コード例 #1
0
ファイル: gps.cpp プロジェクト: dammstanger/Firmware
void
GPS::publishSatelliteInfo()
{
	if (_gps_num == 1) {
		orb_publish_auto(ORB_ID(satellite_info), &_report_sat_info_pub, _p_report_sat_info, &_gps_sat_orb_instance,
				 ORB_PRIO_DEFAULT);

	} else {
		//we don't publish satellite info for the secondary gps
	}

}
コード例 #2
0
ファイル: output.cpp プロジェクト: MaEtUgR/Firmware
void OutputBase::publish()
{
	int instance;
	mount_orientation_s mount_orientation;

	for (unsigned i = 0; i < 3; ++i) {
		mount_orientation.attitude_euler_angle[i] = _angle_outputs[i];
	}

	//PX4_INFO("roll: %.2f, pitch: %.2f, yaw: %.2f",
	//		(double)_angle_outputs[0],
	//		(double)_angle_outputs[1],
	//		(double)_angle_outputs[2]);

	orb_publish_auto(ORB_ID(mount_orientation), &_mount_orientation_pub, &mount_orientation, &instance, ORB_PRIO_DEFAULT);
}
コード例 #3
0
ファイル: adc.cpp プロジェクト: LiYuanxing/Firmware
void
ADC::update_adc_report(hrt_abstime now)
{
	adc_report_s adc = {};
	adc.timestamp = now;

	unsigned max_num = _channel_count;

	if (max_num > (sizeof(adc.channel_id) / sizeof(adc.channel_id[0]))) {
		max_num = (sizeof(adc.channel_id) / sizeof(adc.channel_id[0]));
	}

	for (unsigned i = 0; i < max_num; i++) {
		adc.channel_id[i] = _samples[i].am_channel;
		adc.channel_value[i] = _samples[i].am_data * 3.3f / 4096.0f;
	}

	int instance;
	orb_publish_auto(ORB_ID(adc_report), &_to_adc_report, &adc, &instance, ORB_PRIO_HIGH);
}
コード例 #4
0
ファイル: gnss.cpp プロジェクト: FantasyJXF/Firmware
void UavcanGnssBridge::gnss_fix_sub_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Fix> &msg)
{
	// This bridge does not support redundant GNSS receivers yet.
	if (_receiver_node_id < 0) {
		_receiver_node_id = msg.getSrcNodeID().get();
		warnx("GNSS receiver node ID: %d", _receiver_node_id);

	} else {
		if (_receiver_node_id != msg.getSrcNodeID().get()) {
			return;  // This GNSS receiver is the redundant one, ignore it.
		}
	}

	auto report = ::vehicle_gps_position_s();

	/*
	 * FIXME HACK
	 * There used to be the following line of code:
	 * 	report.timestamp_position = msg.getMonotonicTimestamp().toUSec();
	 * It stopped working when the time sync feature has been introduced, because it caused libuavcan
	 * to use an independent time source (based on hardware TIM5) instead of HRT.
	 * The proper solution is to be developed.
	 */
	report.timestamp = hrt_absolute_time();
	report.lat = msg.latitude_deg_1e8 / 10;
	report.lon = msg.longitude_deg_1e8 / 10;
	report.alt = msg.height_msl_mm;


	// Check if the msg contains valid covariance information
	const bool valid_position_covariance = !msg.position_covariance.empty();
	const bool valid_velocity_covariance = !msg.velocity_covariance.empty();

	if (valid_position_covariance) {
		float pos_cov[9];
		msg.position_covariance.unpackSquareMatrix(pos_cov);

		// Horizontal position uncertainty
		const float horizontal_pos_variance = math::max(pos_cov[0], pos_cov[4]);
		report.eph = (horizontal_pos_variance > 0) ? sqrtf(horizontal_pos_variance) : -1.0F;

		// Vertical position uncertainty
		report.epv = (pos_cov[8] > 0) ? sqrtf(pos_cov[8]) : -1.0F;

