コード例 #1
0
ファイル: omath.c プロジェクト: AheadIO/OpenHMD
void oquatf_slerp (float fT, const quatf* rkP, const quatf* rkQ, bool shortestPath, quatf* out_q)
{
	float fCos =  oquatf_get_dot(rkP, rkQ);
	quatf rkT;

	// Do we need to invert rotation?
	if (fCos < 0.0f && shortestPath)
	{
		fCos = -fCos;
		rkT = *rkQ;
		oquatf_inverse(&rkT);
	}
	else
	{
		rkT = *rkQ;
	}

	if (fabsf(fCos) < 1 - 0.001f)
	{
		// Standard case (slerp)
		float fSin = sqrtf(1 - (fCos*fCos));
		float fAngle = atan2f(fSin, fCos); 
		float fInvSin = 1.0f / fSin;
		float fCoeff0 = sin((1.0f - fT) * fAngle) * fInvSin;
		float fCoeff1 = sin(fT * fAngle) * fInvSin;
		
		out_q->x = fCoeff0 * rkP->x + fCoeff1 * rkT.x;
		out_q->y = fCoeff0 * rkP->y + fCoeff1 * rkT.y;
		out_q->z = fCoeff0 * rkP->z + fCoeff1 * rkT.z;
		out_q->w = fCoeff0 * rkP->w + fCoeff1 * rkT.w;
			
		//return fCoeff0 * rkP + fCoeff1 * rkT;
	}
	else
	{
		// There are two situations:
		// 1. "rkP" and "rkQ" are very close (fCos ~= +1), so we can do a linear
		//    interpolation safely.
		// 2. "rkP" and "rkQ" are almost inverse of each other (fCos ~= -1), there
		//    are an infinite number of possibilities interpolation. but we haven't
		//    have method to fix this case, so just use linear interpolation here.
		//Quaternion t = (1.0f - fT) * rkP + fT * rkT;
		
		out_q->x = (1.0f - fT) * rkP->x + fT * rkT.x;
		out_q->y = (1.0f - fT) * rkP->y + fT * rkT.y;
		out_q->z = (1.0f - fT) * rkP->z + fT * rkT.z;
		out_q->w = (1.0f - fT) * rkP->w + fT * rkT.w;
			
		oquatf_normalize_me(out_q);
		
		// taking the complement requires renormalisation
		//t.normalise();
		//return t;
	}
}
コード例 #2
0
ファイル: omath.c プロジェクト: TheOnlyJoey/OpenHMD
void oquatf_inverse(quatf* me)
{
	float dot = oquatf_get_dot(me, me);

	// conjugate
	for(int i = 0; i < 3; i++)
		me->arr[i] = -me->arr[i];
	
	for(int i = 0; i < 4; i++)
		me->arr[i] /= dot;
}