コード例 #1
0
ファイル: esd_output.c プロジェクト: BackupTheBerlios/galan
PRIVATE int init_instance(Generator *g) {
  Data *data;

  instance_count++;
  if (instance_count > 1)
    /* Not allowed more than one of these things. */
    return 0;

  data = safe_malloc(sizeof(Data));

  data->audiofd = open_audiofd();

  if (data->audiofd < 0) {
    free(data);
    popup_msgbox("Error", MSGBOX_OK, 120000, MSGBOX_OK, "Could not open ESound audio subsystem.");
    return 0;
  }

  data->input_tag = -1;
  data->clock = gen_register_clock(g, "ESD Output Clock", clock_handler);

  g->data = data;

  gen_register_realtime_fn(g, realtime_handler);
  gen_select_clock(data->clock);	/* a not unreasonable assumption? */

  return 1;
}
コード例 #2
0
ファイル: win_output.c プロジェクト: BackupTheBerlios/galan
PRIVATE void clock_handler(AClock *clock, AClockReason reason) {
  Data *data = clock->gen->data;

  switch (reason) {
    case CLOCK_DISABLE:
      if (data->open) {
	gtk_idle_remove(data->idle_tag);
	close_audiofd(data->hwo);
	data->open = FALSE;
      }
      break;

    case CLOCK_ENABLE:
      if (!data->open) {
	data->open = open_audiofd(&data->hwo);
	if (data->open)
	  data->idle_tag = gtk_idle_add(idle_handler, NULL);
      }
      break;

    default:
      g_message("Unreachable code reached (win_output)... reason = %d", reason);
      break;
  }
}
コード例 #3
0
ファイル: alsa_out.c プロジェクト: recri/keyer
int main (int argc, char *argv[]) {
    char jack_name[64] = "alsa_out";
    char alsa_device[64] = "hw:0";
    char server_name[64] = "default";

    extern char *optarg;
    extern int optind, optopt;
    int errflg=0;
    int c;

    while ((c = getopt(argc, argv, "ivj:r:c:p:n:d:q:m:t:f:F:C:Q:s:S:")) != -1) {
	switch(c) {
	    case 'j':
	        strncpy(jack_name,optarg, sizeof(jack_name));
		break;
	    case 'r':
		sample_rate = atoi(optarg);
		break;
	    case 'c':
		num_channels = atoi(optarg);
		break;
	    case 'p':
		period_size = atoi(optarg);
		break;
	    case 'n':
		num_periods = atoi(optarg);
		break;
	    case 'd':
	        strncpy(alsa_device,optarg,sizeof(alsa_device));
		break;
	    case 't':
		target_delay = atoi(optarg);
		break;
	    case 'q':
		samplerate_quality = atoi(optarg);
		break;
	    case 'm':
		max_diff = atoi(optarg);
		break;
	    case 'f':
		catch_factor = atoi(optarg);
		break;
	    case 'F':
		catch_factor2 = atoi(optarg);
		break;
	    case 'C':
		pclamp = (double) atoi(optarg);
		break;
	    case 'Q':
		controlquant = (double) atoi(optarg);
		break;
	    case 'v':
		verbose = 1;
		break;
	    case 'i':
		instrument = 1;
		break;
	    case 's':
		smooth_size = atoi(optarg);
		break;
	    case 'S':
	        strncpy(server_name,optarg,sizeof(server_name));
		break;
	    case ':':
		fprintf(stderr,
			"Option -%c requires an operand\n", optopt);
		errflg++;
		break;
	    case '?':
		fprintf(stderr,
			"Unrecognized option: -%c\n", optopt);
		errflg++;
	}
    }
    if (errflg) {
	printUsage();
	exit(2);
    }

    if( (samplerate_quality < 0) || (samplerate_quality > 4) ) {
	fprintf (stderr, "invalid samplerate quality\n");
	return 1;
    }
    if ((client = jack_client_open (jack_name, JackServerName, NULL, server_name)) == 0) {
	fprintf (stderr, "jack server not running?\n");
	return 1;
    }

    /* tell the JACK server to call `process()' whenever
       there is work to be done.
       */

    jack_set_process_callback (client, process, 0);