	} else {
		report.eph = -1.0F;
		report.epv = -1.0F;
	}

	if (valid_velocity_covariance) {
		float vel_cov[9];
		msg.velocity_covariance.unpackSquareMatrix(vel_cov);
		report.s_variance_m_s = math::max(math::max(vel_cov[0], vel_cov[4]), vel_cov[8]);

		/* There is a nonlinear relationship between the velocity vector and the heading.
		 * Use Jacobian to transform velocity covariance to heading covariance
		 *
		 * Nonlinear equation:
		 * heading = atan2(vel_e_m_s, vel_n_m_s)
		 * For math, see http://en.wikipedia.org/wiki/Atan2#Derivative
		 *
		 * To calculate the variance of heading from the variance of velocity,
		 * cov(heading) = J(velocity)*cov(velocity)*J(velocity)^T
		 */
		float vel_n = msg.ned_velocity[0];
		float vel_e = msg.ned_velocity[1];
		float vel_n_sq = vel_n * vel_n;
		float vel_e_sq = vel_e * vel_e;
		report.c_variance_rad =
			(vel_e_sq * vel_cov[0] +
			 -2 * vel_n * vel_e * vel_cov[1] +	// Covariance matrix is symmetric
			 vel_n_sq * vel_cov[4]) / ((vel_n_sq + vel_e_sq) * (vel_n_sq + vel_e_sq));

	} else {
		report.s_variance_m_s = -1.0F;
		report.c_variance_rad = -1.0F;
	}

	report.fix_type = msg.status;

	report.vel_n_m_s = msg.ned_velocity[0];
	report.vel_e_m_s = msg.ned_velocity[1];
	report.vel_d_m_s = msg.ned_velocity[2];
	report.vel_m_s = sqrtf(report.vel_n_m_s * report.vel_n_m_s + report.vel_e_m_s * report.vel_e_m_s + report.vel_d_m_s *
			       report.vel_d_m_s);
	report.cog_rad = atan2f(report.vel_e_m_s, report.vel_n_m_s);
	report.vel_ned_valid = true;

	report.timestamp_time_relative = 0;
	report.time_utc_usec = uavcan::UtcTime(msg.gnss_timestamp).toUSec();	// Convert to microseconds

	report.satellites_used = msg.sats_used;

	// Using PDOP for HDOP and VDOP
	// Relevant discussion: https://github.com/PX4/Firmware/issues/5153
	report.hdop = msg.pdop;
	report.vdop = msg.pdop;

	// Publish to a multi-topic
	int32_t gps_orb_instance;
	orb_publish_auto(ORB_ID(vehicle_gps_position), &_report_pub, &report, &gps_orb_instance,
				 ORB_PRIO_HIGH);
}
コード例 #5
0
void
FixedwingAttitudeControl::task_main()
{
	/*
	 * do subscriptions
	 */
	_att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	_ctrl_state_sub = orb_subscribe(ORB_ID(control_state));
	_accel_sub = orb_subscribe_multi(ORB_ID(sensor_accel), 0);
	_vcontrol_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));
	_params_sub = orb_subscribe(ORB_ID(parameter_update));
	_manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	_global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
	_vehicle_status_sub = orb_subscribe(ORB_ID(vehicle_status));
	_vehicle_land_detected_sub = orb_subscribe(ORB_ID(vehicle_land_detected));

	parameters_update();

	/* get an initial update for all sensor and status data */
	vehicle_setpoint_poll();
	vehicle_accel_poll();
	vehicle_control_mode_poll();
	vehicle_manual_poll();
	vehicle_status_poll();
	vehicle_land_detected_poll();

	/* wakeup source */
	px4_pollfd_struct_t fds[2];

	/* Setup of loop */
	fds[0].fd = _params_sub;
	fds[0].events = POLLIN;
	fds[1].fd = _ctrl_state_sub;
	fds[1].events = POLLIN;

