/*---------------------------------------------------------------------------*/ static int output(struct channel *c) { const struct packetbuf_attrlist *a; int byteptr, len; uint8_t *hdrptr; struct raw_hdr *hdr; /* Compute the total size of the final header by summing the size of all attributes that are used on this channel. */ packetbuf_hdralloc(c->hdrsize); hdrptr = packetbuf_hdrptr(); byteptr = 0; for(a = c->attrlist; a->type != PACKETBUF_ATTR_NONE; ++a) { PRINTF("%d.%d: pack_header type %s, len %d\n", rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], packetbuf_attr_strings[a->type], a->len); len = (a->len & 0xf8) + ((a->len & 7) ? 8: 0); if(a->type == PACKETBUF_ADDR_SENDER || a->type == PACKETBUF_ADDR_RECEIVER || a->type == PACKETBUF_ADDR_ESENDER || a->type == PACKETBUF_ADDR_ERECEIVER) { const rimeaddr_t *rimeaddr; /* memcpy(&hdrptr[byteptr], (uint8_t *)packetbuf_attr_aget(a->type), len / 8);*/ rimeaddr = packetbuf_addr(a->type); hdrptr[byteptr] = rimeaddr->u8[0]; hdrptr[byteptr + 1] = rimeaddr->u8[1]; PRINTF("%d.%d: address %d.%d\n", rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], ((uint8_t *)packetbuf_addr(a->type))[0], ((uint8_t *)packetbuf_addr(a->type))[1]); } else { packetbuf_attr_t val; val = packetbuf_attr(a->type); memcpy(&hdrptr[byteptr], &val, len / 8); PRINTF("%d.%d: value %d\n", rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], val); } byteptr += len / 8; } packetbuf_hdralloc(sizeof(struct raw_hdr)); hdr = (struct raw_hdr *)packetbuf_hdrptr(); hdr->channel = c->channelno; return 1; /* Send out packet */ }
/*---------------------------------------------------------------------------*/ int rmh_send(struct rmh_conn *c, rimeaddr_t *to, uint8_t num_rexmit, uint8_t max_hops) { rimeaddr_t *nexthop; struct data_hdr *hdr; c->num_rexmit = num_rexmit; if(c->cb->forward == NULL) { return 0; } nexthop = c->cb->forward(c, &rimeaddr_node_addr, to, NULL, 0); if(nexthop == NULL) { PRINTF("rmh_send: no route\n"); return 0; } else { PRINTF("rmh_send: sending data\n"); if(packetbuf_hdralloc(sizeof(struct data_hdr))) { hdr = packetbuf_hdrptr(); rimeaddr_copy(&hdr->dest, to); rimeaddr_copy(&hdr->originator, &rimeaddr_node_addr); hdr->hops = 1; hdr->max_rexmits = num_rexmit; runicast_send(&c->c, nexthop, num_rexmit); } return 1; } }
/*---------------------------------------------------------------------------*/ static void handle_beacon_send_timer(struct net_buf *buf, void *p) { struct net_buf *mbuf; frame802154_t params; uint8_t len; mbuf = l2_buf_get_reserve(0); if(!mbuf) { return; } /* init to zeros */ memset(¶ms, 0, sizeof(params)); /* use packetbuf for sending ?? */ packetbuf_clear(mbuf); /* Build the FCF. */ params.fcf.frame_type = FRAME802154_BEACONFRAME; /* Insert IEEE 802.15.4 (2006) version bits. */ params.fcf.frame_version = FRAME802154_IEEE802154_2006; /* assume long for now */ params.fcf.src_addr_mode = FRAME802154_LONGADDRMODE; linkaddr_copy((linkaddr_t *)¶ms.src_addr, &linkaddr_node_addr); /* Set the source PAN ID to the global variable. */ params.src_pid = panid; params.fcf.dest_addr_mode = FRAME802154_SHORTADDRMODE; params.dest_addr[0] = 0xFF; params.dest_addr[1] = 0xFF; params.dest_pid = 0xffff; params.seq = framer_802154_next_seqno(); /* Calculate beacon length and copy it to packetbuf */ beacon_payload_len = handler_802154_calculate_beacon_payload_length(beacon_payload, BEACON_PAYLOAD_BUFFER_SIZE); packetbuf_copyfrom(mbuf, beacon_payload, beacon_payload_len); /* Set payload and payload length */ params.payload = packetbuf_dataptr(mbuf); params.payload_len = packetbuf_datalen(mbuf); len = frame802154_hdrlen(¶ms); if(packetbuf_hdralloc(mbuf, len)) { frame802154_create(¶ms, packetbuf_hdrptr(mbuf), len); if(NETSTACK_RADIO.send(mbuf, packetbuf_hdrptr(mbuf), packetbuf_totlen(mbuf)) != RADIO_TX_OK) { l2_buf_unref(mbuf); return; } HANDLER_802154_STAT(handler_802154_stats.beacons_sent++); } }
/*---------------------------------------------------------------------------*/ static int output(struct channel *c) { const struct packetbuf_attrlist *a; int byteptr, len; uint8_t *hdrptr; struct raw_hdr *hdr; /* Compute the total size of the final header by summing the size of all attributes that are used on this channel. */ if(packetbuf_hdralloc(c->hdrsize + sizeof(struct raw_hdr)) == 0) { PRINTF("chameleon-raw: insufficient space for headers\n"); return 0; } hdr = (struct raw_hdr *)packetbuf_hdrptr(); hdr->channel[0] = c->channelno & 0xff; hdr->channel[1] = (c->channelno >> 8) & 0xff; hdrptr = ((uint8_t *)packetbuf_hdrptr()) + sizeof(struct raw_hdr); byteptr = 0; for(a = c->attrlist; a->type != PACKETBUF_ATTR_NONE; ++a) { #if CHAMELEON_WITH_MAC_LINK_ADDRESSES if(a->type == PACKETBUF_ADDR_SENDER || a->type == PACKETBUF_ADDR_RECEIVER) { /* Let the link layer handle sender and receiver */ PRINTF("%d.%d: pack_header leaving sender/receiver to link layer\n"); continue; } #endif /* CHAMELEON_WITH_MAC_LINK_ADDRESSES */ PRINTF("%d.%d: pack_header type %d, len %d\n", rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], a->type, a->len); len = (a->len & 0xf8) + ((a->len & 7) ? 8: 0); if(PACKETBUF_IS_ADDR(a->type)) { const rimeaddr_t *rimeaddr; /* memcpy(&hdrptr[byteptr], (uint8_t *)packetbuf_attr_aget(a->type), len / 8);*/ rimeaddr = packetbuf_addr(a->type); hdrptr[byteptr] = rimeaddr->u8[0]; hdrptr[byteptr + 1] = rimeaddr->u8[1]; PRINTF("%d.%d: address %d.%d\n", rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], ((uint8_t *)packetbuf_addr(a->type))[0], ((uint8_t *)packetbuf_addr(a->type))[1]); } else { packetbuf_attr_t val; val = packetbuf_attr(a->type); memcpy(&hdrptr[byteptr], &val, len / 8); PRINTF("%d.%d: value %d\n", rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], val); } byteptr += len / 8; } return 1; /* Send out packet */ }
/* called to send a beacon request */ void handler_802154_send_beacon_request(void) { struct net_buf *mbuf; frame802154_t params; uint8_t len; mbuf = l2_buf_get_reserve(0); if(!mbuf) { return; } /* init to zeros */ memset(¶ms, 0, sizeof(params)); /* use packetbuf for sending ?? */ packetbuf_clear(mbuf); /* Build the FCF. */ params.fcf.frame_type = FRAME802154_CMDFRAME; /* Insert IEEE 802.15.4 (2006) version bits. */ params.fcf.frame_version = FRAME802154_IEEE802154_2006; params.fcf.src_addr_mode = FRAME802154_NOADDR; params.fcf.dest_addr_mode = FRAME802154_SHORTADDRMODE; params.dest_addr[0] = 0xFF; params.dest_addr[1] = 0xFF; params.dest_pid = 0xffff; params.seq = chseqno; packetbuf_set_datalen(mbuf, 1); params.payload = packetbuf_dataptr(mbuf); /* set the type in the payload */ params.payload[0] = FRAME802154_BEACONREQ; params.payload_len = packetbuf_datalen(mbuf); len = frame802154_hdrlen(¶ms); if(packetbuf_hdralloc(mbuf, len)) { frame802154_create(¶ms, packetbuf_hdrptr(mbuf), len); if(NETSTACK_RADIO.send(mbuf, packetbuf_hdrptr(mbuf), packetbuf_totlen(mbuf)) != RADIO_TX_OK) { l2_buf_unref(mbuf); return; } HANDLER_802154_STAT(handler_802154_stats.beacons_reqs_sent++); } }
/*---------------------------------------------------------------------------*/ static int create(void) { struct nullmac_hdr *hdr; if(packetbuf_hdralloc(sizeof(struct nullmac_hdr))) { hdr = packetbuf_hdrptr(); linkaddr_copy(&(hdr->sender), &linkaddr_node_addr); linkaddr_copy(&(hdr->receiver), packetbuf_addr(PACKETBUF_ADDR_RECEIVER)); return sizeof(struct nullmac_hdr); } PRINTF("PNULLMAC-UT: too large header: %u\n", sizeof(struct nullmac_hdr)); return FRAMER_FAILED; }
/*---------------------------------------------------------------------------*/ static void send_nack(struct rudolph0_conn *c) { struct rudolph0_hdr *hdr; packetbuf_clear(); packetbuf_hdralloc(sizeof(struct rudolph0_hdr)); hdr = packetbuf_hdrptr(); hdr->type = TYPE_NACK; hdr->version = c->current.h.version; hdr->chunk = c->current.h.chunk; PRINTF("Sending nack for %d:%d\n", hdr->version, hdr->chunk); polite_send(&c->nackc, c->send_interval / 2, sizeof(struct rudolph0_hdr)); }
/*---------------------------------------------------------------------------*/ int netflood_send(struct netflood_conn *c, uint8_t seqno) { if(packetbuf_hdralloc(sizeof(struct netflood_hdr))) { struct netflood_hdr *hdr = packetbuf_hdrptr(); rimeaddr_copy(&hdr->originator, &rimeaddr_node_addr); rimeaddr_copy(&c->last_originator, &hdr->originator); c->last_originator_seqno = hdr->originator_seqno = seqno; hdr->hops = 0; PRINTF("%d.%d: netflood sending '%s'\n", rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], (char *)packetbuf_dataptr()); return ipolite_send(&c->c, 0, 4); } return 0; }
