1
    };
    int B[NEO][2][2] = {
        Btmp[0][0][0],    Btmp[0][0][1],
        Btmp[0][1][0],    Btmp[0][1][1],
        -1,-1,-1,-1
    };

    /*Regs for SU3 two spinor multiply ... overlap with the reconstruct*/
    /*                                                      registers  */
    int CHIR[3][2][2] = {
        A[0][0][0],A[0][0][1],
        A[0][1][0],A[0][1][1],
        B[0][0][0],B[0][0][1],
        B[0][1][0],B[0][1][1],
        PSI[0][0][0],PSI[0][0][1],
        PSI[0][1][0],PSI[0][1][1]
    };
    offset_3d(CHI_IMM,TwoSpinType,3,2,2);

    /*Registers for the gauge link (2 rows)*/
    int UA[3][2] = {
        {PSI[0][2][0],PSI[0][2][1]},
        {PSI[2][1][0],PSI[2][1][1]},
        {PSI[1][0][0],PSI[1][0][1]}
    };
    int UB[3][2] = {
        {PSI[1][1][0],PSI[1][1][1]},
        {PSI[2][0][0],PSI[2][0][1]},
        {PSI[1][2][0],PSI[1][2][1]},
    };
    offset_3d(GIMM    , GaugeType, 3, 3 ,2 );

    // Other 8 registers used for reduction variables in SU3.
    // Could use these in reconstruct??
    int E[2] = { PSI[2][2][0],PSI[2][2][1]};

    /*
     * FCD used for drain of Chi
     * Overlap with PSI[*][3][*]
     */
    int F[2] = {PSI[0][3][0],PSI[0][3][1]};
    int C[2] = {PSI[1][3][0],PSI[1][3][1]};
    int D[2] = {PSI[2][3][0],PSI[2][3][1]};

    /*
     * Integer registers
     */
    alreg(psi,Iregs);
    alreg(Umu,Iregs);
    alreg(Ufetch,Iregs);

    alreg(Chiin,Iregs);
    alreg(Chiout,Iregs);

    alreg(Chifetch,Iregs);

    reg_array_1d(Chiplus,Iregs,4);/*Pointers to the 8 2-spinors for recombination*/
    reg_array_1d(Chiminus,Iregs,4);

    alreg(mu,Iregs);
    alreg(Chidrain,Iregs);
    alreg(pref,Iregs);

    alreg(mem,Iregs);
    alreg(length,Iregs);

    int Isize = PROC->I_size;
    int Fsize = PROC->FP_size;

    def_off( ZERO_IMM, Byte,0);
    def_off( PSI_ATOM, FourSpinType, 24);
    def_off( CHI_ATOM, TwoSpinType, 12);
    def_off( PAD_CHI_ATOM, TwoSpinType, 16);
    def_off( MAT_IMM, GaugeType, 18);

    int Ndim   = def_offset(4,Byte,"Ndim");
    int Ndimm1 = def_offset(3,Byte,"Ndimm1");
    int hbias,bias;

    /*Offsets handles to stack*/
    int hbitbucket = def_offset(16*Isize,Byte,"hbitbucket");
    int Tsize;
    if ( TwoSpinType == Double ) Tsize = PROC->FP_size;
    else Tsize = PROC->FSP_size;
    int hstk0   = def_offset(16*Isize+12*Tsize  ,Byte,"hstk0");
    int hstk1   = def_offset(16*Isize+2*12*Tsize,Byte,"hstk1");
    int hstk2   = def_offset(16*Isize+3*12*Tsize,Byte,"hstk2");
    int hstk3   = def_offset(16*Isize+4*12*Tsize,Byte,"hstk3");

    int hIsize  = def_offset(Isize,Byte,"Isize");

    int i,co,j,k,nxt,ri,sp,nxtco,eop,eo_a,eo_b;

    /***********************************************************************/

    /*
    * PROLOGUE
    	  */

    make_inst(DIRECTIVE,Enter_Routine,name);

    /*Allocate stack save any callee save registers we need etc...*/
    int stack_buf_size;
    stack_buf_size = 16*Isize +
                     12*Fsize * 5 ;

    hbias = grab_stack(stack_buf_size);
    bias = get_offset(hbias);
    save_regs();
    queue_iadd_imm(mem,PROC->StackPointer,hbias); /*Pointer to buf on stack*/

    /*Define our arguments - all pointers ala fortran*/
    getarg(psi);
    getarg(Umu);
    getarg(Chiin);
    getarg(length);
    /*{... Process arguments ...*/

    queue_iload(length,ZERO_IMM,length);      /*Load in sx counter*/

    retno = get_target_label(); /*Branch to exit if yzt <1*/
    check_iterations(length,retno);

    need_cache_line(0);
    need_cache_line(1);
    need_cache_line(2);
    need_cache_line(3);
    need_cache_line(4);

    pragma(DCBT_SPACE,5);
    pragma(DCBT_POST,1);

#define LOAD_U(comin,comax)\
  /*Load two link rows*/\
  for( i = comin;i<=comax;i++ ){\
    for( ri=0;ri<2;ri++){  \
      queue_fload(UA[i][ri],GIMM[i][0][ri],Umu,GaugeType);\
      queue_fload(UB[i][ri],GIMM[i][1][ri],Umu,GaugeType);\
    } \
  }

#define PRELOAD_U  LOAD_U(0,1)
#define POSTLOAD_U  LOAD_U(2,2)

    PRELOAD_U

#define LOAD_CHI(comin,comax) \
    /*Load Chi column*/\
    for( i = comin;i<=comax;i++ ){\
      for( ri=0;ri<2;ri++){\
        queue_fload(CHIR[i][0][ri],CHI_IMM[i][0][ri],Chiin,TwoSpinType);\
      } \
      for( ri=0;ri<2;ri++){\
        queue_fload(CHIR[i][1][ri],CHI_IMM[i][1][ri],Chiin,TwoSpinType);\
      } \
    }

#define PRELOAD_CHI  LOAD_CHI(0,1)
#define POSTLOAD_CHI  LOAD_CHI(2,2)

#define POSTLOAD \
    POSTLOAD_CHI \
    POSTLOAD_U

    do_prefetch(Chiin,0);
    do_prefetch(Chiin,1);
    if ( SizeofDatum(TwoSpinType) == 8 ) do_prefetch(Chiin,2);

    PRELOAD_CHI

    /*
     * Start site loop
     */

    queue_iadd_imm(Chidrain,mem,hbitbucket);

    branchsite = start_loop(length);

    queue_iadd_imm(Chiout,mem,hstk0);

    /*
     * Loop over mu in asm
     */
    queue_iload_imm(mu,Ndimm1);

#define CHIDRAIN \
      queue_fstore(F[0],CHI_IMM[1][1][0],Chidrain,TwoSpinType);\
      queue_fstore(F[1],CHI_IMM[1][1][1],Chidrain,TwoSpinType);\
      queue_fstore(C[0],CHI_IMM[2][0][0],Chidrain,TwoSpinType);\
      queue_fstore(C[1],CHI_IMM[2][0][1],Chidrain,TwoSpinType);\
      queue_fstore(D[0],CHI_IMM[2][1][0],Chidrain,TwoSpinType);\
      queue_fstore(D[1],CHI_IMM[2][1][1],Chidrain,TwoSpinType);