	_task_running = true;

	while (!_task_should_exit) {
		static int loop_counter = 0;

		/* wait for up to 500ms for data */
		int pret = px4_poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100);

		/* timed out - periodic check for _task_should_exit, etc. */
		if (pret == 0) {
			continue;
		}

		/* this is undesirable but not much we can do - might want to flag unhappy status */
		if (pret < 0) {
			warn("poll error %d, %d", pret, errno);
			continue;
		}

		perf_begin(_loop_perf);

		/* only update parameters if they changed */
		if (fds[0].revents & POLLIN) {
			/* read from param to clear updated flag */
			struct parameter_update_s update;
			orb_copy(ORB_ID(parameter_update), _params_sub, &update);

			/* update parameters from storage */
			parameters_update();
		}

		/* only run controller if attitude changed */
		if (fds[1].revents & POLLIN) {
			static uint64_t last_run = 0;
			float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f;
			last_run = hrt_absolute_time();

			/* guard against too large deltaT's */
			if (deltaT > 1.0f) {
				deltaT = 0.01f;
			}

			/* load local copies */
			orb_copy(ORB_ID(control_state), _ctrl_state_sub, &_ctrl_state);


			/* get current rotation matrix and euler angles from control state quaternions */
			math::Quaternion q_att(_ctrl_state.q[0], _ctrl_state.q[1], _ctrl_state.q[2], _ctrl_state.q[3]);
			_R = q_att.to_dcm();

			math::Vector<3> euler_angles;
			euler_angles = _R.to_euler();
			_roll    = euler_angles(0);
			_pitch   = euler_angles(1);
			_yaw     = euler_angles(2);

			if (_vehicle_status.is_vtol && _parameters.vtol_type == 0) {
				/* vehicle is a tailsitter, we need to modify the estimated attitude for fw mode
				 *
				 * Since the VTOL airframe is initialized as a multicopter we need to
				 * modify the estimated attitude for the fixed wing operation.
				 * Since the neutral position of the vehicle in fixed wing mode is -90 degrees rotated around
				 * the pitch axis compared to the neutral position of the vehicle in multicopter mode
				 * we need to swap the roll and the yaw axis (1st and 3rd column) in the rotation matrix.
				 * Additionally, in order to get the correct sign of the pitch, we need to multiply
				 * the new x axis of the rotation matrix with -1
				 *
				 * original:			modified:
				 *
				 * Rxx  Ryx  Rzx		-Rzx  Ryx  Rxx
				 * Rxy	Ryy  Rzy		-Rzy  Ryy  Rxy
				 * Rxz	Ryz  Rzz		-Rzz  Ryz  Rxz
				 * */
				math::Matrix<3, 3> R_adapted = _R;		//modified rotation matrix

				/* move z to x */
				R_adapted(0, 0) = _R(0, 2);
				R_adapted(1, 0) = _R(1, 2);
				R_adapted(2, 0) = _R(2, 2);

				/* move x to z */
				R_adapted(0, 2) = _R(0, 0);
				R_adapted(1, 2) = _R(1, 0);
				R_adapted(2, 2) = _R(2, 0);

				/* change direction of pitch (convert to right handed system) */
				R_adapted(0, 0) = -R_adapted(0, 0);
				R_adapted(1, 0) = -R_adapted(1, 0);
				R_adapted(2, 0) = -R_adapted(2, 0);
				euler_angles = R_adapted.to_euler();  //adapted euler angles for fixed wing operation

				/* fill in new attitude data */
				_R = R_adapted;
				_roll    = euler_angles(0);
				_pitch   = euler_angles(1);
				_yaw     = euler_angles(2);

				/* lastly, roll- and yawspeed have to be swaped */
				float helper = _ctrl_state.roll_rate;
				_ctrl_state.roll_rate = -_ctrl_state.yaw_rate;
				_ctrl_state.yaw_rate = helper;
			}

			vehicle_setpoint_poll();

			vehicle_accel_poll();

			vehicle_control_mode_poll();

			vehicle_manual_poll();

			global_pos_poll();

			vehicle_status_poll();

			vehicle_land_detected_poll();