/*---------------------------------------------------------------------------*/ void queuebuf_to_packetbuf(struct queuebuf *b) { struct queuebuf_ref *r; if(memb_inmemb(&bufmem, b)) { struct queuebuf_data *buframptr = queuebuf_load_to_ram(b); packetbuf_copyfrom(buframptr->data, buframptr->len); packetbuf_attr_copyfrom(buframptr->attrs, buframptr->addrs); } else if(memb_inmemb(&refbufmem, b)) { r = (struct queuebuf_ref *)b; packetbuf_clear(); packetbuf_copyfrom(r->ref, r->len); packetbuf_hdralloc(r->hdrlen); memcpy(packetbuf_hdrptr(), r->hdr, r->hdrlen); } }
/*---------------------------------------------------------------------------*/ static void send_nack(struct rudolph1_conn *c) { struct rudolph1_hdr *hdr; packetbuf_clear(); packetbuf_hdralloc(sizeof(struct rudolph1_hdr)); hdr = packetbuf_hdrptr(); hdr->type = TYPE_NACK; hdr->version = c->version; hdr->chunk = c->chunk; PRINTF("%d.%d: Sending nack for %d:%d\n", rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], hdr->version, hdr->chunk); ipolite_send(&c->ipolite, NACK_TIMEOUT, sizeof(struct rudolph1_hdr)); }
/*---------------------------------------------------------------------------*/ static void send_busy(struct rudolph1mh_conn *c, rimeaddr_t * to) { struct rudolph1mh_hdr *hdr; packetbuf_clear(); packetbuf_hdralloc(sizeof(struct rudolph1mh_hdr)); hdr = packetbuf_hdrptr(); hdr->type = TYPE_BUSY; hdr->s_id = 0; hdr->chunk = 0; PRINTF("%d.%d: Sending nack for %d:%d\n", rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], hdr->s_id, hdr->chunk); mesh_send(&c->mesh, to); }
/*---------------------------------------------------------------------------*/ static void send_nack(struct rudolph1mh_conn *c) { struct rudolph1mh_hdr *hdr; packetbuf_clear(); packetbuf_hdralloc(sizeof(struct rudolph1mh_hdr)); hdr = packetbuf_hdrptr(); hdr->type = TYPE_NACK; hdr->s_id = c->s_id; hdr->chunk = c->chunk; PRINTF("%d.%d: Sending nack for %d:%d\n", rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], hdr->s_id, hdr->chunk); mesh_send(&c->mesh, &c->partner); }
/*---------------------------------------------------------------------------*/ static void send_ack(struct rudolph1mh_conn *c) { struct rudolph1mh_hdr *hdr; packetbuf_clear(); packetbuf_hdralloc(sizeof(struct rudolph1mh_hdr)); hdr = packetbuf_hdrptr(); hdr->type = TYPE_ACK; hdr->s_id = c->s_id; hdr->chunk = c->highest_chunk; //The highest chunk received PRINTF("%d.%d: Sending ack for %d:%d to %d.%d\n", rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], hdr->s_id, hdr->chunk, c->partner.u8[0], c->partner.u8[1]); mesh_send(&c->mesh, &c->partner); }
/*---------------------------------------------------------------------------*/ static void send_nack(struct rudolph2_conn *c) { struct rudolph2_hdr *hdr; packetbuf_clear(); packetbuf_hdralloc(sizeof(struct rudolph2_hdr)); hdr = packetbuf_hdrptr(); hdr->hops_from_base = c->hops_from_base; hdr->type = TYPE_NACK; hdr->version = c->version; hdr->chunk = c->rcv_nxt; PRINTF("%d.%d: Sending nack for %d\n", rimeaddr_node_addr.u8[RIMEADDR_SIZE-2], rimeaddr_node_addr.u8[RIMEADDR_SIZE-1], hdr->chunk); polite_send(&c->c, NACK_TIMEOUT, POLITE_HEADER); }
/*---------------------------------------------------------------------------*/ static int create(void) { struct ccmac_hdr *hdr; int deco_hdr_len; if(packetbuf_hdralloc(sizeof(struct ccmac_hdr))) { hdr = packetbuf_hdrptr(); hdr->packet_type = packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE); deco_hdr_len = DECORATED_FRAMER.create(); if (deco_hdr_len < 0) { PRINTF("framer-ccmac: decorated framer failed\n"); return FRAMER_FAILED; } packetbuf_compact(); return deco_hdr_len + sizeof(struct ccmac_hdr); } PRINTF("framer-ccmac: too large header: %u\n", sizeof(struct ccmac_hdr)); return FRAMER_FAILED; }
/*---------------------------------------------------------------------------*/ static int create(void) { struct hdr *chdr; int hdr_len; if(packetbuf_hdralloc(sizeof(struct hdr)) == 0) { PRINTF("contikimac-framer: too large header\n"); return FRAMER_FAILED; } chdr = packetbuf_hdrptr(); chdr->id = CONTIKIMAC_ID; chdr->len = 0; hdr_len = DECORATED_FRAMER.create(); if(hdr_len < 0) { PRINTF("contikimac-framer: decorated framer failed\n"); return FRAMER_FAILED; } return hdr_len + sizeof(struct hdr); }
/*---------------------------------------------------------------------------*/ static int send_packet(mac_callback_t mac_callback, void *mac_callback_ptr, struct rdc_buf_list *buf_list, int is_receiver_awake) { rtimer_clock_t t0; rtimer_clock_t encounter_time = 0; int strobes; uint8_t got_strobe_ack = 0; int hdrlen, len; uint8_t is_broadcast = 0; uint8_t is_reliable = 0; uint8_t is_known_receiver = 0; uint8_t collisions; int transmit_len; int ret; uint8_t contikimac_was_on; uint8_t seqno; #if WITH_CONTIKIMAC_HEADER struct hdr *chdr; #endif /* WITH_CONTIKIMAC_HEADER */ /* Exit if RDC and radio were explicitly turned off */ if(!contikimac_is_on && !contikimac_keep_radio_on) { PRINTF("contikimac: radio is turned off\n"); return MAC_TX_ERR_FATAL; } if(packetbuf_totlen() == 0) { PRINTF("contikimac: send_packet data len 0\n"); return MAC_TX_ERR_FATAL; } #if !NETSTACK_CONF_BRIDGE_MODE /* If NETSTACK_CONF_BRIDGE_MODE is set, assume PACKETBUF_ADDR_SENDER is already set. */ packetbuf_set_addr(PACKETBUF_ADDR_SENDER, &rimeaddr_node_addr); #endif if(rimeaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER), &rimeaddr_null)) { is_broadcast = 1; PRINTDEBUG("contikimac: send broadcast\n"); if(broadcast_rate_drop()) { return MAC_TX_COLLISION; } } else { #if UIP_CONF_IPV6 PRINTDEBUG("contikimac: send unicast to %02x%02x:%02x%02x:%02x%02x:%02x%02x\n", packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[0], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[1], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[2], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[3], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[4], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[5], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[6], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[7]); #else /* UIP_CONF_IPV6 */ PRINTDEBUG("contikimac: send unicast to %u.%u\n", packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[0], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[1]); #endif /* UIP_CONF_IPV6 */ } is_reliable = packetbuf_attr(PACKETBUF_ATTR_RELIABLE) || packetbuf_attr(PACKETBUF_ATTR_ERELIABLE); packetbuf_set_attr(PACKETBUF_ATTR_MAC_ACK, 1); #if WITH_CONTIKIMAC_HEADER hdrlen = packetbuf_totlen(); if(packetbuf_hdralloc(sizeof(struct hdr)) == 0) { /* Failed to allocate space for contikimac header */ PRINTF("contikimac: send failed, too large header\n"); return MAC_TX_ERR_FATAL; } chdr = packetbuf_hdrptr(); chdr->id = CONTIKIMAC_ID; chdr->len = hdrlen; /* Create the MAC header for the data packet. */ hdrlen = NETSTACK_FRAMER.create(); if(hdrlen < 0) { /* Failed to send */ PRINTF("contikimac: send failed, too large header\n"); packetbuf_hdr_remove(sizeof(struct hdr)); return MAC_TX_ERR_FATAL; } hdrlen += sizeof(struct hdr); #else /* Create the MAC header for the data packet. */ hdrlen = NETSTACK_FRAMER.create(); if(hdrlen < 0) { /* Failed to send */ PRINTF("contikimac: send failed, too large header\n"); return MAC_TX_ERR_FATAL; } #endif /* Make sure that the packet is longer or equal to the shortest packet length. */ transmit_len = packetbuf_totlen(); if(transmit_len < SHORTEST_PACKET_SIZE) { /* Pad with zeroes */ uint8_t *ptr; ptr = packetbuf_dataptr(); memset(ptr + packetbuf_datalen(), 0, SHORTEST_PACKET_SIZE - packetbuf_totlen()); PRINTF("contikimac: shorter than shortest (%d)\n", packetbuf_totlen()); transmit_len = SHORTEST_PACKET_SIZE; } packetbuf_compact(); #ifdef NETSTACK_ENCRYPT NETSTACK_ENCRYPT(); #endif /* NETSTACK_ENCRYPT */ transmit_len = packetbuf_totlen(); NETSTACK_RADIO.prepare(packetbuf_hdrptr(), transmit_len); /* Remove the MAC-layer header since it will be recreated next time around. */ packetbuf_hdr_remove(hdrlen); if(!is_broadcast && !is_receiver_awake) { #if WITH_PHASE_OPTIMIZATION ret = phase_wait(&phase_list, packetbuf_addr(PACKETBUF_ADDR_RECEIVER), CYCLE_TIME, GUARD_TIME, mac_callback, mac_callback_ptr, buf_list); if(ret == PHASE_DEFERRED) { return MAC_TX_DEFERRED; } if(ret != PHASE_UNKNOWN) { is_known_receiver = 1; } #endif /* WITH_PHASE_OPTIMIZATION */ } /* By setting we_are_sending to one, we ensure that