#define PREFETCH_CHI \
  queue_iadd_imm(Chifetch,Chiin,PAD_CHI_ATOM);\
  do_prefetch(Chifetch,0);\
  do_prefetch(Chifetch,1);\
  if ( SizeofDatum(TwoSpinType) == 8 ) do_prefetch(Chifetch,2);

#define PREFETCH_CHIF \
  queue_iadd_imm(Chifetch,Chifetch,PAD_CHI_ATOM);\
  do_prefetch(Chifetch,0);\
  do_prefetch(Chifetch,1);\
  if ( SizeofDatum(TwoSpinType) == 8 ) do_prefetch(Chifetch,2);



    for ( int unroll=0; unroll<2; unroll++ ) {

        if ( unroll==0 ) {
            branchmu = start_loop(mu);
            pragma(DCBT_SPACE,5);
            pragma(STORE_LIM,1);
            pragma(LOAD_LIM,2);
        } else {
            pragma(STORE_LIM,2);
            pragma(DCBT_SPACE,5);
            pragma(DCBT_POST,1);
            pragma(DCBT_PRE,0);
            pragma(LOAD_LIM,2);
        }

        CHIDRAIN
        POSTLOAD

        if ( unroll == 0 ) {
            PREFETCH_CHI
            queue_iadd_imm(Ufetch,Umu,MAT_IMM);
            do_prefetch(Ufetch,0);
            do_prefetch(Ufetch,1);
            do_prefetch(Ufetch,2);
            if ( GaugeType == Double ) {
                do_prefetch(Ufetch,3);
                do_prefetch(Ufetch,4);
            }
        } else {
            pragma(DCBT_SPACE,3);
            PREFETCH_CHI
            PREFETCH_CHIF
            PREFETCH_CHIF
            PREFETCH_CHIF
        }




        j=0;
        queue_three_cmuls(C[0],C[1],UA[j][0],UA[j][1],CHIR[j][0][0],CHIR[j][0][1],
                          D[0],D[1],UA[j][0],UA[j][1],CHIR[j][1][0],CHIR[j][1][1],
                          E[0],E[1],UB[j][0],UB[j][1],CHIR[j][0][0],CHIR[j][0][1]);
        j=1;
        queue_three_cmadds(C[0],C[1],UA[j][0],UA[j][1],CHIR[j][0][0],CHIR[j][0][1],
                           D[0],D[1],UA[j][0],UA[j][1],CHIR[j][1][0],CHIR[j][1][1],
                           E[0],E[1],UB[j][0],UB[j][1],CHIR[j][0][0],CHIR[j][0][1]);
        j=2;

        queue_three_cmadds(C[0],C[1],UA[j][0],UA[j][1],CHIR[j][0][0],CHIR[j][0][1],
                           D[0],D[1],UA[j][0],UA[j][1],CHIR[j][1][0],CHIR[j][1][1],
                           E[0],E[1],UB[j][0],UB[j][1],CHIR[j][0][0],CHIR[j][0][1]);

        /*Store the first three results*/
        queue_fstore(C[0],CHI_IMM[0][0][0],Chiout,TwoSpinType);
        queue_fstore(C[1],CHI_IMM[0][0][1],Chiout,TwoSpinType);
        queue_fstore(D[0],CHI_IMM[0][1][0],Chiout,TwoSpinType);
        queue_fstore(D[1],CHI_IMM[0][1][1],Chiout,TwoSpinType);
        queue_fstore(E[0],CHI_IMM[1][0][0],Chiout,TwoSpinType);
        queue_fstore(E[1],CHI_IMM[1][0][1],Chiout,TwoSpinType);

        /*Load the third row*/
        for(j=0; j<3; j++) {
            for(ri=0; ri<2; ri++) {
                queue_fload(UA[j][ri],GIMM[j][2][ri],Umu,GaugeType);
            }
        }
        /*Gauge layout is linear, mu faster than site*/
        queue_iadd_imm(Umu,Umu,MAT_IMM);


        /*Now the second set of three cdots*/

        j=0;
        queue_three_cmuls(F[0],F[1],UB[j][0],UB[j][1],CHIR[j][1][0],CHIR[j][1][1],
                          C[0],C[1],UA[j][0],UA[j][1],CHIR[j][0][0],CHIR[j][0][1],
                          D[0],D[1],UA[j][0],UA[j][1],CHIR[j][1][0],CHIR[j][1][1]);
        j=1;
        queue_three_cmadds(F[0],F[1],UB[j][0],UB[j][1],CHIR[j][1][0],CHIR[j][1][1],
                           C[0],C[1],UA[j][0],UA[j][1],CHIR[j][0][0],CHIR[j][0][1],
                           D[0],D[1],UA[j][0],UA[j][1],CHIR[j][1][0],CHIR[j][1][1]);
        j=2;
        queue_three_cmadds(F[0],F[1],UB[j][0],UB[j][1],CHIR[j][1][0],CHIR[j][1][1],
                           C[0],C[1],UA[j][0],UA[j][1],CHIR[j][0][0],CHIR[j][0][1],
                           D[0],D[1],UA[j][0],UA[j][1],CHIR[j][1][0],CHIR[j][1][1]);

        /**************END SU3 CODE *************/

        queue_iadd_imm(Chiin,Chiin,PAD_CHI_ATOM);
        queue_iadd_imm(Chidrain,Chiout,ZERO_IMM);
        queue_iadd_imm(Chiout,Chiout,CHI_ATOM);

        if ( unroll == 0 ) {

            PRELOAD_U
            PRELOAD_CHI

        }

        /*********************************************************/
        /****************** END OF SU3 MULTIPLY ******************/
        /*********************************************************/

        if ( unroll== 0 ) {
            stop_loop(branchmu,mu); /* End loop over mu*/
            make_inst(DIRECTIVE,Target,get_target_label() ); /*delineate the sections*/
        }
    }


    /*********************************************************/
    /****************** START OF RECONSTRUCT *****************/
    /*********************************************************/

    //Address calculation...
    // Chiminus -> Stack  and  ChiPlus -> Chiin

    pragma(STORE_INORDER,1);
    queue_iadd_imm(Chiminus[0],mem,hstk0);

    /*For register use reasons loop over colour outermost*/

#define LOAD_CHI_MU0(eo,co) \
    for( sp = 0; sp<2;sp++ ){\
      for( ri = 0; ri<2;ri++ ){\
	queue_fload(A[eo][sp][ri],CHI_IMM[co][sp][ri],Chiminus[0],TwoSpinType);\
	if ( co == 0 ) {\
	  queue_fload(B[eo][sp][ri],CHI_IMM[co][sp][ri],Chiin,TwoSpinType);\
	  queue_iadd_imm(Chiplus[0],Chiin,ZERO_IMM);\
	} else {\
	  queue_fload(B[eo][sp][ri],CHI_IMM[co][sp][ri],Chiplus [0],TwoSpinType);\
	}\
      }}


    pragma(LOAD_LIM,2);
    LOAD_CHI_MU0(0,0)
    pragma(DCBT_POST,1);