			// the position controller will not emit attitude setpoints in some modes
			// we need to make sure that this flag is reset
			_att_sp.fw_control_yaw = _att_sp.fw_control_yaw && _vcontrol_mode.flag_control_auto_enabled;

			/* lock integrator until control is started */
			bool lock_integrator;

			if (_vcontrol_mode.flag_control_attitude_enabled && !_vehicle_status.is_rotary_wing) {
				lock_integrator = false;

			} else {
				lock_integrator = true;
			}

			/* Simple handling of failsafe: deploy parachute if failsafe is on */
			if (_vcontrol_mode.flag_control_termination_enabled) {
				_actuators_airframe.control[7] = 1.0f;
				//warnx("_actuators_airframe.control[1] = 1.0f;");

			} else {
				_actuators_airframe.control[7] = 0.0f;
				//warnx("_actuators_airframe.control[1] = -1.0f;");
			}

			/* if we are in rotary wing mode, do nothing */
			if (_vehicle_status.is_rotary_wing && !_vehicle_status.is_vtol) {
				continue;
			}

			/* default flaps to center */
			float flap_control = 0.0f;

			/* map flaps by default to manual if valid */
			if (PX4_ISFINITE(_manual.flaps) && _vcontrol_mode.flag_control_manual_enabled
			    && fabsf(_parameters.flaps_scale) > 0.01f) {
				flap_control = 0.5f * (_manual.flaps + 1.0f) * _parameters.flaps_scale;

			} else if (_vcontrol_mode.flag_control_auto_enabled
				   && fabsf(_parameters.flaps_scale) > 0.01f) {
				flap_control = _att_sp.apply_flaps ? 1.0f * _parameters.flaps_scale : 0.0f;
			}

			// move the actual control value continuous with time, full flap travel in 1sec
			if (fabsf(_flaps_applied - flap_control) > 0.01f) {
				_flaps_applied += (_flaps_applied - flap_control) < 0 ? deltaT : -deltaT;

			} else {
				_flaps_applied = flap_control;
			}

			/* default flaperon to center */
			float flaperon_control = 0.0f;

			/* map flaperons by default to manual if valid */
			if (PX4_ISFINITE(_manual.aux2) && _vcontrol_mode.flag_control_manual_enabled
			    && fabsf(_parameters.flaperon_scale) > 0.01f) {
				flaperon_control = 0.5f * (_manual.aux2 + 1.0f) * _parameters.flaperon_scale;

			} else if (_vcontrol_mode.flag_control_auto_enabled
				   && fabsf(_parameters.flaperon_scale) > 0.01f) {
				flaperon_control = _att_sp.apply_flaps ? 1.0f * _parameters.flaperon_scale : 0.0f;
			}

			// move the actual control value continuous with time, full flap travel in 1sec
			if (fabsf(_flaperons_applied - flaperon_control) > 0.01f) {
				_flaperons_applied += (_flaperons_applied - flaperon_control) < 0 ? deltaT : -deltaT;

			} else {
				_flaperons_applied = flaperon_control;
			}

			/* decide if in stabilized or full manual control */
			if (_vcontrol_mode.flag_control_attitude_enabled) {
				/* scale around tuning airspeed */
				float airspeed;

				/* if airspeed is not updating, we assume the normal average speed */
				if (bool nonfinite = !PX4_ISFINITE(_ctrl_state.airspeed) || !_ctrl_state.airspeed_valid) {
					airspeed = _parameters.airspeed_trim;

					if (nonfinite) {
						perf_count(_nonfinite_input_perf);
					}

				} else {
					/* prevent numerical drama by requiring 0.5 m/s minimal speed */
					airspeed = math::max(0.5f, _ctrl_state.airspeed);
				}