the rtimer powercycle interrupt do not interfere with us sending the packet. */ we_are_sending = 1; /* If we have a pending packet in the radio, we should not send now, because we will trash the received packet. Instead, we signal that we have a collision, which lets the packet be received. This packet will be retransmitted later by the MAC protocol instread. */ if(NETSTACK_RADIO.receiving_packet() || NETSTACK_RADIO.pending_packet()) { we_are_sending = 0; PRINTF("contikimac: collision receiving %d, pending %d\n", NETSTACK_RADIO.receiving_packet(), NETSTACK_RADIO.pending_packet()); return MAC_TX_COLLISION; } /* Switch off the radio to ensure that we didn't start sending while the radio was doing a channel check. */ off(); strobes = 0; /* Send a train of strobes until the receiver answers with an ACK. */ collisions = 0; got_strobe_ack = 0; /* Set contikimac_is_on to one to allow the on() and off() functions to control the radio. We restore the old value of contikimac_is_on when we are done. */ contikimac_was_on = contikimac_is_on; contikimac_is_on = 1; #if !RDC_CONF_HARDWARE_CSMA /* Check if there are any transmissions by others. */ /* TODO: why does this give collisions before sending with the mc1322x? */ if(is_receiver_awake == 0) { int i; for(i = 0; i < CCA_COUNT_MAX_TX; ++i) { t0 = RTIMER_NOW(); on(); #if CCA_CHECK_TIME > 0 while(RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + CCA_CHECK_TIME)) { } #endif if(NETSTACK_RADIO.channel_clear() == 0) { collisions++; off(); break; } off(); t0 = RTIMER_NOW(); while(RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + CCA_SLEEP_TIME)) { } } } if(collisions > 0) { we_are_sending = 0; off(); PRINTF("contikimac: collisions before sending\n"); contikimac_is_on = contikimac_was_on; return MAC_TX_COLLISION; } #endif /* RDC_CONF_HARDWARE_CSMA */ #if !RDC_CONF_HARDWARE_ACK if(!is_broadcast) { /* Turn radio on to receive expected unicast ack. Not necessary with hardware ack detection, and may trigger an unnecessary cca or rx cycle */ on(); } #endif watchdog_periodic(); t0 = RTIMER_NOW(); seqno = packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO); for(strobes = 0, collisions = 0; got_strobe_ack == 0 && collisions == 0 && RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + STROBE_TIME); strobes++) { watchdog_periodic(); if(!is_broadcast && (is_receiver_awake || is_known_receiver) && !RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + MAX_PHASE_STROBE_TIME)) { PRINTF("miss to %d\n", packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[0]); break; } len = 0; { rtimer_clock_t wt; rtimer_clock_t txtime; int ret; txtime = RTIMER_NOW(); ret = NETSTACK_RADIO.transmit(transmit_len); #if RDC_CONF_HARDWARE_ACK /* For radios that block in the transmit routine and detect the ACK in hardware */ if(ret == RADIO_TX_OK) { if(!is_broadcast) { got_strobe_ack = 1; encounter_time = txtime; break; } } else if (ret == RADIO_TX_NOACK) { } else if (ret == RADIO_TX_COLLISION) { PRINTF("contikimac: collisions while sending\n"); collisions++; } wt = RTIMER_NOW(); while(RTIMER_CLOCK_LT(RTIMER_NOW(), wt + INTER_PACKET_INTERVAL)) { } #else /* RDC_CONF_HARDWARE_ACK */ /* Wait for the ACK packet */ wt = RTIMER_NOW(); while(RTIMER_CLOCK_LT(RTIMER_NOW(), wt + INTER_PACKET_INTERVAL)) { } if(!is_broadcast && (NETSTACK_RADIO.receiving_packet() || NETSTACK_RADIO.pending_packet() || NETSTACK_RADIO.channel_clear() == 0)) { uint8_t ackbuf[ACK_LEN]; wt = RTIMER_NOW(); while(RTIMER_CLOCK_LT(RTIMER_NOW(), wt + AFTER_ACK_DETECTECT_WAIT_TIME)) { } len = NETSTACK_RADIO.read(ackbuf, ACK_LEN); if(len == ACK_LEN && seqno == ackbuf[ACK_LEN - 1]) { got_strobe_ack = 1; encounter_time = txtime; break; } else { PRINTF("contikimac: collisions while sending\n"); collisions++; } } #endif /* RDC_CONF_HARDWARE_ACK */ } } off(); PRINTF("contikimac: send (strobes=%u, len=%u, %s, %s), done\n", strobes, packetbuf_totlen(), got_strobe_ack ? "ack" : "no ack", collisions ? "collision" : "no collision"); #if CONTIKIMAC_CONF_COMPOWER /* Accumulate the power consumption for the packet transmission. */ compower_accumulate(¤t_packet); /* Convert the accumulated power consumption for the transmitted packet to packet attributes so that the higher levels can keep track of the amount of energy spent on transmitting the packet. */ compower_attrconv(¤t_packet); /* Clear the accumulated power consumption so that it is ready for the next packet. */ compower_clear(¤t_packet); #endif /* CONTIKIMAC_CONF_COMPOWER */ contikimac_is_on = contikimac_was_on; we_are_sending = 0; /* Determine the return value that we will return from the function. We must pass this value to the phase module before we return from the function. */ if(collisions > 0) { ret = MAC_TX_COLLISION; } else if(!is_broadcast && !got_strobe_ack) { ret = MAC_TX_NOACK; } else { ret = MAC_TX_OK; } #if WITH_PHASE_OPTIMIZATION if(is_known_receiver && got_strobe_ack) { PRINTF("no miss %d wake-ups %d\n", packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[0], strobes); } if(!is_broadcast) { if(collisions == 0 && is_receiver_awake == 0) { phase_update(&phase_list, packetbuf_addr(PACKETBUF_ADDR_RECEIVER), encounter_time, ret); } } #endif /* WITH_PHASE_OPTIMIZATION */ return ret; }
/*---------------------------------------------------------------------------*/ static int create_frame(int type, int do_create) { frame802154_t params; int hdr_len; /* init to zeros */ memset(¶ms, 0, sizeof(params)); if(!initialized) { initialized = 1; mac_dsn = random_rand() & 0xff; } /* Build the FCF. */ params.fcf.frame_type = packetbuf_attr(PACKETBUF_ATTR_FRAME_TYPE); params.fcf.frame_pending = packetbuf_attr(PACKETBUF_ATTR_PENDING); if(packetbuf_holds_broadcast()) { params.fcf.ack_required = 0; } else { params.fcf.ack_required = packetbuf_attr(PACKETBUF_ATTR_MAC_ACK); } params.fcf.panid_compression = 0; /* Insert IEEE 802.15.4 (2006) version bits. */ params.fcf.frame_version = FRAME802154_IEEE802154_2006; #if LLSEC802154_SECURITY if(packetbuf_attr(PACKETBUF_ATTR_SECURITY_LEVEL)) { params.fcf.security_enabled = 1; } /* Setting security-related attributes */ params.aux_hdr.security_control.security_level = packetbuf_attr(PACKETBUF_ATTR_SECURITY_LEVEL); params.aux_hdr.frame_counter.u16[0] = packetbuf_attr(PACKETBUF_ATTR_FRAME_COUNTER_BYTES_0_1); params.aux_hdr.frame_counter.u16[1] = packetbuf_attr(PACKETBUF_ATTR_FRAME_COUNTER_BYTES_2_3); #if LLSEC802154_USES_EXPLICIT_KEYS params.aux_hdr.security_control.key_id_mode = packetbuf_attr(PACKETBUF_ATTR_KEY_ID_MODE); params.aux_hdr.key_index = packetbuf_attr(PACKETBUF_ATTR_KEY_INDEX); params.aux_hdr.key_source.u16[0] = packetbuf_attr(PACKETBUF_ATTR_KEY_SOURCE_BYTES_0_1); #endif /* LLSEC802154_USES_EXPLICIT_KEYS */ #endif /* LLSEC802154_SECURITY */ /* Increment and set the data sequence number. */ if(!do_create) { /* Only length calculation - no sequence number is needed and should not be consumed. */ } else if(packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO)) { params.seq = packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO); } else { /* Ensure that the sequence number 0 is not used as it would bypass the above check. */ if(mac_dsn == 0) { mac_dsn++; } params.seq = mac_dsn++; packetbuf_set_attr(PACKETBUF_ATTR_MAC_SEQNO, params.seq); } /* Complete the addressing fields. */ /** \todo For phase 1 the addresses are all long. We'll need a mechanism in the rime attributes to tell the mac to use long or short for phase 2. */ if(LINKADDR_SIZE == 2) { /* Use short address mode if linkaddr size is short. */ params.fcf.src_addr_mode = FRAME802154_SHORTADDRMODE; } else { params.fcf.src_addr_mode = FRAME802154_LONGADDRMODE; } params.dest_pid = mac_dst_pan_id; if(packetbuf_holds_broadcast()) { /* Broadcast requires short address mode. */ params.fcf.dest_addr_mode = FRAME802154_SHORTADDRMODE; params.dest_addr[0] = 0xFF; params.dest_addr[1] = 0xFF; } else { linkaddr_copy((linkaddr_t *)¶ms.dest_addr, packetbuf_addr(PACKETBUF_ADDR_RECEIVER)); /* Use short address mode if linkaddr size is small */ if(LINKADDR_SIZE == 2) { params.fcf.dest_addr_mode = FRAME802154_SHORTADDRMODE; } else { params.fcf.dest_addr_mode = FRAME802154_LONGADDRMODE; } } /* Set the source PAN ID to the global variable. */ params.src_pid = mac_src_pan_id; /* * Set up the source address using only the long address mode for * phase 1. */ linkaddr_copy((linkaddr_t *)¶ms.src_addr, packetbuf_addr(PACKETBUF_ADDR_SENDER)); params.payload = packetbuf_dataptr(); params.payload_len = packetbuf_datalen(); hdr_len = frame802154_hdrlen(¶ms); if(!do_create) { /* Only calculate header length */ return hdr_len; } else if(packetbuf_hdralloc(hdr_len)) { frame802154_create(¶ms, packetbuf_hdrptr()); PRINTF("15.4-OUT: %2X", params.fcf.frame_type); PRINTADDR(params.dest_addr); PRINTF("%d %u (%u)\n", hdr_len, packetbuf_datalen(), packetbuf_totlen()); return hdr_len; } else { PRINTF("15.4-OUT: too large header: %u\n", hdr_len); return FRAMER_FAILED; } }