    CHIDRAIN

    int neo_a = NEO;
    int neo_b = NEO;
    eo_a = 0;
    eo_b = 0;

    for ( co = 0; co <3 ; co ++ ) {

        pragma(LOAD_LIM,1);
        if ( co == 0 ) {
            // Use the third colour for unrolling the loads
            A[1][0][0] = PSI[2][0][0];
            A[1][0][1] = PSI[2][0][1];
            A[1][1][0] = PSI[2][1][0];
            A[1][1][1] = PSI[2][1][1];
            B[1][0][0] = PSI[2][2][0];
            B[1][0][1] = PSI[2][2][1];
            B[1][1][0] = PSI[2][3][0];
            B[1][1][1] = PSI[2][3][1];
            queue_iadd_imm(Chiminus[1],mem,hstk1); // This is invariant of loop
            // Take out
            queue_iadd_imm(Chiplus[1],Chiin     ,PAD_CHI_ATOM);
        }

        /***************************************************************
        * MU = 0 reconstruct                                           *
        ****************************************************************/



        if ( co == 2 ) {
            // Flip to not unrolled due to register pressure
            neo_b = 1;
            neo_a = 2;

            A[1][0][0] = PSI[0][0][0];
            A[1][0][1] = PSI[0][0][1];
            A[1][1][0] = PSI[1][0][0];
            A[1][1][1] = PSI[1][0][1];

            pragma(DCBT_POST,0);
            pragma(DCBT_SPACE,1);
            queue_iadd_imm(Ufetch,Umu,ZERO_IMM);
            //      do_prefetch(Ufetch,0);
            do_prefetch(Ufetch,1);
            do_prefetch(Ufetch,2);
            if ( GaugeType == Double ) {
                do_prefetch(Ufetch,3);
                do_prefetch(Ufetch,4);
            }
        }
        /* psi_0 =  Chiplus[0] + Chiminus[0] */
        /* psi_1 =  Chiplus[1] + Chiminus[1] */

        queue_fadd(PSI[co][0][0],B[eo_b][0][0],A[eo_a][0][0]);
        queue_fadd(PSI[co][0][1],B[eo_b][0][1],A[eo_a][0][1]);
        queue_fadd(PSI[co][1][0],B[eo_b][1][0],A[eo_a][1][0]);
        queue_fadd(PSI[co][1][1],B[eo_b][1][1],A[eo_a][1][1]);

        // Dagger = 0:
        /* psi_2 =-iChiplus[1] +iChiminus[1] */
        /* psi_3 =-iChiplus[0] +iChiminus[0] */
        // Dagger = 1:
        /* psi_2 = iChiplus[1] -iChiminus[1] */
        /* psi_3 = iChiplus[0] -iChiminus[0] */
        if ( dagger == 0 ) {
            queue_fsub(PSI[co][2][0],B[eo_b][1][1],A[eo_a][1][1]);
            queue_fsub(PSI[co][2][1],A[eo_a][1][0],B[eo_b][1][0]);
            queue_fsub(PSI[co][3][0],B[eo_b][0][1],A[eo_a][0][1]);
            queue_fsub(PSI[co][3][1],A[eo_a][0][0],B[eo_b][0][0]);
        } else {
            queue_fsub(PSI[co][2][0],A[eo_a][1][1],B[eo_b][1][1]);
            queue_fsub(PSI[co][2][1],B[eo_b][1][0],A[eo_a][1][0]);
            queue_fsub(PSI[co][3][0],A[eo_a][0][1],B[eo_b][0][1]);
            queue_fsub(PSI[co][3][1],B[eo_b][0][0],A[eo_a][0][0]);
        }

        /***************************************************************
        * MU = 1 reconstruct                                           *
        ****************************************************************/

        eo_a = (eo_a+1)%neo_a;
        eo_b = (eo_b+1)%neo_b;
        for( sp = 0; sp<2; sp++ ) {
            for( ri = 0; ri<2; ri++ ) {

                queue_fload(A[eo_a][sp][ri],CHI_IMM[co][sp][ri],Chiminus[1],TwoSpinType);
                queue_fload(B[eo_b][sp][ri],CHI_IMM[co][sp][ri],Chiplus [1],TwoSpinType);

            }
        }

        if ( co == 0 ) {
            queue_iadd_imm(Chiminus[2],mem,hstk2);
            queue_iadd_imm(Chiminus[3],mem,hstk3);
            queue_iadd_imm(Chiplus[2],Chiplus[1],PAD_CHI_ATOM);
            queue_iadd_imm(Chiplus[3],Chiplus[2],PAD_CHI_ATOM);
        }

        /* psi_0 +=  Chiplus[0] + Chiminus[0] */
        /* psi_1 +=  Chiplus[1] + Chiminus[1] */

        queue_fadd(PSI[co][0][0],PSI[co][0][0],B[eo_b][0][0]);
        queue_fadd(PSI[co][0][1],PSI[co][0][1],B[eo_b][0][1]);
        queue_fadd(PSI[co][1][0],PSI[co][1][0],B[eo_b][1][0]);
        queue_fadd(PSI[co][1][1],PSI[co][1][1],B[eo_b][1][1]);

        queue_fadd(PSI[co][0][0],PSI[co][0][0],A[eo_a][0][0]);
        queue_fadd(PSI[co][0][1],PSI[co][0][1],A[eo_a][0][1]);
        queue_fadd(PSI[co][1][0],PSI[co][1][0],A[eo_a][1][0]);
        queue_fadd(PSI[co][1][1],PSI[co][1][1],A[eo_a][1][1]);

        //Dagger == 0
        /* psi_2 +=  Chiplus[1] - Chiminus[1] */
        /* psi_3 += -Chiplus[0] + Chiminus[0] */
        //Dagger == 1
        /* psi_2 -=  Chiplus[1] - Chiminus[1] */
        /* psi_3 -= -Chiplus[0] + Chiminus[0] */
        if ( dagger == 0 ) {
            queue_fadd(PSI[co][2][0],PSI[co][2][0],B[eo_b][1][0]);
            queue_fadd(PSI[co][2][1],PSI[co][2][1],B[eo_b][1][1]);
            queue_fsub(PSI[co][2][0],PSI[co][2][0],A[eo_a][1][0]);
            queue_fsub(PSI[co][2][1],PSI[co][2][1],A[eo_a][1][1]);

            queue_fsub(PSI[co][3][0],PSI[co][3][0],B[eo_b][0][0]);
            queue_fsub(PSI[co][3][1],PSI[co][3][1],B[eo_b][0][1]);
            queue_fadd(PSI[co][3][0],PSI[co][3][0],A[eo_a][0][0]);
            queue_fadd(PSI[co][3][1],PSI[co][3][1],A[eo_a][0][1]);
        } else {
            queue_fsub(PSI[co][2][0],PSI[co][2][0],B[eo_b][1][0]);
            queue_fsub(PSI[co][2][1],PSI[co][2][1],B[eo_b][1][1]);
            queue_fadd(PSI[co][2][0],PSI[co][2][0],A[eo_a][1][0]);
            queue_fadd(PSI[co][2][1],PSI[co][2][1],A[eo_a][1][1]);

            queue_fadd(PSI[co][3][0],PSI[co][3][0],B[eo_b][0][0]);
            queue_fadd(PSI[co][3][1],PSI[co][3][1],B[eo_b][0][1]);
            queue_fsub(PSI[co][3][0],PSI[co][3][0],A[eo_a][0][0]);
            queue_fsub(PSI[co][3][1],PSI[co][3][1],A[eo_a][0][1]);
        }