				/*
				 * For scaling our actuators using anything less than the min (close to stall)
				 * speed doesn't make any sense - its the strongest reasonable deflection we
				 * want to do in flight and its the baseline a human pilot would choose.
				 *
				 * Forcing the scaling to this value allows reasonable handheld tests.
				 */
				float airspeed_scaling = _parameters.airspeed_trim / ((airspeed < _parameters.airspeed_min) ? _parameters.airspeed_min :
							 airspeed);

				/* Use min airspeed to calculate ground speed scaling region.
				 * Don't scale below gspd_scaling_trim
				 */
				float groundspeed = sqrtf(_global_pos.vel_n * _global_pos.vel_n +
							  _global_pos.vel_e * _global_pos.vel_e);
				float gspd_scaling_trim = (_parameters.airspeed_min * 0.6f);
				float groundspeed_scaler = gspd_scaling_trim / ((groundspeed < gspd_scaling_trim) ? gspd_scaling_trim : groundspeed);

				float roll_sp = _parameters.rollsp_offset_rad;
				float pitch_sp = _parameters.pitchsp_offset_rad;
				float yaw_sp = 0.0f;
				float yaw_manual = 0.0f;
				float throttle_sp = 0.0f;

				// in STABILIZED mode we need to generate the attitude setpoint
				// from manual user inputs
				if (!_vcontrol_mode.flag_control_climb_rate_enabled) {
					_att_sp.roll_body = _manual.y * _parameters.man_roll_max + _parameters.rollsp_offset_rad;
					_att_sp.roll_body = math::constrain(_att_sp.roll_body, -_parameters.man_roll_max, _parameters.man_roll_max);
					_att_sp.pitch_body = -_manual.x * _parameters.man_pitch_max + _parameters.pitchsp_offset_rad;
					_att_sp.pitch_body = math::constrain(_att_sp.pitch_body, -_parameters.man_pitch_max, _parameters.man_pitch_max);
					_att_sp.yaw_body = 0.0f;
					_att_sp.thrust = _manual.z;
					int instance;
					orb_publish_auto(_attitude_setpoint_id, &_attitude_sp_pub, &_att_sp, &instance, ORB_PRIO_DEFAULT);
				}

				roll_sp = _att_sp.roll_body;
				pitch_sp = _att_sp.pitch_body;
				yaw_sp = _att_sp.yaw_body;
				throttle_sp = _att_sp.thrust;

				/* allow manual yaw in manual modes */
				if (_vcontrol_mode.flag_control_manual_enabled) {
					yaw_manual = _manual.r;
				}

				/* reset integrals where needed */
				if (_att_sp.roll_reset_integral) {
					_roll_ctrl.reset_integrator();
				}

				if (_att_sp.pitch_reset_integral) {
					_pitch_ctrl.reset_integrator();
				}

				if (_att_sp.yaw_reset_integral) {
					_yaw_ctrl.reset_integrator();
					_wheel_ctrl.reset_integrator();
				}

				/* If the aircraft is on ground reset the integrators */
				if (_vehicle_land_detected.landed || _vehicle_status.is_rotary_wing) {
					_roll_ctrl.reset_integrator();
					_pitch_ctrl.reset_integrator();
					_yaw_ctrl.reset_integrator();
					_wheel_ctrl.reset_integrator();
				}

				/* Prepare speed_body_u and speed_body_w */
				float speed_body_u = _R(0, 0) * _global_pos.vel_n + _R(1, 0) * _global_pos.vel_e + _R(2, 0) * _global_pos.vel_d;
				float speed_body_v = _R(0, 1) * _global_pos.vel_n + _R(1, 1) * _global_pos.vel_e + _R(2, 1) * _global_pos.vel_d;
				float speed_body_w = _R(0, 2) * _global_pos.vel_n + _R(1, 2) * _global_pos.vel_e + _R(2, 2) * _global_pos.vel_d;