    /* tell the JACK server to call `jack_shutdown()' if
       it ever shuts down, either entirely, or if it
       just decides to stop calling us.
       */

    jack_on_shutdown (client, jack_shutdown, 0);

    if (jack_set_latency_callback)
	    jack_set_latency_callback (client, latency_cb, 0);

    // get jack sample_rate
    
    jack_sample_rate = jack_get_sample_rate( client );

    if( !sample_rate )
	sample_rate = jack_sample_rate;

    static_resample_factor =  (double) sample_rate / (double) jack_sample_rate;
    resample_lower_limit = static_resample_factor * 0.25;
    resample_upper_limit = static_resample_factor * 4.0;
    resample_mean = static_resample_factor;

    offset_array = malloc( sizeof(double) * smooth_size );
    if( offset_array == NULL ) {
	    fprintf( stderr, "no memory for offset_array !!!\n" );
	    exit(20);
    }
    window_array = malloc( sizeof(double) * smooth_size );
    if( window_array == NULL ) {
	    fprintf( stderr, "no memory for window_array !!!\n" );
	    exit(20);
    }
    int i;
    for( i=0; i<smooth_size; i++ ) {
	    offset_array[i] = 0.0;
	    window_array[i] = hann( (double) i / ((double) smooth_size - 1.0) );
    }

    jack_buffer_size = jack_get_buffer_size( client );
    // Setup target delay and max_diff for the normal user, who does not play with them...
    if( !target_delay ) 
	target_delay = (num_periods*period_size / 2) - jack_buffer_size/2;

    if( !max_diff )
	max_diff = target_delay;	

    if( max_diff > target_delay ) {
	    fprintf( stderr, "target_delay (%d) cant be smaller than max_diff(%d)\n", target_delay, max_diff );
	    exit(20);
    }
    if( (target_delay+max_diff) > (num_periods*period_size) ) {
	    fprintf( stderr, "target_delay+max_diff (%d) cant be bigger than buffersize(%d)\n", target_delay+max_diff, num_periods*period_size );
	    exit(20);
    }
    // now open the alsa fd...
    alsa_handle = open_audiofd( alsa_device, 0, sample_rate, num_channels, period_size, num_periods);
    if( alsa_handle == 0 )
	exit(20);

    printf( "selected sample format: %s\n", formats[format].name );

    // alloc input ports, which are blasted out to alsa...
    alloc_ports( 0, num_channels );

    outbuf = malloc( num_periods * period_size * formats[format].sample_size * num_channels );
    resampbuf = malloc( num_periods * period_size * sizeof( float ) );
    tmpbuf = malloc( 512 * formats[format].sample_size * num_channels );

    if ((outbuf == NULL) || (resampbuf == NULL) || (tmpbuf == NULL))
    {
	    fprintf( stderr, "no memory for buffers.\n" );
	    exit(20);
    }


    /* tell the JACK server that we are ready to roll */

    if (jack_activate (client)) {
	fprintf (stderr, "cannot activate client");
	return 1;
    }

    signal( SIGTERM, sigterm_handler );
    signal( SIGINT, sigterm_handler );

    if( verbose ) {
	    while(!quit) {
		    usleep(500000);
		    if( output_new_delay ) {
			    printf( "delay = %d\n", output_new_delay );
			    output_new_delay = 0;
		    }
		    printf( "res: %f, \tdiff = %f, \toffset = %f \n", output_resampling_factor, output_diff, output_offset );
	    }
    } else if( instrument ) {
	    printf( "# n\tresamp\tdiff\toffseti\tintegral\n");
	    int n=0;
	    while(!quit) {
		    usleep(1000);
		    printf( "%d\t%f\t%f\t%f\t%f\n", n++, output_resampling_factor, output_diff, output_offset, output_integral );
	    }
    } else {
	    while(!quit)
	    {
		    usleep(500000);
		    if( output_new_delay ) {
			    printf( "delay = %d\n", output_new_delay );
			    output_new_delay = 0;
		    }
	    }
    }

    jack_deactivate( client );
    jack_client_close (client);
    exit (0);
}