/*---------------------------------------------------------------------------*/ static int send_packet(void) { if (!xmac_is_on) { return 1; } struct { struct xmac_hdr hdr; } strobe, ack; volatile int len = 0; rtimer_clock_t t, t0; got_data_ack = 0; #if WITH_RANDOM_WAIT_BEFORE_SEND { rtimer_clock_t t = RTIMER_NOW() + (random_rand() % (xmac_config.on_time * 4)); while(RTIMER_CLOCK_LT(RTIMER_NOW(), t)); } #endif /* WITH_RANDOM_WAIT_BEFORE_SEND */ #if WITH_CHANNEL_CHECK /* Check if there are other strobes in the air. */ waiting_for_packet = 1; on(); t0 = RTIMER_NOW(); while(RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + xmac_config.strobe_wait_time * 2)) { len = radio->read(&strobe.hdr, sizeof(strobe.hdr)); if(len > 0) { someone_is_sending = 1; } } waiting_for_packet = 0; while(someone_is_sending); #endif /* WITH_CHANNEL_CHECK */ /* By setting we_are_sending to one, we ensure that the rtimer powercycle interrupt do not interfere with us sending the packet. */ we_are_sending = 1; off(); /* Create the X-MAC header for the data packet. We cannot do this in-place in the packet buffer, because we cannot be sure of the alignment of the header in the packet buffer. */ struct xmac_hdr hdr; hdr.type = TYPE_DATA; rimeaddr_copy(&hdr.sender, &rimeaddr_node_addr); rimeaddr_copy(&hdr.receiver, packetbuf_addr(PACKETBUF_ADDR_RECEIVER)); int is_broadcast = 0; if (rimeaddr_cmp(&hdr.receiver, &rimeaddr_null)) { is_broadcast = 1; } /* Copy the X-MAC header to the header portion of the packet buffer. */ packetbuf_hdralloc(sizeof(struct xmac_hdr)); memcpy(packetbuf_hdrptr(), &hdr, sizeof(struct xmac_hdr)); packetbuf_compact(); watchdog_stop(); /* Construct the strobe packet. */ strobe.hdr.type = TYPE_STROBE; rimeaddr_copy(&strobe.hdr.sender, &rimeaddr_node_addr); rimeaddr_copy(&strobe.hdr.receiver, packetbuf_addr(PACKETBUF_ADDR_RECEIVER)); /* Turn on the radio to listen for the strobe ACK. */ if (!is_broadcast) { on(); } #if EXCLUDE_TRICKLE_ENERGY unsigned long energest_listen = 0; unsigned long energest_transmit = 0; if (is_broadcast) { energest_listen = energest_type_time(ENERGEST_TYPE_LISTEN); energest_transmit = energest_type_time(ENERGEST_TYPE_TRANSMIT); } #endif /* EXCLUDE_TRICKLE_ENERGY */ /* Send strobes until the receiver replies with an ACK */ int strobes = 0; int got_strobe_ack = 0; int interferred = 0; rtimer_clock_t strobe_wait_time; t0 = RTIMER_NOW(); for (strobes = 0; got_strobe_ack == 0 && interferred == 0 && RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + xmac_config.strobe_time); strobes++) { if (is_broadcast){ /* Send the data packet. */ radio->send(packetbuf_hdrptr(), packetbuf_totlen()); strobe_wait_time = xmac_config.strobe_wait_time; } else { /* Send the strobe packet. */ radio->send((const uint8_t *) &strobe, sizeof(struct xmac_hdr)); strobe_wait_time = xmac_config.strobe_wait_time; } t = RTIMER_NOW(); while (got_strobe_ack == 0 && interferred == 0 && RTIMER_CLOCK_LT(RTIMER_NOW(), t + strobe_wait_time)) { /* See if we got an ACK */ if (!is_broadcast) { len = radio->read((uint8_t *) &ack, sizeof(struct xmac_hdr)); if (len > 0) { if ( ack.hdr.type == TYPE_STROBE_ACK && rimeaddr_cmp(&ack.hdr.sender, &rimeaddr_node_addr) && rimeaddr_cmp(&ack.hdr.receiver, &rimeaddr_node_addr)) { /* We got an ACK from the receiver, so we can immediately send the packet. */ got_strobe_ack = 1; }// else if (ack.hdr.type != TYPE_DATA_ACK) { /* We got a STROBE or a DATA packet, so we immediately stop strobing. */ // interferred = 1; //} } } } } if (!is_broadcast) { handshakes_total++; if (got_strobe_ack) { handshakes_succ++; } // update the handshake counters if (handshakes_total >= HANDSHAKES_RESET_PERIOD) { handshakes_total >>= 1; handshakes_succ >>= 1; }
/*---------------------------------------------------------------------------*/ static void powercycle_turn_radio_off(void) { #if CONTIKIMAC_CONF_COMPOWER uint8_t was_on = radio_is_on; #endif /* CONTIKIMAC_CONF_COMPOWER */ #if RDC_CONF_HARDWARE_SEND_ACK if(we_are_sending == 0 && we_are_receiving_burst == 0) { #else if(we_are_sending == 0 && we_are_receiving_burst == 0 && we_are_acking == 0) { #endif off(); #if CONTIKIMAC_CONF_COMPOWER if(was_on && !radio_is_on) { compower_accumulate(&compower_idle_activity); } #endif /* CONTIKIMAC_CONF_COMPOWER */ } } /*---------------------------------------------------------------------------*/ static void powercycle_turn_radio_on(void) { #if RDC_CONF_HARDWARE_SEND_ACK if(we_are_sending == 0 && we_are_receiving_burst == 0) { #else if(we_are_sending == 0 && we_are_receiving_burst == 0 && we_are_acking == 0) { #endif on(); } } /*---------------------------------------------------------------------------*/ static char powercycle(struct rtimer *t, void *ptr) { #if SYNC_CYCLE_STARTS static volatile rtimer_clock_t sync_cycle_start; static volatile uint8_t sync_cycle_phase; #endif PT_BEGIN(&pt); #if SYNC_CYCLE_STARTS sync_cycle_start = RTIMER_NOW(); #else cycle_start = RTIMER_NOW(); #endif while(1) { static uint8_t packet_seen; static rtimer_clock_t t0; static uint8_t count; #if SYNC_CYCLE_STARTS /* Compute cycle start when RTIMER_ARCH_SECOND is not a multiple of CHANNEL_CHECK_RATE */ if(sync_cycle_phase++ == NETSTACK_RDC_CHANNEL_CHECK_RATE) { sync_cycle_phase = 0; sync_cycle_start += RTIMER_ARCH_SECOND; cycle_start = sync_cycle_start; } else { #if (RTIMER_ARCH_SECOND * NETSTACK_RDC_CHANNEL_CHECK_RATE) > 65535 cycle_start = sync_cycle_start + ((unsigned long)(sync_cycle_phase*RTIMER_ARCH_SECOND))/NETSTACK_RDC_CHANNEL_CHECK_RATE; #else cycle_start = sync_cycle_start + (sync_cycle_phase*RTIMER_ARCH_SECOND)/NETSTACK_RDC_CHANNEL_CHECK_RATE; #endif } #else cycle_start += CYCLE_TIME; #endif packet_seen = 0; for(count = 0; count < CCA_COUNT_MAX; ++count) { t0 = RTIMER_NOW(); if(we_are_sending == 0 && we_are_receiving_burst == 0) { powercycle_turn_radio_on(); /* Check if a packet is seen in the air. If so, we keep the radio on for a while (LISTEN_TIME_AFTER_PACKET_DETECTED) to be able to receive the packet. We also continuously check the radio medium to make sure that we wasn't woken up by a false positive: a spurious radio interference that was not caused by an incoming packet. */ if(NETSTACK_RADIO.channel_clear() == 0) { packet_seen = 1; break; } powercycle_turn_radio_off(); } schedule_powercycle_fixed(t, RTIMER_NOW() + CCA_SLEEP_TIME); PT_YIELD(&pt); } if(packet_seen) { static rtimer_clock_t start; static uint8_t silence_periods, periods; start = RTIMER_NOW(); periods = silence_periods = 0; while(we_are_sending == 0 && radio_is_on && RTIMER_CLOCK_LT(RTIMER_NOW(), (start + LISTEN_TIME_AFTER_PACKET_DETECTED))) { /* Check for a number of consecutive periods of non-activity. If we see two such periods, we turn the radio off. Also, if a packet has been successfully received (as indicated by the NETSTACK_RADIO.pending_packet() function), we stop snooping. */ #if !RDC_CONF_HARDWARE_CSMA /* A cca cycle will disrupt rx on some radios, e.g. mc1322x, rf230 */ /*TODO: Modify those drivers to just return the internal RSSI when already in rx mode */ if(NETSTACK_RADIO.channel_clear()) { ++silence_periods; } else { silence_periods = 0; } #endif ++periods; if(NETSTACK_RADIO.receiving_packet()) { silence_periods = 0; } if(silence_periods > MAX_SILENCE_PERIODS) { powercycle_turn_radio_off(); break; } if(WITH_FAST_SLEEP && periods > MAX_NONACTIVITY_PERIODS && !(NETSTACK_RADIO.receiving_packet() || NETSTACK_RADIO.pending_packet())) { powercycle_turn_radio_off(); break; } if(NETSTACK_RADIO.pending_packet()) { break; } schedule_powercycle(t, CCA_CHECK_TIME + CCA_SLEEP_TIME); PT_YIELD(&pt); } if(radio_is_on) { if(!