        /***************************************************************
        * MU = 2 reconstruct                                           *
        ****************************************************************/
        eo_a = (eo_a+1)%neo_a;
        eo_b = (eo_b+1)%neo_b;
        for( sp = 0; sp<2; sp++ ) {
            for( ri = 0; ri<2; ri++ ) {

                queue_fload(A[eo_a][sp][ri],CHI_IMM[co][sp][ri],Chiminus[2],TwoSpinType);
                queue_fload(B[eo_b][sp][ri],CHI_IMM[co][sp][ri],Chiplus [2],TwoSpinType);

            }
        }

        /* psi_0 +=  Chiplus[0] + Chiminus[0] */
        /* psi_1 +=  Chiplus[1] + Chiminus[1] */

        queue_fadd(PSI[co][0][0],PSI[co][0][0],B[eo_b][0][0]);
        queue_fadd(PSI[co][0][1],PSI[co][0][1],B[eo_b][0][1]);
        queue_fadd(PSI[co][1][0],PSI[co][1][0],B[eo_b][1][0]);
        queue_fadd(PSI[co][1][1],PSI[co][1][1],B[eo_b][1][1]);

        queue_fadd(PSI[co][0][0],PSI[co][0][0],A[eo_a][0][0]);
        queue_fadd(PSI[co][0][1],PSI[co][0][1],A[eo_a][0][1]);
        queue_fadd(PSI[co][1][0],PSI[co][1][0],A[eo_a][1][0]);
        queue_fadd(PSI[co][1][1],PSI[co][1][1],A[eo_a][1][1]);

        //Dagger == 0
        /* psi_2 +=-iChiplus[0] +iChiminus[0] */
        /* psi_3 += iChiplus[1] -iChiminus[1] */
        //Dagger == 1

        /* psi_2 -=-iChiplus[0] +iChiminus[0] */
        /* psi_3 -= iChiplus[1] -iChiminus[1] */
        if ( dagger == 0 ) {
            queue_fadd(PSI[co][2][0],PSI[co][2][0],B[eo_b][0][1]);
            queue_fsub(PSI[co][2][1],PSI[co][2][1],B[eo_b][0][0]);
            queue_fsub(PSI[co][2][0],PSI[co][2][0],A[eo_a][0][1]);
            queue_fadd(PSI[co][2][1],PSI[co][2][1],A[eo_a][0][0]);

            queue_fsub(PSI[co][3][0],PSI[co][3][0],B[eo_b][1][1]);
            queue_fadd(PSI[co][3][1],PSI[co][3][1],B[eo_b][1][0]);
            queue_fadd(PSI[co][3][0],PSI[co][3][0],A[eo_a][1][1]);
            queue_fsub(PSI[co][3][1],PSI[co][3][1],A[eo_a][1][0]);
        } else {
            queue_fsub(PSI[co][2][0],PSI[co][2][0],B[eo_b][0][1]);
            queue_fadd(PSI[co][2][1],PSI[co][2][1],B[eo_b][0][0]);
            queue_fadd(PSI[co][2][0],PSI[co][2][0],A[eo_a][0][1]);
            queue_fsub(PSI[co][2][1],PSI[co][2][1],A[eo_a][0][0]);

            queue_fadd(PSI[co][3][0],PSI[co][3][0],B[eo_b][1][1]);
            queue_fsub(PSI[co][3][1],PSI[co][3][1],B[eo_b][1][0]);
            queue_fsub(PSI[co][3][0],PSI[co][3][0],A[eo_a][1][1]);
            queue_fadd(PSI[co][3][1],PSI[co][3][1],A[eo_a][1][0]);
        }


        /***************************************************************
        * MU = 3 reconstruct                                           *
        ****************************************************************/
        pragma(LOAD_LIM,2);

        eo_a = (eo_a+1)%neo_a;
        eo_b = (eo_b+1)%neo_b;
        for( sp = 0; sp<2; sp++ ) {
            for( ri = 0; ri<2; ri++ ) {
                queue_fload(A[eo_a][sp][ri],CHI_IMM[co][sp][ri],Chiminus[3],TwoSpinType);
                queue_fload(B[eo_b][sp][ri],CHI_IMM[co][sp][ri],Chiplus [3],TwoSpinType );
            }
        }

        /* psi_0 +=  Chiplus[0] + Chiminus[0] */
        /* psi_1 +=  Chiplus[1] + Chiminus[1] */

        queue_fadd(PSI[co][0][0],PSI[co][0][0],B[eo_b][0][0]);
        queue_fadd(PSI[co][0][1],PSI[co][0][1],B[eo_b][0][1]);
        queue_fadd(PSI[co][1][0],PSI[co][1][0],B[eo_b][1][0]);
        queue_fadd(PSI[co][1][1],PSI[co][1][1],B[eo_b][1][1]);


        //Dagger == 0
        /* psi_2 +=  Chiplus[0] - Chiminus[0] */
        /* psi_3 +=  Chiplus[1] - Chiminus[1] */
        //Dagger == 1
        /* psi_2 -=  Chiplus[0] - Chiminus[0] */
        /* psi_3 -=  Chiplus[1] - Chiminus[1] */
        if ( dagger == 0 ) {
            queue_fadd(PSI[co][2][0],PSI[co][2][0],B[eo_b][0][0]);
            queue_fadd(PSI[co][2][1],PSI[co][2][1],B[eo_b][0][1]);
            queue_fadd(PSI[co][3][0],PSI[co][3][0],B[eo_b][1][0]);
            queue_fadd(PSI[co][3][1],PSI[co][3][1],B[eo_b][1][1]);
        } else {
            queue_fsub(PSI[co][2][0],PSI[co][2][0],B[eo_b][0][0]);
            queue_fsub(PSI[co][2][1],PSI[co][2][1],B[eo_b][0][1]);
            queue_fsub(PSI[co][3][0],PSI[co][3][0],B[eo_b][1][0]);
            queue_fsub(PSI[co][3][1],PSI[co][3][1],B[eo_b][1][1]);
        }

        queue_fadd(PSI[co][0][0],PSI[co][0][0],A[eo_a][0][0]);
        queue_fadd(PSI[co][0][1],PSI[co][0][1],A[eo_a][0][1]);
        queue_fadd(PSI[co][1][0],PSI[co][1][0],A[eo_a][1][0]);
        queue_fadd(PSI[co][1][1],PSI[co][1][1],A[eo_a][1][1]);