				/* Prepare data for attitude controllers */
				struct ECL_ControlData control_input = {};
				control_input.roll = _roll;
				control_input.pitch = _pitch;
				control_input.yaw = _yaw;
				control_input.roll_rate = _ctrl_state.roll_rate;
				control_input.pitch_rate = _ctrl_state.pitch_rate;
				control_input.yaw_rate = _ctrl_state.yaw_rate;
				control_input.speed_body_u = speed_body_u;
				control_input.speed_body_v = speed_body_v;
				control_input.speed_body_w = speed_body_w;
				control_input.acc_body_x = _accel.x;
				control_input.acc_body_y = _accel.y;
				control_input.acc_body_z = _accel.z;
				control_input.roll_setpoint = roll_sp;
				control_input.pitch_setpoint = pitch_sp;
				control_input.yaw_setpoint = yaw_sp;
				control_input.airspeed_min = _parameters.airspeed_min;
				control_input.airspeed_max = _parameters.airspeed_max;
				control_input.airspeed = airspeed;
				control_input.scaler = airspeed_scaling;
				control_input.lock_integrator = lock_integrator;
				control_input.groundspeed = groundspeed;
				control_input.groundspeed_scaler = groundspeed_scaler;

				_yaw_ctrl.set_coordinated_method(_parameters.y_coordinated_method);

				/* Run attitude controllers */
				if (PX4_ISFINITE(roll_sp) && PX4_ISFINITE(pitch_sp)) {
					_roll_ctrl.control_attitude(control_input);
					_pitch_ctrl.control_attitude(control_input);
					_yaw_ctrl.control_attitude(control_input); //runs last, because is depending on output of roll and pitch attitude
					_wheel_ctrl.control_attitude(control_input);

					/* Update input data for rate controllers */
					control_input.roll_rate_setpoint = _roll_ctrl.get_desired_rate();
					control_input.pitch_rate_setpoint = _pitch_ctrl.get_desired_rate();
					control_input.yaw_rate_setpoint = _yaw_ctrl.get_desired_rate();

					/* Run attitude RATE controllers which need the desired attitudes from above, add trim */
					float roll_u = _roll_ctrl.control_bodyrate(control_input);
					_actuators.control[actuator_controls_s::INDEX_ROLL] = (PX4_ISFINITE(roll_u)) ? roll_u + _parameters.trim_roll :
							_parameters.trim_roll;

					if (!PX4_ISFINITE(roll_u)) {
						_roll_ctrl.reset_integrator();
						perf_count(_nonfinite_output_perf);

						if (_debug && loop_counter % 10 == 0) {
							warnx("roll_u %.4f", (double)roll_u);
						}
					}

					float pitch_u = _pitch_ctrl.control_bodyrate(control_input);
					_actuators.control[actuator_controls_s::INDEX_PITCH] = (PX4_ISFINITE(pitch_u)) ? pitch_u + _parameters.trim_pitch :
							_parameters.trim_pitch;

					if (!PX4_ISFINITE(pitch_u)) {
						_pitch_ctrl.reset_integrator();
						perf_count(_nonfinite_output_perf);

						if (_debug && loop_counter % 10 == 0) {
							warnx("pitch_u %.4f, _yaw_ctrl.get_desired_rate() %.4f,"
							      " airspeed %.4f, airspeed_scaling %.4f,"
							      " roll_sp %.4f, pitch_sp %.4f,"
							      " _roll_ctrl.get_desired_rate() %.4f,"
							      " _pitch_ctrl.get_desired_rate() %.4f"
							      " att_sp.roll_body %.4f",
							      (double)pitch_u, (double)_yaw_ctrl.get_desired_rate(),
							      (double)airspeed, (double)airspeed_scaling,
							      (double)roll_sp, (double)pitch_sp,
							      (double)_roll_ctrl.get_desired_rate(),
							      (double)_pitch_ctrl.get_desired_rate(),
							      (double)_att_sp.roll_body);
						}
					}

					float yaw_u = 0.0f;

					if (_att_sp.fw_control_yaw == true) {
						yaw_u = _wheel_ctrl.control_bodyrate(control_input);
					}

					else {
						yaw_u = _yaw_ctrl.control_bodyrate(control_input);
					}

					_actuators.control[actuator_controls_s::INDEX_YAW] = (PX4_ISFINITE(yaw_u)) ? yaw_u + _parameters.trim_yaw :
							_parameters.trim_yaw;