(NETSTACK_RADIO.receiving_packet() || NETSTACK_RADIO.pending_packet()) || !RTIMER_CLOCK_LT(RTIMER_NOW(), (start + LISTEN_TIME_AFTER_PACKET_DETECTED))) { powercycle_turn_radio_off(); } } } if(RTIMER_CLOCK_LT(RTIMER_NOW() - cycle_start, CYCLE_TIME - CHECK_TIME * 4)) { /* Schedule the next powercycle interrupt, or sleep the mcu until then. Sleeping will not exit from this interrupt, so ensure an occasional wake cycle or foreground processing will be blocked until a packet is detected */ #if RDC_CONF_MCU_SLEEP static uint8_t sleepcycle; if((sleepcycle++ < 16) && !we_are_sending && !radio_is_on) { rtimer_arch_sleep(CYCLE_TIME - (RTIMER_NOW() - cycle_start)); } else { sleepcycle = 0; schedule_powercycle_fixed(t, CYCLE_TIME + cycle_start); PT_YIELD(&pt); } #else schedule_powercycle_fixed(t, CYCLE_TIME + cycle_start); PT_YIELD(&pt); #endif } } PT_END(&pt); } /*---------------------------------------------------------------------------*/ static int broadcast_rate_drop(void) { #if CONTIKIMAC_CONF_BROADCAST_RATE_LIMIT if(!timer_expired(&broadcast_rate_timer)) { broadcast_rate_counter++; if(broadcast_rate_counter < CONTIKIMAC_CONF_BROADCAST_RATE_LIMIT) { return 0; } else { return 1; } } else { timer_set(&broadcast_rate_timer, CLOCK_SECOND); broadcast_rate_counter = 0; return 0; } #else /* CONTIKIMAC_CONF_BROADCAST_RATE_LIMIT */ return 0; #endif /* CONTIKIMAC_CONF_BROADCAST_RATE_LIMIT */ } /*---------------------------------------------------------------------------*/ static int send_packet(mac_callback_t mac_callback, void *mac_callback_ptr, struct rdc_buf_list *buf_list, int is_receiver_awake) { rtimer_clock_t t0; rtimer_clock_t encounter_time = 0; int strobes; uint8_t got_strobe_ack = 0; int hdrlen, len; uint8_t is_broadcast = 0; uint8_t is_reliable = 0; uint8_t is_known_receiver = 0; uint8_t collisions; int transmit_len; int ret; uint8_t contikimac_was_on; uint8_t seqno; #if WITH_CONTIKIMAC_HEADER struct hdr *chdr; #endif /* WITH_CONTIKIMAC_HEADER */ /* Exit if RDC and radio were explicitly turned off */ if(!contikimac_is_on && !contikimac_keep_radio_on) { PRINTF("contikimac: radio is turned off\n"); return MAC_TX_ERR_FATAL; } if(packetbuf_totlen() == 0) { PRINTF("contikimac: send_packet data len 0\n"); return MAC_TX_ERR_FATAL; } #if !NETSTACK_CONF_BRIDGE_MODE /* If NETSTACK_CONF_BRIDGE_MODE is set, assume PACKETBUF_ADDR_SENDER is already set. */ packetbuf_set_addr(PACKETBUF_ADDR_SENDER, &rimeaddr_node_addr); #endif if(rimeaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER), &rimeaddr_null)) { is_broadcast = 1; PRINTDEBUG("contikimac: send broadcast\n"); if(broadcast_rate_drop()) { return MAC_TX_COLLISION; } } else { #if UIP_CONF_IPV6 PRINTDEBUG("contikimac: send unicast to %02x%02x:%02x%02x:%02x%02x:%02x%02x\n", packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[0], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[1], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[2], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[3], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[4], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[5], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[6], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[7]); #else /* UIP_CONF_IPV6 */ PRINTDEBUG("contikimac: send unicast to %u.%u\n", packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[0], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[1]); #endif /* UIP_CONF_IPV6 */ } is_reliable = packetbuf_attr(PACKETBUF_ATTR_RELIABLE) || packetbuf_attr(PACKETBUF_ATTR_ERELIABLE); packetbuf_set_attr(PACKETBUF_ATTR_MAC_ACK, 1); #if WITH_CONTIKIMAC_HEADER hdrlen = packetbuf_totlen(); if(packetbuf_hdralloc(sizeof(struct hdr)) == 0) { /* Failed to allocate space for contikimac header */ PRINTF("contikimac: send failed, too large header\n"); return MAC_TX_ERR_FATAL; } chdr = packetbuf_hdrptr(); chdr->id = CONTIKIMAC_ID; chdr->len = hdrlen; /* Create the MAC header for the data packet. */ hdrlen = NETSTACK_FRAMER.create(); if(hdrlen < 0) { /* Failed to send */ PRINTF("contikimac: send failed, too large header\n"); packetbuf_hdr_remove(sizeof(struct hdr)); return MAC_TX_ERR_FATAL; } hdrlen += sizeof(struct hdr); #else /* Create the MAC header for the data packet. */ hdrlen = NETSTACK_FRAMER.create(); if(hdrlen < 0) { /* Failed to send */ PRINTF("contikimac: send failed, too large header\n"); return MAC_TX_ERR_FATAL; } #endif /* Make sure that the packet is longer or equal to the shortest packet length. */ transmit_len = packetbuf_totlen(); if(transmit_len < SHORTEST_PACKET_SIZE) { /* Pad with zeroes */ uint8_t *ptr; ptr = packetbuf_dataptr(); memset(ptr + packetbuf_datalen(), 0, SHORTEST_PACKET_SIZE - packetbuf_totlen()); PRINTF("contikimac: shorter than shortest (%d)\n", packetbuf_totlen()); transmit_len = SHORTEST_PACKET_SIZE; } packetbuf_compact(); #ifdef NETSTACK_ENCRYPT NETSTACK_ENCRYPT(); #endif /* NETSTACK_ENCRYPT */ transmit_len = packetbuf_totlen(); NETSTACK_RADIO.prepare(packetbuf_hdrptr(), transmit_len); /* Remove the MAC-layer header since it will be recreated next time around. */ packetbuf_hdr_remove(hdrlen); if(!is_broadcast && !is_receiver_awake) { #if WITH_PHASE_OPTIMIZATION ret = phase_wait(packetbuf_addr(PACKETBUF_ADDR_RECEIVER), CYCLE_TIME, GUARD_TIME, mac_callback, mac_callback_ptr, buf_list); if(ret == PHASE_DEFERRED) { return MAC_TX_DEFERRED; } if(ret != PHASE_UNKNOWN) { is_known_receiver = 1; } #endif /* WITH_PHASE_OPTIMIZATION */ } /* By setting we_are_sending to one, we ensure that the rtimer powercycle interrupt do not interfere with us sending the packet. */ we_are_sending = 1; /* If we have a pending packet in the radio, we should not send now, because we will trash the received packet. Instead, we signal that we have a collision, which lets the packet be received. This packet will be retransmitted later by the MAC protocol instread. */ if(NETSTACK_RADIO.receiving_packet() || NETSTACK_RADIO.pending_packet()) { we_are_sending = 0; PRINTF("contikimac: collision receiving %d, pending %d\n", NETSTACK_RADIO.receiving_packet(), NETSTACK_RADIO.pending_packet()); return MAC_TX_COLLISION; } /* Switch off the radio to ensure that we didn't start sending while the radio was doing a channel check. */ off(); strobes = 0; /* Send a train of strobes until the receiver answers with an ACK. */ collisions = 0; got_strobe_ack = 0; /* Set contikimac_is_on to one to allow the on() and off() functions to control the radio. We restore the old value of contikimac_is_on when we are done. */ contikimac_was_on = contikimac_is_on; contikimac_is_on = 1; #if !RDC_CONF_HARDWARE_CSMA /* Check if there are any transmissions by others. */ /* TODO: why does this give collisions before sending with the mc1322x? */ if(is_receiver_awake == 0) { int i; for(i = 0; i < CCA_COUNT_MAX_TX; ++i) { t0 = RTIMER_NOW(); on(); #if CCA_CHECK_TIME > 0 while(RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + CCA_CHECK_TIME)) { } #endif if(NETSTACK_RADIO.channel_clear() == 0) { collisions++; off(); break; } off(); t0 = RTIMER_NOW(); while(RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + CCA_SLEEP_TIME)) { } } } if(collisions > 0) { we_are_sending = 0; off(); PRINTF("contikimac: collisions before sending\n"); contikimac_is_on = contikimac_was_on; return MAC_TX_COLLISION; } #endif /* RDC_CONF_HARDWARE_CSMA */ #if !RDC_CONF_HARDWARE_ACK if(!is_broadcast) { /* Turn radio on to receive expected unicast ack. Not necessary with hardware ack detection, and may trigger an unnecessary cca or rx cycle */ on(); } #endif watchdog_periodic(); t0 = RTIMER_NOW(); seqno = packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO); for(strobes = 0, collisions = 0; got_strobe_ack == 0 && collisions == 0 && RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + STROBE_TIME); strobes++) { watchdog_periodic(); if(!is_broadcast && (is_receiver_awake || is_known_receiver) && !RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + MAX_PHASE_STROBE_TIME)) { PRINTF("miss to %d\n", packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[0]); break; } len = 0; { rtimer_clock_t wt; rtimer_clock_t txtime; int ret; txtime = RTIMER_NOW(); ret = NETSTACK_RADIO.transmit(transmit_len); #if RDC_CONF_HARDWARE_ACK /* For radios that block in the transmit routine and detect the ACK in hardware */ if(ret == RADIO_TX_OK) { if(!is_broadcast) { got_strobe_ack = 1; encounter_time = txtime; break; } } else if (ret == RADIO_TX_NOACK) { } else if (ret == RADIO_TX_COLLISION) { PRINTF("contikimac: collisions while sending\n"); collisions++; } wt = RTIMER_NOW(); while(RTIMER_CLOCK_LT(RTIMER_NOW(), wt + INTER_PACKET_INTERVAL)) { } #else /* RDC_CONF_HARDWARE_ACK */ /* Wait for the ACK packet */ wt = RTIMER_NOW(); while(RTIMER_CLOCK_LT(RTIMER_NOW(), wt + INTER_PACKET_INTERVAL)) { } if(!is_broadcast && (NETSTACK_RADIO.receiving_packet() || NETSTACK_RADIO.pending_packet() || NETSTACK_RADIO.channel_clear() == 0)) { uint8_t ackbuf[ACK_LEN]; wt = RTIMER_NOW(); while(RTIMER_CLOCK_LT(RTIMER_NOW(), wt + AFTER_ACK_DETECTECT_WAIT_TIME)) { } len = NETSTACK_RADIO.read(ackbuf, ACK_LEN); //PRINTF("%u %u vs %u", len, ackbuf[ACK_LEN - 1], seqno); if(len == ACK_LEN && seqno == ackbuf[ACK_LEN - 1]) { got_strobe_ack = 1; encounter_time = txtime; break; } else { PRINTF("contikimac: collisions while sending\n"); collisions++; } } #endif /* RDC_CONF_HARDWARE_ACK */ } } off(); PRINTF("contikimac: send (strobes=%u, len=%u, %s, %s), done\n", strobes, packetbuf_totlen(), got_strobe_ack ? "ack" : "no ack", collisions ? "collision" : "no collision"); #if CONTIKIMAC_CONF_COMPOWER /* Accumulate the power consumption for the packet transmission. */ compower_accumulate(¤t_packet); /* Convert the accumulated power consumption for the transmitted packet to packet attributes so that the higher levels can keep track of the amount of energy spent on transmitting the packet. */ compower_attrconv(¤t_packet); /* Clear the accumulated power consumption so that it is ready for the next packet. */ compower_clear(¤t_packet); #endif /* CONTIKIMAC_CONF_COMPOWER */ contikimac_is_on = contikimac_was_on; we_are_sending = 0; /* Determine the return value that we will return from the function. We must pass this value to the phase module before we return from the function. */ if(collisions > 0) { ret = MAC_TX_COLLISION; } else if(!is_broadcast && !got_strobe_ack) { ret = MAC_TX_NOACK; } else { ret = MAC_TX_OK; } #if WITH_PHASE_OPTIMIZATION if(is_known_receiver && got_strobe_ack) { PRINTF("no miss %d wake-ups %d\n", packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[0], strobes); } if(!is_broadcast) { if(collisions == 0 && is_receiver_awake == 0) { phase_update(packetbuf_addr(PACKETBUF_ADDR_RECEIVER), encounter_time, ret); } } #endif /* WITH_PHASE_OPTIMIZATION */ return ret; } /*---------------------------------------------------------------------------*/ static void qsend_packet(mac_callback_t sent, void *ptr) { int ret = send_packet(sent, ptr, NULL, 0); if(ret != MAC_TX_DEFERRED) { mac_call_sent_callback(sent, ptr, ret, 1); } }
/*---------------------------------------------------------------------------*/ static int create(void) { frame802154_t params; int len; /* init to zeros */ memset(¶ms, 0, sizeof(params)); if(!initialized) { initialized = 1; mac_dsn = random_rand() & 0xff; } /* Build the FCF. */ params.fcf.frame_type = FRAME802154_DATAFRAME; params.fcf.security_enabled = 0; params.fcf.frame_pending = packetbuf_attr(PACKETBUF_ATTR_PENDING); if(linkaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER), &linkaddr_null)) { params.fcf.ack_required = 0; } else { params.fcf.ack_required = packetbuf_attr(PACKETBUF_ATTR_MAC_ACK); } params.fcf.panid_compression = 0; /* Insert IEEE 802.15.4 (2003) version bit. */ params.fcf.frame_version = FRAME802154_IEEE802154_2003; /* Increment and set the data sequence number. */ if(packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO)) { params.seq = packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO); } else { params.seq = mac_dsn++; packetbuf_set_attr(PACKETBUF_ATTR_MAC_SEQNO, params.seq); } /* params.seq = packetbuf_attr(PACKETBUF_ATTR_PACKET_ID); */ /* Complete the addressing fields. */ /** \todo For phase 1 the addresses are all long. We'll need a mechanism in the rime attributes to tell the mac to use long or short for phase 2. */ if(sizeof(linkaddr_t) == 2) { /* Use short address mode if linkaddr size is short. */ params.fcf.src_addr_mode = FRAME802154_SHORTADDRMODE; } else { params.fcf.src_addr_mode = FRAME802154_LONGADDRMODE; } params.dest_pid = mac_dst_pan_id; /* * If the output address is NULL in the Rime buf, then it is broadcast * on the 802.15.4 network. */ if(linkaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER), &linkaddr_null)) { /* Broadcast requires short address mode. */ params.fcf.dest_addr_mode = FRAME802154_SHORTADDRMODE; params.dest_addr[0] = 0xFF; params.dest_addr[1] = 0xFF; } else { linkaddr_copy((linkaddr_t *)¶ms.dest_addr, packetbuf_addr(PACKETBUF_ADDR_RECEIVER)); /* Use short address mode if linkaddr size is small */ if(sizeof(linkaddr_t) == 2) { params.fcf.dest_addr_mode = FRAME802154_SHORTADDRMODE; } else { params.fcf.dest_addr_mode = FRAME802154_LONGADDRMODE; } } /* Set the source PAN ID to the global variable. */ params.src_pid = mac_src_pan_id; /* * Set up the source address using only the long address mode for * phase 1. */ linkaddr_copy((linkaddr_t *)¶ms.src_addr, &linkaddr_node_addr); params.payload = packetbuf_dataptr(); params.payload_len = packetbuf_datalen(); len = frame802154_hdrlen(¶ms); if(packetbuf_hdralloc(len)) { frame802154_create(¶ms, packetbuf_hdrptr(), len); PRINTF("15.4-OUT: %2X", params.fcf.frame_type); PRINTADDR(params.dest_addr); PRINTF("%d %u (%u)\n", len, packetbuf_datalen(), packetbuf_totlen()); return len; } else { PRINTF("15.4-OUT: too large header: %u\n", len); return FRAMER_FAILED; } }
/*---------------------------------------------------------------------------*/ static int send_packet(void) { frame802154_t params; uint8_t len; /* init to zeros */ memset(¶ms, 0, sizeof(params)); /* Build the FCF. */ params.fcf.frame_type = FRAME802154_DATAFRAME; params.fcf.security_enabled = 0; params.fcf.frame_pending = 0; params.fcf.ack_required = packetbuf_attr(PACKETBUF_ATTR_RELIABLE); params.fcf.panid_compression = 0; /* Insert IEEE 802.15.4 (2003) version bit. */ params.fcf.frame_version = FRAME802154_IEEE802154_2003; /* Increment and set the data sequence number. */ params.seq = mac_dsn++; /* Complete the addressing fields. */ /** \todo For phase 1 the addresses are all long. We'll need a mechanism in the rime attributes to tell the mac to use long or short for phase 2. */ params.fcf.src_addr_mode = FRAME802154_LONGADDRMODE; params.dest_pid = mac_dst_pan_id; /* * If the output address is NULL in the Rime buf, then it is broadcast * on the 802.15.4 network. */ if(rimeaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER), &rimeaddr_null)) { /* Broadcast requires short address mode. */ params.fcf.dest_addr_mode = FRAME802154_SHORTADDRMODE; params.dest_addr.u8[0] = 0xFF; params.dest_addr.u8[1] = 0xFF; } else { rimeaddr_copy(¶ms.dest_addr, packetbuf_addr(PACKETBUF_ADDR_RECEIVER)); params.fcf.dest_addr_mode = FRAME802154_LONGADDRMODE; } /* Set the source PAN ID to the global variable. */ params.src_pid = mac_src_pan_id; /* * Set up the source address using only the long address mode for * phase 1. */ rimeaddr_copy(¶ms.src_addr, &rimeaddr_node_addr); params.payload = packetbuf_dataptr(); params.payload_len = packetbuf_datalen(); len = frame802154_hdrlen(¶ms); PRINTF("payload=%s, len=%d, hdrlen=%d\n", params.payload, params.payload_len, len); if(packetbuf_hdralloc(len)) { frame802154_create(¶ms, packetbuf_hdrptr(), len); //PRINTF("6MAC-UT: %2X\n", params.fcf.frame_type); PRINTADDR(params.dest_addr.u8); //PRINTF("%u %u (%u)\n", len, packetbuf_datalen(), packetbuf_totlen()); return radio->send(packetbuf_hdrptr(), packetbuf_totlen()); } else { PRINTF("6MAC-UT: too large header: %u\n", len); } return 0; }
/*---------------------------------------------------------------------------*/ static uint8_t send_packet(struct net_buf *buf, mac_callback_t sent, void *ptr) { frame802154_t params; uint8_t len; uint8_t ret = 0; /* init to zeros */ memset(¶ms, 0, sizeof(params)); /* Build the FCF. */ params.fcf.frame_type = FRAME802154_DATAFRAME; params.fcf.security_enabled = 0; params.fcf.frame_pending = 0; params.fcf.ack_required = packetbuf_attr(buf, PACKETBUF_ATTR_RELIABLE); params.fcf.panid_compression = 0; /* Insert IEEE 802.15.4 (2003) version bit. */ params.fcf.frame_version = FRAME802154_IEEE802154_2003; /* Increment and set the data sequence number. */ params.seq = mac_dsn++; /* Complete the addressing fields. */ /** \todo For phase 1 the addresses are all long. We'll need a mechanism in the rime attributes to tell the mac to use long or short for phase 2. */ params.fcf.src_addr_mode = FRAME802154_LONGADDRMODE; params.dest_pid = mac_dst_pan_id; if(packetbuf_holds_broadcast(buf)) { /* Broadcast requires short address mode. */ params.fcf.dest_addr_mode = FRAME802154_SHORTADDRMODE; params.dest_addr[0] = 0xFF; params.dest_addr[1] = 0xFF; } else { linkaddr_copy((linkaddr_t *)¶ms.dest_addr, packetbuf_addr(buf, PACKETBUF_ADDR_RECEIVER)); params.fcf.dest_addr_mode = FRAME802154_LONGADDRMODE; } /* Set the source PAN ID to the global variable. */ params.src_pid = mac_src_pan_id; /* * Set up the source address using only the long address mode for * phase 1. */ #if NETSTACK_CONF_BRIDGE_MODE linkaddr_copy((linkaddr_t *)¶ms.src_addr,packetbuf_addr(PACKETBUF_ADDR_SENDER)); #else linkaddr_copy((linkaddr_t *)¶ms.src_addr, &linkaddr_node_addr); #endif params.payload = packetbuf_dataptr(buf); params.payload_len = packetbuf_datalen(buf); len = frame802154_hdrlen(¶ms); if(packetbuf_hdralloc(buf, len)) { frame802154_create(¶ms, packetbuf_hdrptr(buf), len); PRINTF("6MAC-UT: type %X dest ", params.fcf.frame_type); PRINTLLADDR((uip_lladdr_t *)params.dest_addr); PRINTF(" len %u datalen %u (totlen %u)\n", len, packetbuf_datalen(buf), packetbuf_totlen(buf)); ret = NETSTACK_RADIO.send(buf, packetbuf_hdrptr(buf), packetbuf_totlen(buf)); if(sent) { switch(ret) { case RADIO_TX_OK: sent(buf, ptr, MAC_TX_OK, 1); break; case RADIO_TX_ERR: sent(buf, ptr, MAC_TX_ERR, 1); break; case RADIO_TX_COLLISION: sent(buf, ptr, MAC_TX_COLLISION, 1); break; } } } else { PRINTF("6MAC-UT: too large header: %u\n", len); } return ret; }
