コード例 #1
0
ファイル: arith2.c プロジェクト: tacgomes/yap6.3
static Term
eval2(Int fi, Term t1, Term t2 USES_REGS) {
  arith2_op f = fi;
  switch (f) {
  case op_plus:
    return p_plus(t1, t2 PASS_REGS);
  case op_minus:
    return p_minus(t1, t2 PASS_REGS);
  case op_times:
    return p_times(t1, t2 PASS_REGS);
  case op_div:
    return p_div(t1, t2 PASS_REGS);
  case op_idiv:
    return p_div2(t1, t2 PASS_REGS);
  case op_and:
    return p_and(t1, t2 PASS_REGS);
  case op_or:
    return p_or(t1, t2 PASS_REGS);
  case op_sll:
    return p_sll(t1, t2 PASS_REGS);
  case op_slr:
    return p_slr(t1, t2 PASS_REGS);
  case op_mod:
    return p_mod(t1, t2 PASS_REGS);
  case op_rem:
    return p_rem(t1, t2 PASS_REGS);
  case op_fdiv:
    return p_fdiv(t1, t2 PASS_REGS);
  case op_xor:
    return p_xor(t1, t2 PASS_REGS);
  case op_atan2:
    return p_atan2(t1, t2 PASS_REGS);
  case op_power:
    return p_exp(t1, t2 PASS_REGS);
  case op_power2:
    return p_power(t1, t2 PASS_REGS);
  case op_gcd:
    return p_gcd(t1, t2 PASS_REGS);
  case op_min:
    return p_min(t1, t2);
  case op_max:
    return p_max(t1, t2);
  case op_rdiv:
    return p_rdiv(t1, t2 PASS_REGS);
  }
  RERROR();
}
コード例 #2
0
ファイル: nb-classifier.cpp プロジェクト: ali01/radon
/* for a given input vector INSTANCE, returns the value of OUTPUT_VALUE
   that yields the maximum return value possible when passed into
   joint_prob_ln() */
Observation
NBClassifier::joint_prob_arg_max(DataInstance::PtrConst _instance) const {
  Observation arg_max;

  /* initialized with a probability of 0.0; ln(0.0) = DOUBLE_MIN */
  ProbabilityLn p_max(0.0), curr(0.0);

  /* iterate over possible return values of input_cond_ln_product and
     keep track of maximum */
  for (uint32_t out_cond = 0; out_cond < range_size_; ++out_cond) {
    curr = joint_prob_ln(_instance, out_cond);
    if (curr > p_max){
      arg_max = out_cond;
      p_max = curr;
    }
  }

  return arg_max;
}
コード例 #3
0
/** Constructor helper method
 * @param min :: nd-sized vector of the minimum edge of the box in each
 * dimension
 * @param max :: nd-sized vector of the maximum edge of the box
 * */
void MDBoxImplicitFunction::construct(const Mantid::Kernel::VMD &min,
                                      const Mantid::Kernel::VMD &max) {
  size_t nd = min.size();
  if (max.size() != nd)
    throw std::invalid_argument(
        "MDBoxImplicitFunction::ctor(): Min and max vector sizes must match!");
  if (nd == 0 || nd > 100)
    throw std::invalid_argument(
        "MDBoxImplicitFunction::ctor(): Invalid number of dimensions!");

  double volume = 1;
  for (size_t d = 0; d < nd; d++) {
    volume *= (max[d] - min[d]);

    // Make two parallel planes per dimension

    // Normal on the min side, so it faces towards +X
    std::vector<coord_t> normal_min(nd, 0);
    normal_min[d] = +1.0;
    // Origin just needs to have its X set to the value. Other coords are
    // irrelevant
    std::vector<coord_t> origin_min(nd, 0);
    origin_min[d] = static_cast<coord_t>(min[d]);
    // Build the plane
    MDPlane p_min(normal_min, origin_min);
    this->addPlane(p_min);