					/* add in manual rudder control */
					_actuators.control[actuator_controls_s::INDEX_YAW] += yaw_manual;

					if (!PX4_ISFINITE(yaw_u)) {
						_yaw_ctrl.reset_integrator();
						_wheel_ctrl.reset_integrator();
						perf_count(_nonfinite_output_perf);

						if (_debug && loop_counter % 10 == 0) {
							warnx("yaw_u %.4f", (double)yaw_u);
						}
					}

					/* throttle passed through if it is finite and if no engine failure was
					 * detected */
					_actuators.control[actuator_controls_s::INDEX_THROTTLE] = (PX4_ISFINITE(throttle_sp) &&
							!(_vehicle_status.engine_failure ||
							  _vehicle_status.engine_failure_cmd)) ?
							throttle_sp : 0.0f;

					if (!PX4_ISFINITE(throttle_sp)) {
						if (_debug && loop_counter % 10 == 0) {
							warnx("throttle_sp %.4f", (double)throttle_sp);
						}
					}

				} else {
					perf_count(_nonfinite_input_perf);

					if (_debug && loop_counter % 10 == 0) {
						warnx("Non-finite setpoint roll_sp: %.4f, pitch_sp %.4f", (double)roll_sp, (double)pitch_sp);
					}
				}

				/*
				 * Lazily publish the rate setpoint (for analysis, the actuators are published below)
				 * only once available
				 */
				_rates_sp.roll = _roll_ctrl.get_desired_rate();
				_rates_sp.pitch = _pitch_ctrl.get_desired_rate();
				_rates_sp.yaw = _yaw_ctrl.get_desired_rate();

				_rates_sp.timestamp = hrt_absolute_time();

				if (_rate_sp_pub != nullptr) {
					/* publish the attitude rates setpoint */
					orb_publish(_rates_sp_id, _rate_sp_pub, &_rates_sp);

				} else if (_rates_sp_id) {
					/* advertise the attitude rates setpoint */
					_rate_sp_pub = orb_advertise(_rates_sp_id, &_rates_sp);
				}

			} else {
				/* manual/direct control */
				_actuators.control[actuator_controls_s::INDEX_ROLL] = _manual.y * _parameters.man_roll_scale + _parameters.trim_roll;
				_actuators.control[actuator_controls_s::INDEX_PITCH] = -_manual.x * _parameters.man_pitch_scale +
						_parameters.trim_pitch;
				_actuators.control[actuator_controls_s::INDEX_YAW] = _manual.r * _parameters.man_yaw_scale + _parameters.trim_yaw;
				_actuators.control[actuator_controls_s::INDEX_THROTTLE] = _manual.z;
			}

			_actuators.control[actuator_controls_s::INDEX_FLAPS] = _flaps_applied;
			_actuators.control[actuator_controls_s::INDEX_SPOILERS] = _manual.aux1;
			_actuators.control[actuator_controls_s::INDEX_AIRBRAKES] = _flaperons_applied;
			// FIXME: this should use _vcontrol_mode.landing_gear_pos in the future
			_actuators.control[actuator_controls_s::INDEX_LANDING_GEAR] = _actuators.control[actuator_controls_s::INDEX_YAW] - _parameters.trim_yaw + _parameters.trim_steer + _manual.aux3;

			/* lazily publish the setpoint only once available */
			_actuators.timestamp = hrt_absolute_time();
			_actuators.timestamp_sample = _ctrl_state.timestamp;
			_actuators_airframe.timestamp = hrt_absolute_time();
			_actuators_airframe.timestamp_sample = _ctrl_state.timestamp;