static void send_announcement(void *ptr) { int announcement_len; int transmit_len; #if WITH_CONTIKIMAC_HEADER struct hdr *chdr; #endif /* WITH_CONTIKIMAC_HEADER */ /* Set up the probe header. */ packetbuf_clear(); announcement_len = format_announcement(packetbuf_dataptr()); if(announcement_len > 0) { packetbuf_set_datalen(announcement_len); packetbuf_set_addr(PACKETBUF_ADDR_SENDER, &rimeaddr_node_addr); packetbuf_set_addr(PACKETBUF_ADDR_RECEIVER, &rimeaddr_null); packetbuf_set_attr(PACKETBUF_ATTR_RADIO_TXPOWER, announcement_radio_txpower); #if WITH_CONTIKIMAC_HEADER transmit_len = packetbuf_totlen(); if(packetbuf_hdralloc(sizeof(struct hdr)) == 0) { /* Failed to allocate space for contikimac header */ PRINTF("contikimac: send announcement failed, too large header\n"); return; } chdr = packetbuf_hdrptr(); chdr->id = CONTIKIMAC_ID; chdr->len = transmit_len; #endif /* WITH_CONTIKIMAC_HEADER */ if(NETSTACK_FRAMER.create()) { rtimer_clock_t t; int i, collisions; we_are_sending = 1; /* Make sure that the packet is longer or equal to the shorest packet length. */ transmit_len = packetbuf_totlen(); if(transmit_len < SHORTEST_PACKET_SIZE) { #if 0 /* Pad with zeroes */ uint8_t *ptr; ptr = packetbuf_dataptr(); memset(ptr + packetbuf_datalen(), 0, SHORTEST_PACKET_SIZE - transmit_len); #endif PRINTF("contikimac: shorter than shortest (%d)\n", packetbuf_totlen()); transmit_len = SHORTEST_PACKET_SIZE; } collisions = 0; /* Check for collisions */ for(i = 0; i < CCA_COUNT_MAX; ++i) { t = RTIMER_NOW(); on(); #if NURTIMER while(RTIMER_CLOCK_LT(t, RTIMER_NOW(), t + CCA_CHECK_TIME)); #else while(RTIMER_CLOCK_LT(RTIMER_NOW(), t + CCA_CHECK_TIME)); #endif if(NETSTACK_RADIO.channel_clear() == 0) { collisions++; off(); break; } off(); #if NURTIMER while(RTIMER_CLOCK_LT(t0, RTIMER_NOW(), t + CCA_SLEEP_TIME + CCA_CHECK_TIME)); #else while(RTIMER_CLOCK_LT(RTIMER_NOW(), t + CCA_SLEEP_TIME + CCA_CHECK_TIME)) { } #endif } if(collisions == 0) { NETSTACK_RADIO.prepare(packetbuf_hdrptr(), transmit_len); NETSTACK_RADIO.transmit(transmit_len); t = RTIMER_NOW(); #if NURTIMER while(RTIMER_CLOCK_LT(t, RTIMER_NOW(), t + INTER_PACKET_INTERVAL)); #else while(RTIMER_CLOCK_LT(RTIMER_NOW(), t + INTER_PACKET_INTERVAL)) { } #endif NETSTACK_RADIO.transmit(transmit_len); } we_are_sending = 0; } } }
/** * * Send a packet. This function builds a complete packet with an LPP * header and queues the packet. When a probe is heard (in the * read_packet() function), and the sender of the probe matches the * receiver of the queued packet, the queued packet is sent. * * ACK packets are treated differently from other packets: if a node * sends a packet that it expects to be ACKed, the sending node keeps * its radio on for some time after sending its packet. So we do not * need to wait for a probe packet: we just transmit the ACK packet * immediately. * */ static void send_packet(mac_callback_t sent, void *ptr) { struct lpp_hdr hdr; clock_time_t timeout; uint8_t is_broadcast = 0; rimeaddr_copy(&hdr.sender, &rimeaddr_node_addr); rimeaddr_copy(&hdr.receiver, packetbuf_addr(PACKETBUF_ADDR_RECEIVER)); if(rimeaddr_cmp(&hdr.receiver, &rimeaddr_null)) { is_broadcast = 1; } hdr.type = TYPE_DATA; packetbuf_hdralloc(sizeof(struct lpp_hdr)); memcpy(packetbuf_hdrptr(), &hdr, sizeof(struct lpp_hdr)); packetbuf_compact(); packetbuf_set_attr(PACKETBUF_ATTR_MAC_ACK, 1); { int hdrlen = NETSTACK_FRAMER.create(); if(hdrlen == 0) { /* Failed to send */ mac_call_sent_callback(sent, ptr, MAC_TX_ERR_FATAL, 0); return; } } PRINTF("%d.%d: queueing packet to %d.%d, channel %d\n", rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], hdr.receiver.u8[0], hdr.receiver.u8[1], packetbuf_attr(PACKETBUF_ATTR_CHANNEL)); #if WITH_ACK_OPTIMIZATION if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) == PACKETBUF_ATTR_PACKET_TYPE_ACK) { /* Send ACKs immediately. */ NETSTACK_RADIO.send(packetbuf_hdrptr(), packetbuf_totlen()); mac_call_sent_callback(sent, ptr, MAC_TX_OK, 1); return; } #endif /* WITH_ACK_OPTIMIZATION */ #if WITH_ADAPTIVE_OFF_TIME off_time = LOWEST_OFF_TIME; restart_dutycycle(off_time); #endif /* WITH_ADAPTIVE_OFF_TIME */ { struct queue_list_item *i; i = memb_alloc(&queued_packets_memb); if(i != NULL) { i->sent_callback = sent; i->sent_callback_ptr = ptr; i->num_transmissions = 0; i->packet = queuebuf_new_from_packetbuf(); if(i->packet == NULL) { memb_free(&queued_packets_memb, i); printf("null packet\n"); mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 0); return; } else { if(is_broadcast) { timeout = PACKET_LIFETIME; #if WITH_PENDING_BROADCAST /* We set the broadcast state of the packet to be waiting. This means that the packet is waiting for our next probe to be sent. Our next probe is used to check if there are any neighbors currently broadcasting a packet. If so, we will get a broadcast packet in response to our probe. If no broadcast packet is received in response to our probe, we mark the packet as ready to be sent. */ set_broadcast_flag(i, BROADCAST_FLAG_WAITING); PRINTF("-> waiting\n"); #endif /* WITH_PENDING_BROADCAST */ } else { timeout = UNICAST_TIMEOUT; #if WITH_PENDING_BROADCAST i->broadcast_flag = BROADCAST_FLAG_NONE; #endif /* WITH_PENDING_BROADCAST */ } ctimer_set(&i->removal_timer, timeout, remove_queued_old_packet_callback, i); /* Wait for a probe packet from a neighbor. The actual packet transmission is handled by the read_packet() function, which receives the probe from the neighbor. */ turn_radio_on_for_neighbor(&hdr.receiver, i); } } else { printf("i == NULL\n"); mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 0); } } }
/*---------------------------------------------------------------------------*/ static int send_packet(mac_callback_t mac_callback, void *mac_callback_ptr) { rtimer_clock_t t0; rtimer_clock_t t; rtimer_clock_t encounter_time = 0, last_transmission_time = 0; uint8_t first_transmission = 1; int strobes; uint8_t got_strobe_ack = 0; int hdrlen, len; uint8_t is_broadcast = 0; uint8_t is_reliable = 0; uint8_t is_known_receiver = 0; uint8_t collisions; int transmit_len; int i; int ret; #if WITH_CONTIKIMAC_HEADER struct hdr *chdr; #endif /* WITH_CONTIKIMAC_HEADER */ if(packetbuf_totlen() == 0) { PRINTF("contikimac: send_packet data len 0\n"); return MAC_TX_ERR_FATAL; } packetbuf_set_addr(PACKETBUF_ADDR_SENDER, &rimeaddr_node_addr); if(rimeaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER), &rimeaddr_null)) { is_broadcast = 1; PRINTDEBUG("contikimac: send broadcast\n"); if(broadcast_rate_drop()) { return MAC_TX_COLLISION; } } else { #if UIP_CONF_IPV6 PRINTDEBUG("contikimac: send unicast to %02x%02x:%02x%02x:%02x%02x:%02x%02x\n", packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[0], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[1], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[2], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[3], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[4], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[5], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[6], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[7]); #else /* UIP_CONF_IPV6 */ PRINTDEBUG("contikimac: send unicast to %u.