    // Normal on the max side, so it faces towards -X
    std::vector<coord_t> normal_max(nd, 0);
    normal_max[d] = -1.0;
    // Origin just needs to have its X set to the value. Other coords are
    // irrelevant
    std::vector<coord_t> origin_max(nd, 0);
    origin_max[d] = static_cast<coord_t>(max[d]);
    // Build the plane
    MDPlane p_max(normal_max, origin_max);
    this->addPlane(p_max);
  }
  m_volume = volume;
}
コード例 #4
0
void RadialBasisInterpolation<KDDim,RBF>::prepare_for_use()
{
  // Call base class methods for prep
  InverseDistanceInterpolation<KDDim>::prepare_for_use();
  InverseDistanceInterpolation<KDDim>::construct_kd_tree();

#ifndef LIBMESH_HAVE_EIGEN

  libmesh_error_msg("ERROR: this functionality presently requires Eigen!");

#else
  START_LOG ("prepare_for_use()", "RadialBasisInterpolation<>");

  // Construct a bounding box for our source points
  _src_bbox.invalidate();

  const unsigned int n_src_pts = this->_src_pts.size();
  const unsigned int n_vars    = this->n_field_variables();
  libmesh_assert_equal_to (this->_src_vals.size(), n_src_pts*this->n_field_variables());

  {
    Point
      &p_min(_src_bbox.min()),
      &p_max(_src_bbox.max());

    for (unsigned int p=0; p<n_src_pts; p++)
      {
        const Point &p_src(_src_pts[p]);

        for (unsigned int d=0; d<LIBMESH_DIM; d++)
          {
            p_min(d) = std::min(p_min(d), p_src(d));
            p_max(d) = std::max(p_max(d), p_src(d));
          }
      }
  }

  libMesh::out << "bounding box is \n"
               << _src_bbox.min() << '\n'
               << _src_bbox.max() << std::endl;


  // Construct the Radial Basis Function, giving it the size of the domain
  if(_r_override < 0)
    _r_bbox = (_src_bbox.max() - _src_bbox.min()).size();
  else
    _r_bbox = _r_override;

  RBF rbf(_r_bbox);

  libMesh::out << "bounding box is \n"
               << _src_bbox.min() << '\n'
               << _src_bbox.max() << '\n'
               << "r_bbox = " << _r_bbox << '\n'
               << "rbf(r_bbox/2) = " << rbf(_r_bbox/2) << std::endl;


  // Construct the projection Matrix
  typedef Eigen::Matrix<Number, Eigen::Dynamic, Eigen::Dynamic, Eigen::ColMajor> DynamicMatrix;
  //typedef Eigen::Matrix<Number, Eigen::Dynamic,              1, Eigen::ColMajor> DynamicVector;

  DynamicMatrix A(n_src_pts, n_src_pts), x(n_src_pts,n_vars), b(n_src_pts,n_vars);

  for (unsigned int i=0; i<n_src_pts; i++)
    {
      const Point &x_i (_src_pts[i]);

      // Diagonal
      A(i,i) = rbf(0.);

      for (unsigned int j=i+1; j<n_src_pts; j++)
        {
          const Point &x_j (_src_pts[j]);

          const Real r_ij = (x_j - x_i).size();

          A(i,j) = A(j,i) = rbf(r_ij);
        }

      // set source data
      for (unsigned int var=0; var<n_vars; var++)
        b(i,var) = _src_vals[i*n_vars + var];
    }


  // Solve the linear system
  x = A.ldlt().solve(b);
  //x = A.fullPivLu().solve(b);

  // save  the weights for each variable
  _weights.resize (this->_src_vals.size());

  for (unsigned int i=0; i<n_src_pts; i++)
    for (unsigned int var=0; var<n_vars; var++)
      _weights[i*n_vars + var] = x(i,var);