        if ( dagger == 0 ) {
            queue_fsub(PSI[co][2][0],PSI[co][2][0],A[eo_a][0][0]);
            queue_fsub(PSI[co][2][1],PSI[co][2][1],A[eo_a][0][1]);
            queue_fsub(PSI[co][3][0],PSI[co][3][0],A[eo_a][1][0]);
            queue_fsub(PSI[co][3][1],PSI[co][3][1],A[eo_a][1][1]);
        } else {
            queue_fadd(PSI[co][2][0],PSI[co][2][0],A[eo_a][0][0]);
            queue_fadd(PSI[co][2][1],PSI[co][2][1],A[eo_a][0][1]);
            queue_fadd(PSI[co][3][0],PSI[co][3][0],A[eo_a][1][0]);
            queue_fadd(PSI[co][3][1],PSI[co][3][1],A[eo_a][1][1]);
        }
        /*
         * Store the spinors. If this is problematic
         * in terms of PEC WriteBuf misses, I could
         * store to the stack and copy out later.
         */

        if ( co != 2 ) {
            LOAD_CHI_MU0(0,co+1)
            eo_a=0;
            eo_b=0;
        }

        queue_fstore(PSI[co][0][0],PSI_IMM[0][co][0],psi,FourSpinType);
        queue_fstore(PSI[co][0][1],PSI_IMM[0][co][1],psi,FourSpinType);

    }

    /*
     * Store out in linear order now
     */
    pragma(STORE_LIM,2);
    pragma(DCBT_SPACE,8);

    for ( co=0; co<3; co ++ ) {
        queue_fstore(PSI[co][1][0],PSI_IMM[1][co][0],psi,FourSpinType);
        queue_fstore(PSI[co][1][1],PSI_IMM[1][co][1],psi,FourSpinType);
    }
    for ( co=0; co<3; co ++ ) {
        queue_fstore(PSI[co][2][0],PSI_IMM[2][co][0],psi,FourSpinType);
        queue_fstore(PSI[co][2][1],PSI_IMM[2][co][1],psi,FourSpinType);
    }
    if ( TwoSpinType == FourSpinType ) {
        queue_iadd_imm(Chidrain,psi,CHI_ATOM);
    } else {
        queue_iadd_imm(Chidrain,mem,hbitbucket);
        for ( co=0; co<3; co ++ ) {
            queue_fstore(PSI[co][3][0],PSI_IMM[3][co][0],psi,FourSpinType);
            queue_fstore(PSI[co][3][1],PSI_IMM[3][co][1],psi,FourSpinType);
        }
    }

    queue_iadd_imm(psi,psi,PSI_ATOM);
    /*
     * Put in an artificial dependency here
     * to try to stop the preloads getting above the last load of
     * reconstruct.
     */
    queue_iadd_imm(Chiplus[3],Chiplus[3],ZERO_IMM);
    queue_iadd_imm(Chiin     ,Chiplus[3],PAD_CHI_ATOM);
    pragma(DCBT_SPACE,0);
    do_prefetch(Chiin,0);
    do_prefetch(Chiin,1);
    if ( SizeofDatum(TwoSpinType) == 8 )do_prefetch(Chiin,2);
    PRELOAD_U
    PRELOAD_CHI

    /* TERMINATION point of the loop*/
    stop_loop(branchsite,length);

    CHIDRAIN

    make_inst(DIRECTIVE,Target,retno);

    /*
    *
       * EPILOGUE
       *
       */

    restore_regs();
    free_stack();
    make_inst(DIRECTIVE,Exit_Routine,name);

    return;

}
コード例 #3
0
ファイル: qpx_deriv.C プロジェクト: paboyle/BFM
void dwf_deriv( char *name)
{
  /*
   * This marks the argument registers as defined by ABI as off limits
   * to us until they are freed by "getarg()";
   */
  int dum = defargcount(1);
  int retno;

  /*
   * S=phi^dag (MdagM)^-1 phi
   * 
   * dS = phi^dag (MdagM)^-1 [ dMdag M + Mdag dM ] (MdagM)^-1 phi
   *
   * Let X = (MdagM)^-1 phi
   *     Y = M X = M^-dag phi
   *
   * Want terms:    Ydag dM X
   *                Xdag dMdag Y 
   * 
   * Take Xdag 1-gamma Y
   *
   * Still a bit confused about the 1+g 1-g terms; but this may be simply a factor of two as we add +h.c.
   * Will continue to follow Chroma's routine
   */
  reg_array_2d(Y,Cregs,4,3);  // 4 spinor - 24 regs 
  reg_array_2d(X,Cregs,4,3);  // 4 spinor - 12 regs 
  reg_array_1d(F,Cregs,3);    // Force
  alreg(Z,Cregs);             // Zero
  alreg(creg,Cregs);             // Zero

  offset_3d(CHIIMM,FourSpinType,2,3,2*nsimd());
  offset_3d(PSIIMM,FourSpinType,4,3,2*nsimd());
  offset_3d(GIMM  ,GaugeType, 3, 3 ,2*nsimd() );

  def_off( GAUGE_SITE_IMM, FourSpinType,4*18*nsimd());
  def_off( MAT_IMM  , GaugeType,18*nsimd());
  def_off( PSI_IMM  , FourSpinType,24*nsimd());
  def_off( CHI_IMM  , FourSpinType,12*nsimd());
  def_off( CONST_ZERO_OFFSET,Double,2*2*nsimd());

  /*
   * Integer registers
   */
  alreg(F_p,Iregs);  /*Pointer to the current cpt of force field    */
  alreg(F_p_s,Iregs);
  alreg(Y_mu,Iregs);  
  alreg(Y_p,Iregs);  
  alreg(X_p,Iregs);  

  alreg(length,Iregs);   /*number of sites*/
  alreg(tab,Iregs);      /*Pointer to current entry in offset table*/
  alreg(Complex_i,Iregs);/*Point to (0,1)x Nsimd*/
  alreg(Ls,Iregs);        
  alreg(s,Iregs);        

  alreg(recbuf_base,Iregs);
  alreg(args,Iregs);        
  alreg(s_offset,Iregs);        
  /*Useful integer immediate constants, in units of Fsize*/
  def_off( ZERO_IMM,Byte,0);
  def_off( minusone,Byte,-1);
  def_off( one,Byte,1);

  // Mask bits for predicating directions
  def_off( mask_0,Byte,1);
  def_off( mask_1,Byte,2);
  def_off( mask_2,Byte,4);
  def_off( mask_3,Byte,8);
  def_off( mask_4,Byte,16);
  def_off( mask_5,Byte,32);
  def_off( mask_6,Byte,64);
  def_off( mask_7,Byte,128);
  int mask_imm[8] = { 
    mask_0,
    mask_1,
    mask_2,
    mask_3,
    mask_4,
    mask_5,
    mask_6,
    mask_7
  };
  alreg(mask ,Iregs);

  offset_1d(TAB_IMM,TableType,17);

  // Integer sizes
  int Isize      = def_offset(PROC->I_size,Byte,"Isize");
  int ISsize     = def_offset(PROC->IS_size,Byte,"ISsize");
  int i,j,co,sp;