			/* Only publish if any of the proper modes are enabled */
			if (_vcontrol_mode.flag_control_rates_enabled ||
			    _vcontrol_mode.flag_control_attitude_enabled ||
			    _vcontrol_mode.flag_control_manual_enabled) {
				/* publish the actuator controls */
				if (_actuators_0_pub != nullptr) {
					orb_publish(_actuators_id, _actuators_0_pub, &_actuators);

				} else if (_actuators_id) {
					_actuators_0_pub = orb_advertise(_actuators_id, &_actuators);
				}

				if (_actuators_2_pub != nullptr) {
					/* publish the actuator controls*/
					orb_publish(ORB_ID(actuator_controls_2), _actuators_2_pub, &_actuators_airframe);

				} else {
					/* advertise and publish */
					_actuators_2_pub = orb_advertise(ORB_ID(actuator_controls_2), &_actuators_airframe);
				}
			}
		}

		loop_counter++;
		perf_end(_loop_perf);
	}

	warnx("exiting.\n");

	_control_task = -1;
	_task_running = false;
}
コード例 #6
0
ファイル: camera_feedback.cpp プロジェクト: AlexisTM/Firmware
void
CameraFeedback::task_main()
{
	_trigger_sub = orb_subscribe(ORB_ID(camera_trigger));

	// Polling sources
	struct camera_trigger_s trig = {};

	px4_pollfd_struct_t fds[1] = {};
	fds[0].fd = _trigger_sub;
	fds[0].events = POLLIN;

	// Geotagging subscriptions
	_gpos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
	_att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	struct vehicle_global_position_s gpos = {};
	struct vehicle_attitude_s att = {};

	bool updated = false;

	while (!_task_should_exit) {

		/* wait for up to 20ms for data */
		int pret = px4_poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 20);

		if (pret < 0) {
			PX4_WARN("poll error %d, %d", pret, errno);
			continue;
		}

		/* trigger subscription updated */
		if (fds[0].revents & POLLIN) {

			orb_copy(ORB_ID(camera_trigger), _trigger_sub, &trig);

			/* update geotagging subscriptions */
			orb_check(_gpos_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID(vehicle_global_position), _gpos_sub, &gpos);
			}

			orb_check(_att_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID(vehicle_attitude), _att_sub, &att);
			}

			if (trig.timestamp == 0 ||
			    gpos.timestamp == 0 ||
			    att.timestamp == 0) {
				// reject until we have valid data
				continue;
			}

			struct camera_capture_s capture = {};

			// Fill timestamps
			capture.timestamp = trig.timestamp;

			capture.timestamp_utc = trig.timestamp_utc;

			// Fill image sequence
			capture.seq = trig.seq;

			// Fill position data
			capture.lat = gpos.lat;

			capture.lon = gpos.lon;

			capture.alt = gpos.alt;

			capture.ground_distance = gpos.terrain_alt_valid ? (gpos.alt - gpos.terrain_alt) : -1.0f;

			// Fill attitude data
			// TODO : this needs to be rotated by camera orientation or set to gimbal orientation when available
			capture.q[0] = att.q[0];

			capture.q[1] = att.q[1];

			capture.q[2] = att.q[2];

			capture.q[3] = att.q[3];

			// Indicate whether capture feedback from camera is available
			// What is case 0 for capture.result?
			if (!_camera_capture_feedback) {
				capture.result = -1;

			} else {
				capture.result = 1;
			}

			int instance_id;

			orb_publish_auto(ORB_ID(camera_capture), &_capture_pub, &capture, &instance_id, ORB_PRIO_DEFAULT);

		}

	}

	orb_unsubscribe(_trigger_sub);
	orb_unsubscribe(_gpos_sub);
	orb_unsubscribe(_att_sub);

	_main_task = -1;

}