  STOP_LOG  ("prepare_for_use()", "RadialBasisInterpolation<>");
#endif

}
コード例 #5
0
    void redraw()
    {
        const cv::Mat& img = image.image->getRGBImage();
        cv::Mat draw_img = img.clone();

        std::stringstream ss; ss << "(" << (crawler.index() + 1) << "/" << crawler.filenames().size() << ") " << crawler.filename();

        int i_entity = 1;
        cv::Mat segm_img(draw_img.rows, draw_img.cols, CV_32SC1, cv::Scalar(0));
        for(std::vector<ed::EntityConstPtr>::const_iterator it = image.entities.begin(); it != image.entities.end(); ++it)
        {
            const ed::EntityConstPtr& e = *it;
            ed::MeasurementConstPtr m = e->bestMeasurement();
            if (!m)
                continue;

            cv::Point p_min(img.cols, img.rows);
            cv::Point p_max(0, 0);

            const ed::ImageMask& mask = m->imageMask();
            for(ed::ImageMask::const_iterator it = mask.begin(img.cols); it != mask.end(); ++it)
            {
                const cv::Point2i& p = *it;
                segm_img.at<int>(p) = i_entity;
                p_min.x = std::min(p_min.x, p.x);
                p_min.y = std::min(p_min.y, p.y);
                p_max.x = std::max(p_max.x, p.x);
                p_max.y = std::max(p_max.y, p.y);
            }

            cv::rectangle(draw_img, p_min, p_max, cv::Scalar(255, 255, 255), 2);
            cv::rectangle(draw_img, p_min - cv::Point(2, 2), p_max + cv::Point(2, 2), cv::Scalar(0, 0, 0), 2);
            cv::rectangle(draw_img, p_min + cv::Point(2, 2), p_max - cv::Point(2, 2), cv::Scalar(0, 0, 0), 2);

            ++i_entity;
        }

        for(int y = 0; y < img.rows; ++y)
        {
            for(int x = 0; x < img.cols; ++x)
            {
                int i = segm_img.at<int>(y, x);
                if (i < 1)
                    draw_img.at<cv::Vec3b>(y, x) = 0.5 * draw_img.at<cv::Vec3b>(y, x);
            }
        }

        ss << "    (area: " << image.area_name << ")";

        cv::rectangle(draw_img, cv::Point(0,0), cv::Point(img.cols,16), CV_RGB(0,0,0), CV_FILLED);
        cv::putText(draw_img, ss.str().c_str(), cv::Point2i(0, 12), 0, 0.4, cv::Scalar(255,255,255), 1);

        for (std::vector<Annotation>::const_iterator it = image.annotations.begin(); it != image.annotations.end(); ++it)
        {
            const Annotation& a = *it;

            int x = a.px * img.cols;
            int y = a.py * img.rows;

            cv::Scalar text_color(255, 0, 255);
            if (a.is_supporting)
                text_color = cv::Scalar(255, 255, 0);

            cv::circle(draw_img, cv::Point2i(x, y), CIRCLE_RADIUS, cv::Scalar(255,0,0), CV_FILLED);
            cv::putText(draw_img, a.label.c_str(), cv::Point2i(x+15,y), 0, FONT_SIZE, text_color, 2);
        }

        if (!selected_type.empty())
        {
            cv::putText(draw_img, selected_type, cv::Point2i(20, 50), 0, FONT_SIZE, cv::Scalar(100, 100, 255), 2);
        }
        else if (!possible_types.empty())
        {
            int n = 3;
            int i_min = std::max<int>(0, i_possible_types - n + 1);
            int i_max = std::min<int>(possible_types.size(), i_min + n);

            for(int i = i_min; i < i_max; ++i)
            {
                cv::Scalar text_color(255, 0, 0);
                if (i == i_possible_types)
                    text_color = cv::Scalar(255, 255, 0);

                cv::putText(draw_img, possible_types[i], cv::Point2i(20, 50 + 30 * (i - i_min)), 0, FONT_SIZE, text_color, 2);
            }
        }

        cv::imshow(WINDOW_NAME, draw_img);
    }