%u\n", packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[0], packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[1]); #endif /* UIP_CONF_IPV6 */ } is_reliable = packetbuf_attr(PACKETBUF_ATTR_RELIABLE) || packetbuf_attr(PACKETBUF_ATTR_ERELIABLE); if(WITH_STREAMING) { if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) == PACKETBUF_ATTR_PACKET_TYPE_STREAM) { if(rimeaddr_cmp(&is_streaming_to, &rimeaddr_null)) { rimeaddr_copy(&is_streaming_to, packetbuf_addr(PACKETBUF_ADDR_RECEIVER)); } else if(!rimeaddr_cmp (&is_streaming_to, packetbuf_addr(PACKETBUF_ADDR_RECEIVER))) { rimeaddr_copy(&is_streaming_to_too, packetbuf_addr(PACKETBUF_ADDR_RECEIVER)); } stream_until = RTIMER_NOW() + DEFAULT_STREAM_TIME; is_streaming = 1; } else { is_streaming = 0; } } if(is_streaming) { packetbuf_set_attr(PACKETBUF_ATTR_PENDING, 1); } packetbuf_set_attr(PACKETBUF_ATTR_MAC_ACK, 1); #if WITH_CONTIKIMAC_HEADER hdrlen = packetbuf_totlen(); if(packetbuf_hdralloc(sizeof(struct hdr)) == 0) { /* Failed to allocate space for contikimac header */ PRINTF("contikimac: send failed, too large header\n"); return MAC_TX_ERR_FATAL; } chdr = packetbuf_hdrptr(); chdr->id = CONTIKIMAC_ID; chdr->len = hdrlen; /* Create the MAC header for the data packet. */ hdrlen = NETSTACK_FRAMER.create(); if(hdrlen == 0) { /* Failed to send */ PRINTF("contikimac: send failed, too large header\n"); packetbuf_hdr_remove(sizeof(struct hdr)); return MAC_TX_ERR_FATAL; } hdrlen += sizeof(struct hdr); #else /* WITH_CONTIKIMAC_HEADER */ /* Create the MAC header for the data packet. */ hdrlen = NETSTACK_FRAMER.create(); if(hdrlen == 0) { /* Failed to send */ PRINTF("contikimac: send failed, too large header\n"); return MAC_TX_ERR_FATAL; } #endif /* WITH_CONTIKIMAC_HEADER */ /* Make sure that the packet is longer or equal to the shortest packet length. */ transmit_len = packetbuf_totlen(); if(transmit_len < SHORTEST_PACKET_SIZE) { #if 0 /* Pad with zeroes */ uint8_t *ptr; ptr = packetbuf_dataptr(); memset(ptr + packetbuf_datalen(), 0, SHORTEST_PACKET_SIZE - packetbuf_totlen()); #endif PRINTF("contikimac: shorter than shortest (%d)\n", packetbuf_totlen()); transmit_len = SHORTEST_PACKET_SIZE; } packetbuf_compact(); NETSTACK_RADIO.prepare(packetbuf_hdrptr(), transmit_len); /* Remove the MAC-layer header since it will be recreated next time around. */ packetbuf_hdr_remove(hdrlen); if(!is_broadcast && !is_streaming) { #if WITH_PHASE_OPTIMIZATION if(WITH_ACK_OPTIMIZATION) { /* Wait until the receiver is expected to be awake */ if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) != PACKETBUF_ATTR_PACKET_TYPE_ACK) { ret = phase_wait(&phase_list, packetbuf_addr(PACKETBUF_ADDR_RECEIVER), CYCLE_TIME, GUARD_TIME, mac_callback, mac_callback_ptr); if(ret == PHASE_DEFERRED) { return MAC_TX_DEFERRED; } if(ret != PHASE_UNKNOWN) { is_known_receiver = 1; } } } else { ret = phase_wait(&phase_list, packetbuf_addr(PACKETBUF_ADDR_RECEIVER), CYCLE_TIME, GUARD_TIME, mac_callback, mac_callback_ptr); if(ret == PHASE_DEFERRED) { return MAC_TX_DEFERRED; } if(ret != PHASE_UNKNOWN) { is_known_receiver = 1; } } #endif /* WITH_PHASE_OPTIMIZATION */ } /* By setting we_are_sending to one, we ensure that the rtimer powercycle interrupt do not interfere with us sending the packet. */ we_are_sending = 1; /* If we have a pending packet in the radio, we should not send now, because we will trash the received packet. Instead, we signal that we have a collision, which lets the packet be received. This packet will be retransmitted later by the MAC protocol instread. */ if(NETSTACK_RADIO.receiving_packet() || NETSTACK_RADIO.pending_packet()) { we_are_sending = 0; PRINTF("contikimac: collision receiving %d, pending %d\n", NETSTACK_RADIO.receiving_packet(), NETSTACK_RADIO.pending_packet()); return MAC_TX_COLLISION; } /* Switch off the radio to ensure that we didn't start sending while the radio was doing a channel check. */ off(); strobes = 0; /* Send a train of strobes until the receiver answers with an ACK. */ collisions = 0; got_strobe_ack = 0; if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) != PACKETBUF_ATTR_PACKET_TYPE_ACK && is_streaming == 0) { /* Check if there are any transmissions by others. */ for(i = 0; i < CCA_COUNT_MAX; ++i) { t0 = RTIMER_NOW(); on(); #if NURTIMER while(RTIMER_CLOCK_LT(t0, RTIMER_NOW(), t0 + CCA_CHECK_TIME)); #else while(RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + CCA_CHECK_TIME)) { } #endif if(NETSTACK_RADIO.channel_clear() == 0) { collisions++; off(); break; } off(); t0 = RTIMER_NOW(); #if NURTIMER while(RTIMER_CLOCK_LT(t0, RTIMER_NOW(), t0 + CCA_SLEEP_TIME)); #else while(RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + CCA_SLEEP_TIME)) { } #endif } } if(collisions > 0) { we_are_sending = 0; off(); PRINTF("contikimac: collisions before sending\n"); return MAC_TX_COLLISION; } if(!is_broadcast) { on(); } watchdog_periodic(); t0 = RTIMER_NOW(); t = RTIMER_NOW(); #if NURTIMER for(strobes = 0, collisions = 0; got_strobe_ack == 0 && collisions == 0 && RTIMER_CLOCK_LT(t0, RTIMER_NOW(), t0 + STROBE_TIME); strobes++) { #else for(strobes = 0, collisions = 0; got_strobe_ack == 0 && collisions == 0 && RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + STROBE_TIME); strobes++) { #endif watchdog_periodic(); if(is_known_receiver && !RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + MAX_PHASE_STROBE_TIME)) { break; } len = 0; t = RTIMER_NOW(); { rtimer_clock_t wt; rtimer_clock_t now = RTIMER_NOW(); int ret; ret = NETSTACK_RADIO.transmit(transmit_len); wt = RTIMER_NOW(); #if NURTIMER while(RTIMER_CLOCK_LT(wt, RTIMER_NOW(), wt + INTER_PACKET_INTERVAL)); #else while(RTIMER_CLOCK_LT(RTIMER_NOW(), wt + INTER_PACKET_INTERVAL)) { } #endif if(!is_broadcast && (NETSTACK_RADIO.receiving_packet() || NETSTACK_RADIO.pending_packet() || NETSTACK_RADIO.channel_clear() == 0)) { uint8_t ackbuf[ACK_LEN]; wt = RTIMER_NOW(); #if NURTIMER while(RTIMER_CLOCK_LT(wt, RTIMER_NOW(), wt + AFTER_ACK_DETECTECT_WAIT_TIME)); #else while(RTIMER_CLOCK_LT(RTIMER_NOW(), wt + AFTER_ACK_DETECTECT_WAIT_TIME)) { } #endif len = NETSTACK_RADIO.read(ackbuf, ACK_LEN); if(len == ACK_LEN) { got_strobe_ack = 1; // encounter_time = last_transmission_time; encounter_time = now; break; } else { PRINTF("contikimac: collisions while sending\n"); collisions++; } } last_transmission_time = now; first_transmission = 0; } } if(WITH_ACK_OPTIMIZATION) { /* If we have received the strobe ACK, and we are sending a packet that will need an upper layer ACK (as signified by the PACKETBUF_ATTR_RELIABLE packet attribute), we keep the radio on. */ if(got_strobe_ack && is_reliable) { on(); /* Wait for ACK packet */ } else { off(); } } else { off(); } PRINTF("contikimac: send (strobes=%u, len=%u, %s, %s), done\n", strobes, packetbuf_totlen(), got_strobe_ack ? "ack" : "no ack", collisions ? "collision" : "no collision"); #if CONTIKIMAC_CONF_COMPOWER /* Accumulate the power consumption for the packet transmission. */ compower_accumulate(¤t_packet); /* Convert the accumulated power consumption for the transmitted packet to packet attributes so that the higher levels can keep track of the amount of energy spent on transmitting the packet. */ compower_attrconv(¤t_packet); /* Clear the accumulated power consumption so that it is ready for the next packet. */ compower_clear(¤t_packet); #endif /* CONTIKIMAC_CONF_COMPOWER */ we_are_sending = 0; /* Determine the return value that we will return from the function. We must pass this value to the phase module before we return from the function. */ if(collisions > 0) { ret = MAC_TX_COLLISION; } else if(!is_broadcast && !got_strobe_ack) { ret = MAC_TX_NOACK; } else { ret = MAC_TX_OK; } #if WITH_PHASE_OPTIMIZATION /* if(!first_transmission)*/ { /* COOJA_DEBUG_PRINTF("first phase 0x%02x\n", encounter_time % CYCLE_TIME);*/ if(WITH_ACK_OPTIMIZATION) { if(collisions == 0 && packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) != PACKETBUF_ATTR_PACKET_TYPE_ACK && is_streaming == 0) { phase_update(&phase_list, packetbuf_addr(PACKETBUF_ADDR_RECEIVER), encounter_time, ret); } } else { if(collisions == 0 && is_streaming == 0) { phase_update(&phase_list, packetbuf_addr(PACKETBUF_ADDR_RECEIVER), encounter_time, ret); } } } #endif /* WITH_PHASE_OPTIMIZATION */ return ret; } /*---------------------------------------------------------------------------*/ static void qsend_packet(mac_callback_t sent, void *ptr) { int ret = send_packet(sent, ptr); if(ret != MAC_TX_DEFERRED) { // printf("contikimac qsend_packet %p\n", ptr); mac_call_sent_callback(sent, ptr, ret, 1); } }