  /*********************************************************************/

  make_inst(DIRECTIVE,Enter_Routine,name);
  grab_stack(0);
  save_regs();

  /*********************************************
   * our arguments 
   *********************************************
   */
  getarg(args); /*Pointer to arg list*/

  queue_iload(X_p, ZERO_IMM,args);   queue_load_addr(args,Isize,args);   //0
  queue_iload(Y_p, ZERO_IMM,args);   queue_load_addr(args,Isize,args);   //1
  queue_iload(F_p,   ZERO_IMM,args);   queue_load_addr(args,Isize,args);   //2
  queue_iload(length,ZERO_IMM,args);   queue_load_addr(args,Isize,args);   //3
  queue_iload(Ls,    ZERO_IMM,args);   queue_load_addr(args,Isize,args);   //4
  queue_iload(tab,   ZERO_IMM,args);   queue_load_addr(args,Isize,args);   //5
  queue_iload(Complex_i,ZERO_IMM,args);queue_load_addr(args,Isize,args);   //6
                                       queue_load_addr(args,Isize,args);   //7  
  queue_iload(recbuf_base,ZERO_IMM,args);queue_load_addr(args,Isize,args); //8  

  /**************************************************
   * Load common constants into Iregs
   **************************************************
   */
  for (int i =0; i<12; i++ ) { 
    need_constant(i*2*SizeofDatum(FourSpinType)*nsimd());
  }
  for (int i =0; i<9; i++ ) { 
    need_constant(i*2*SizeofDatum(GaugeType)*nsimd());
  }
  complex_constants_prepare(creg,Complex_i);
  complex_load(Z,CONST_ZERO_OFFSET,Complex_i,Double);

  // Site loop 
  retno = get_target_label(); 
  check_iterations(length,retno); 
  int branchsite = start_loop(length);
  
  // S loop
  queue_iload_short(mask,TAB_IMM[10],tab);
  queue_iadd_imm (s,Ls,ZERO_IMM);
  queue_iload_imm(s_offset,ZERO_IMM);        
  int branchls   = start_loop(s); 
  queue_iadd_imm(F_p_s,F_p,ZERO_IMM);
  //  debugI(s);

  // Loop over directions
  for ( int mu=0;mu<4;mu++ ) {

    int dir = mu*2+1;  // Always in forward dir

     // Complex branch structure for interior/exterior neighbours
     int lab_proj_mu     = get_target_label(); 
     int lab_continue    = get_target_label(); 
     queue_iand_imm  (Y_mu,mask,mask_imm[dir]); // non-zero if exterior
     check_iterations(Y_mu,lab_proj_mu);

     // Exterior points are already projected. Just load.
       queue_iload_short(Y_mu,TAB_IMM[dir],tab);  
       queue_iadd       (Y_mu,Y_mu,recbuf_base);  
       //       debugI(Y_mu);
       //debugI(recbuf_base);
       queue_iadd       (Y_mu,Y_mu,s_offset); 
       for(int sp=0;sp<2;sp++){
	 for(int co=0;co<3;co++){
	   complex_load(Y[sp][co],PSIIMM[sp][co][0],Y_mu,FourSpinType);
	 }
       }

  jump(lab_continue);
  make_inst(DIRECTIVE,Target,lab_proj_mu); 

      // Interior points are not already projected.
      // * Spin project 4 spinor                                        

     queue_iload_short(Y_mu,TAB_IMM[dir],tab);  
     //     debugI(tab);
     //     debugI(Y_mu);
     queue_iadd       (Y_mu,Y_mu,Y_p);    
     queue_iadd       (Y_mu,Y_mu,s_offset); // offset for this "s"
     queue_iadd       (Y_mu,Y_mu,s_offset); // offset for this "s"

     for(int sp=0;sp<4;sp++){
       for(int co=0;co<3;co++){
	 complex_load(X[sp][co],PSIIMM[sp][co][0],Y_mu,FourSpinType);
	 //	 debugC(X[sp][co]);
       }
     }

    int pm = 1;       // pm=0 == 1+gamma, pm=1 => 1-gamma
    if ( dagger ) pm = 0;

     if ( mu == 0 ) {
	 if ( pm ==0 ) {
	   for(co=0;co<3;co++) complex_ApiB(Y[0][co],X[0][co],X[3][co]);
	   for(co=0;co<3;co++) complex_ApiB(Y[1][co],X[1][co],X[2][co]);
	 } else {
	   for(co=0;co<3;co++) complex_AmiB(Y[0][co],X[0][co],X[3][co]);
	   for(co=0;co<3;co++) complex_AmiB(Y[1][co],X[1][co],X[2][co]);
	 }
       } else if ( mu == 1 ) {
	 if ( pm ==0 ) {
	   for(co=0;co<3;co++) complex_sub(Y[0][co],X[0][co],X[3][co]);
	   for(co=0;co<3;co++) complex_add(Y[1][co],X[1][co],X[2][co]);
	 } else {
	   for(co=0;co<3;co++) complex_add(Y[0][co],X[0][co],X[3][co]);
	   for(co=0;co<3;co++) complex_sub(Y[1][co],X[1][co],X[2][co]);
	 }
       } else if ( mu == 2 ) {
	 if ( pm ==0 ) {
	   for(co=0;co<3;co++) complex_ApiB(Y[0][co],X[0][co],X[2][co]);
	   for(co=0;co<3;co++) complex_AmiB(Y[1][co],X[1][co],X[3][co]);
	 } else {
	   for(co=0;co<3;co++) complex_AmiB(Y[0][co],X[0][co],X[2][co]);
	   for(co=0;co<3;co++) complex_ApiB(Y[1][co],X[1][co],X[3][co]);
	 }
       } else if ( mu == 3 ) {
	 if ( pm ==0 ) {
	   for(co=0;co<3;co++) complex_add(Y[0][co],X[0][co],X[2][co]);
	   for(co=0;co<3;co++) complex_add(Y[1][co],X[1][co],X[3][co]);
	 } else {
	   for(co=0;co<3;co++) complex_sub(Y[0][co],X[0][co],X[2][co]); 
	   for(co=0;co<3;co++) complex_sub(Y[1][co],X[1][co],X[3][co]);
	 }
     }

  make_inst(DIRECTIVE,Target,lab_continue);

       ///////////////////////////////////////////////////////////////
       // Y contains spin projection of forward neighbour in mu direction
       // Repromote to Y to 4 spinor
       ///////////////////////////////////////////////////////////////
       for(int co_y=0;co_y<3;co_y++){
	 
	 if ( (mu==0) && (pm==0) )  complex_AmiB(Y[2][co_y],Z,Y[1][co_y]);
	 if ( (mu==0) && (pm==1) )  complex_ApiB(Y[2][co_y],Z,Y[1][co_y]);
	 if ( (mu==1) && (pm==0) )  complex_add (Y[2][co_y],Z,Y[1][co_y]);
	 if ( (mu==1) && (pm==1) )  complex_sub (Y[2][co_y],Z,Y[1][co_y]);
	 if ( (mu==2) && (pm==0) )  complex_AmiB(Y[2][co_y],Z,Y[0][co_y]);
	 if ( (mu==2) && (pm==1) )  complex_ApiB(Y[2][co_y],Z,Y[0][co_y]);
	 if ( (mu==3) && (pm==0) )  complex_add (Y[2][co_y],Z,Y[0][co_y]);
	 if ( (mu==3) && (pm==1) )  complex_sub (Y[2][co_y],Z,Y[0][co_y]);

	 if ( (mu==0) && (pm==0) ) complex_AmiB(Y[3][co_y],Z,Y[0][co_y]);
	 if ( (mu==0) && (pm==1) ) complex_ApiB(Y[3][co_y],Z,Y[0][co_y]);
	 if ( (mu==1) && (pm==0) ) complex_sub (Y[3][co_y],Z,Y[0][co_y]);
	 if ( (mu==1) && (pm==1) ) complex_add (Y[3][co_y],Z,Y[0][co_y]);
	 if ( (mu==2) && (pm==0) ) complex_ApiB(Y[3][co_y],Z,Y[1][co_y]);
	 if ( (mu==2) && (pm==1) ) complex_AmiB(Y[3][co_y],Z,Y[1][co_y]);
	 if ( (mu==3) && (pm==0) ) complex_add (Y[3][co_y],Z,Y[1][co_y]);
	 if ( (mu==3) && (pm==1) ) complex_sub (Y[3][co_y],Z,Y[1][co_y]);

       }

       ///////////////////////////////////////////////////////////////
       // Load X
       ///////////////////////////////////////////////////////////////
       for(int co_x=0;co_x<3;co_x++){
	 for(int sp=0;sp<4;sp++) {
	   complex_load(X[sp][co_x],PSIIMM[sp][co_x][0],X_p,FourSpinType);
	 }
       }

       ///////////////////////////////////////////////////////////////
       // Spin trace tensor product
       ///////////////////////////////////////////////////////////////
       for(int co_x=0;co_x<3;co_x++){
	 // Spin trace outer product
	 for ( int co_y=0;co_y<3;co_y++) complex_load (F[co_y],GIMM[co_y][co_x][0],F_p_s);  
	 for ( int co_y=0;co_y<3;co_y++) complex_conjmadd(F[co_y],X[0][co_x],Y[0][co_y]);  
	 for ( int co_y=0;co_y<3;co_y++) complex_conjmadd(F[co_y],X[1][co_x],Y[1][co_y]);  
	 for ( int co_y=0;co_y<3;co_y++) complex_conjmadd(F[co_y],X[2][co_x],Y[2][co_y]);  
	 for ( int co_y=0;co_y<3;co_y++) complex_conjmadd(F[co_y],X[3][co_x],Y[3][co_y]);  
	 
	 for ( int co_y=0;co_y<3;co_y++) complex_store(F[co_y],GIMM[co_y][co_x][0],F_p_s);  
	 
       }

     queue_load_addr(F_p_s,MAT_IMM,F_p_s); 

  }
  queue_iadd_imm(X_p,X_p,PSI_IMM);
  queue_iadd_imm(s_offset,s_offset,CHI_IMM);
  stop_loop(branchls,s); 
  queue_iadd_imm(F_p,F_p_s,ZERO_IMM);
  queue_load_addr(tab,TAB_IMM[16],tab);
  stop_loop(branchsite,length);
  make_inst(DIRECTIVE,Target,retno);

                  /*
		   *
		   * EPILOGUE
		   *
		   */

  restore_regs();
  free_stack();
  make_inst(DIRECTIVE,Exit_Routine,name);

  return;
}
コード例 #4
0
ファイル: MC.cpp プロジェクト: angjminer/mc
static void generate_geometry_naive_surface_nets()
{
	static Vector<int> inds(65*65*2);

	for (int z = 0; z < 64; z++) {
	for (int y = 0; y < 64; y++) {
	for (int x = 0; x < 64; x++) {
		const Vec3i p(x, y, z);
		const float vs[8] = {
			voxels[offset_3d({x,   y,   z},   Vec3i(65))],
			voxels[offset_3d({x+1, y,   z},   Vec3i(65))],
			voxels[offset_3d({x,   y+1, z},   Vec3i(65))],
			voxels[offset_3d({x+1, y+1, z},   Vec3i(65))],
			voxels[offset_3d({x,   y,   z+1}, Vec3i(65))],
			voxels[offset_3d({x+1, y,   z+1}, Vec3i(65))],
			voxels[offset_3d({x,   y+1, z+1}, Vec3i(65))],
			voxels[offset_3d({x+1, y+1, z+1}, Vec3i(65))],
		};

		const int config_n =
			((vs[0] < 0.0f) << 0) |
			((vs[1] < 0.0f) << 1) |
			((vs[2] < 0.0f) << 2) |
			((vs[3] < 0.0f) << 3) |
			((vs[4] < 0.0f) << 4) |
			((vs[5] < 0.0f) << 5) |
			((vs[6] < 0.0f) << 6) |
			((vs[7] < 0.0f) << 7);

		if (config_n == 0 || config_n == 255)
			continue;

		Vec3f average(0);
		int average_n = 0;
		auto do_edge = [&](float va, float vb, int axis, const Vec3i &p) {
			if ((va < 0.0) == (vb < 0.0))
				return;

			Vec3f v = ToVec3f(p);
			v[axis] += va / (va - vb);
			average += v;
			average_n++;
		};

		do_edge(vs[0], vs[1], 0, Vec3i(x, y,     z));
		do_edge(vs[2], vs[3], 0, Vec3i(x, y+1,   z));
		do_edge(vs[4], vs[5], 0, Vec3i(x, y,     z+1));
		do_edge(vs[6], vs[7], 0, Vec3i(x, y+1,   z+1));
		do_edge(vs[0], vs[2], 1, Vec3i(x,   y,   z));
		do_edge(vs[1], vs[3], 1, Vec3i(x+1, y,   z));
		do_edge(vs[4], vs[6], 1, Vec3i(x,   y,   z+1));
		do_edge(vs[5], vs[7], 1, Vec3i(x+1, y,   z+1));
		do_edge(vs[0], vs[4], 2, Vec3i(x,   y,   z));
		do_edge(vs[1], vs[5], 2, Vec3i(x+1, y,   z));
		do_edge(vs[2], vs[6], 2, Vec3i(x,   y+1, z));
		do_edge(vs[3], vs[7], 2, Vec3i(x+1, y+1, z));

		const Vec3f v = average / Vec3f(average_n);
		inds[offset_3d_slab(p, Vec3i(65))] = vertices.length();
		vertices.append({v, Vec3f(0)});

		const bool flip = vs[0] < 0.0f;
		if (p.y > 0 && p.z > 0 && (vs[0] < 0.0f) != (vs[1] < 0.0f)) {
			quad(flip,
				inds[offset_3d_slab(Vec3i(p.x, p.y,   p.z),   Vec3i(65))],
				inds[offset_3d_slab(Vec3i(p.x, p.y,   p.z-1), Vec3i(65))],
				inds[offset_3d_slab(Vec3i(p.x, p.y-1, p.z-1), Vec3i(65))],
				inds[offset_3d_slab(Vec3i(p.x, p.y-1, p.z),   Vec3i(65))]
			);
		}
		if (p.x > 0 && p.z > 0 && (vs[0] < 0.0f) != (vs[2] < 0.0f)) {
			quad(flip,
				inds[offset_3d_slab(Vec3i(p.x,   p.y, p.z),   Vec3i(65))],
				inds[offset_3d_slab(Vec3i(p.x-1, p.y, p.z),   Vec3i(65))],
				inds[offset_3d_slab(Vec3i(p.x-1, p.y, p.z-1), Vec3i(65))],
				inds[offset_3d_slab(Vec3i(p.x,   p.y, p.z-1), Vec3i(65))]
			);
		}
		if (p.x > 0 && p.y > 0 && (vs[0] < 0.0f) != (vs[4] < 0.0f)) {
			quad(flip,
				inds[offset_3d_slab(Vec3i(p.x,   p.y,   p.z), Vec3i(65))],
				inds[offset_3d_slab(Vec3i(p.x,   p.y-1, p.z), Vec3i(65))],
				inds[offset_3d_slab(Vec3i(p.x-1, p.y-1, p.z), Vec3i(65))],
				inds[offset_3d_slab(Vec3i(p.x-1, p.y,   p.z), Vec3i(65))]
			);
		}
	}}}
	for (Vertex &v : vertices)
		v.normal = normalize(v.normal);
}
コード例 #5
0
ファイル: MC.cpp プロジェクト: angjminer/mc
static void generate_geometry_smooth()
{
	static Vector<Vec3i> slab_inds(65*65*2);

	for (int z = 0; z < 64; z++) {
	for (int y = 0; y < 64; y++) {
	for (int x = 0; x < 64; x++) {
		const Vec3i p(x, y, z);
		const float vs[8] = {
			voxels[offset_3d({x,   y,   z},   Vec3i(65))],
			voxels[offset_3d({x+1, y,   z},   Vec3i(65))],
			voxels[offset_3d({x,   y+1, z},   Vec3i(65))],
			voxels[offset_3d({x+1, y+1, z},   Vec3i(65))],
			voxels[offset_3d({x,   y,   z+1}, Vec3i(65))],
			voxels[offset_3d({x+1, y,   z+1}, Vec3i(65))],
			voxels[offset_3d({x,   y+1, z+1}, Vec3i(65))],
			voxels[offset_3d({x+1, y+1, z+1}, Vec3i(65))],
		};

		const int config_n =
			((vs[0] < 0.0f) << 0) |
			((vs[1] < 0.0f) << 1) |
			((vs[2] < 0.0f) << 2) |
			((vs[3] < 0.0f) << 3) |
			((vs[4] < 0.0f) << 4) |
			((vs[5] < 0.0f) << 5) |
			((vs[6] < 0.0f) << 6) |
			((vs[7] < 0.0f) << 7);

		if (config_n == 0 || config_n == 255)
			continue;

		auto do_edge = [&](int n_edge, float va, float vb, int axis, const Vec3i &p) {
			if ((va < 0.0) == (vb < 0.0))
				return;

			Vec3f v = ToVec3f(p);
			v[axis] += va / (va - vb);
			slab_inds[offset_3d_slab(p, Vec3i(65))][axis] = vertices.length();
			vertices.append({v, Vec3f(0)});
		};

		if (p.y == 0 && p.z == 0)
			do_edge(0,  vs[0], vs[1], 0, Vec3i(x, y,   z));
		if (p.z == 0)
			do_edge(1,  vs[2], vs[3], 0, Vec3i(x, y+1, z));
		if (p.y == 0)
			do_edge(2,  vs[4], vs[5], 0, Vec3i(x, y,   z+1));
		do_edge(3,  vs[6], vs[7], 0, Vec3i(x, y+1, z+1));

		if (p.x == 0 && p.z == 0)
			do_edge(4,  vs[0], vs[2], 1, Vec3i(x,   y, z));
		if (p.z == 0)
			do_edge(5,  vs[1], vs[3], 1, Vec3i(x+1, y, z));
		if (p.x == 0)
			do_edge(6,  vs[4], vs[6], 1, Vec3i(x,   y, z+1));
		do_edge(7,  vs[5], vs[7], 1, Vec3i(x+1, y, z+1));

		if (p.x == 0 && p.y == 0)
			do_edge(8,  vs[0], vs[4], 2, Vec3i(x,   y,   z));
		if (p.y == 0)
			do_edge(9,  vs[1], vs[5], 2, Vec3i(x+1, y,   z));
		if (p.x == 0)
			do_edge(10, vs[2], vs[6], 2, Vec3i(x,   y+1, z));
		do_edge(11, vs[3], vs[7], 2, Vec3i(x+1, y+1, z));

		int edge_indices[12];
		edge_indices[0]  = slab_inds[offset_3d_slab({p.x, p.y,   p.z  }, Vec3i(65))].x;
		edge_indices[1]  = slab_inds[offset_3d_slab({p.x, p.y+1, p.z  }, Vec3i(65))].x;
		edge_indices[2]  = slab_inds[offset_3d_slab({p.x, p.y,   p.z+1}, Vec3i(65))].x;
		edge_indices[3]  = slab_inds[offset_3d_slab({p.x, p.y+1, p.z+1}, Vec3i(65))].x;
		edge_indices[4]  = slab_inds[offset_3d_slab({p.x,   p.y, p.z  }, Vec3i(65))].y;
		edge_indices[5]  = slab_inds[offset_3d_slab({p.x+1, p.y, p.z  }, Vec3i(65))].y;
		edge_indices[6]  = slab_inds[offset_3d_slab({p.x,   p.y, p.z+1}, Vec3i(65))].y;
		edge_indices[7]  = slab_inds[offset_3d_slab({p.x+1, p.y, p.z+1}, Vec3i(65))].y;
		edge_indices[8]  = slab_inds[offset_3d_slab({p.x,   p.y,   p.z}, Vec3i(65))].z;
		edge_indices[9]  = slab_inds[offset_3d_slab({p.x+1, p.y,   p.z}, Vec3i(65))].z;
		edge_indices[10] = slab_inds[offset_3d_slab({p.x,   p.y+1, p.z}, Vec3i(65))].z;
		edge_indices[11] = slab_inds[offset_3d_slab({p.x+1, p.y+1, p.z}, Vec3i(65))].z;

		const uint64_t config = marching_cube_tris[config_n];
		const int n_triangles = config & 0xF;
		const int n_indices = n_triangles * 3;
		const int index_base = indices.length();

		int offset = 4;
		for (int i = 0; i < n_indices; i++) {
			const int edge = (config >> offset) & 0xF;
			indices.append(edge_indices[edge]);
			offset += 4;
		}
		for (int i = 0; i < n_triangles; i++) {
			triangle(
				indices[index_base+i*3+0],
				indices[index_base+i*3+1],
				indices[index_base+i*3+2]);
		}
	}}}
	for (Vertex &v : vertices)
		v.normal = normalize(v.normal);
}