コード例 #1
0
ファイル: init.c プロジェクト: Argons/MIT-JOS
void
i386_init(void)
{
	extern char edata[], end[];

	// Before doing anything else, complete the ELF loading process.
	// Clear the uninitialized global data (BSS) section of our program.
	// This ensures that all static/global variables start out zero.
	memset(edata, 0, end - edata);

	// Initialize the console.
	// Can't call cprintf until after we do this!
	cons_init();

	cprintf("6828 decimal is %o octal!\n", 6828);

	// Lab 2 memory management initialization functions
	i386_detect_memory();
	i386_vm_init();
	page_init();
	page_check();







	// Drop into the kernel monitor.
	while (1)
		monitor(NULL);
}
コード例 #2
0
ファイル: init.c プロジェクト: sunrenjie/jos
void
i386_init(void)
{
	extern char edata[], end[];

	// Before doing anything else, complete the ELF loading process.
	// Clear the uninitialized global data (BSS) section of our program.
	// This ensures that all static/global variables start out zero.
	memset(edata, 0, end - edata);

	// Initialize the console.
	// Can't call cprintf until after we do this!
	cons_init();

	cprintf("6828 decimal is %o octal!\n", 6828);

	// Lab 2 memory management initialization functions
	i386_detect_memory();
	i386_vm_init();
	page_init();
	page_check();

	// Lab 3 user environment initialization functions
	env_init();
	idt_init();

	// Lab 4 multitasking initialization functions
	pic_init();
	kclock_init();

	// Should always have an idle process as first one.
	ENV_CREATE(user_idle);

	// Start fs.
	ENV_CREATE(fs_fs);
	ENV_CREATE(user_icode);

#if defined(TEST)
	// Don't touch -- used by grading script!
	ENV_CREATE2(TEST, TESTSIZE)
#else
	// Touch all you want.
	// ENV_CREATE(user_icode);
	// ENV_CREATE(user_pipereadeof);
	// ENV_CREATE(user_pipewriteeof);
	// ENV_CREATE(user_testpipe);
	// ENV_CREATE(user_primespipe);
	// ENV_CREATE(user_testpiperace);
	// ENV_CREATE(user_testpiperace2);
	// ENV_CREATE(user_testfdsharing);
#endif // TEST*

	// Should not be necessary - drain keyboard because interrupt has given up.
	kbd_intr();

	// Schedule and run the first user environment!
	sched_yield();


}
コード例 #3
0
ファイル: init.c プロジェクト: yegang1987/JOS
void
i386_init(void)
{
	extern char edata[], end[];
	uint32_t *ctorva;

	// Initialize the console.
	// Can't call cprintf until after we do this!
	cons_init();

	cprintf("6828 decimal is %o octal!\n", 6828);

	// Lab 2 memory management initialization functions
	boot_mem_init();
	page_init();
	page_check();

	// Lab 2 interrupt and gate descriptor initialization functions
	idt_init();

	// Test IDT (lab 2 only)
	__asm__ __volatile__("int3");
	cprintf("Breakpoint succeeded!\n");
	// Test the stack backtrace function (lab 1 only)
	//test_backtrace(5);
	// Lab 3 user environment initialization functions
	env_init();

#if JOS_MULTIENV 
	// Should always have an idle process as first one.
	ENV_CREATE(user_idle);
#endif

#ifdef TEST
	// Don't touch -- used by grading script!
	ENV_CREATE2(TEST, TESTSIZE);
#else
	// Touch all you want.
	ENV_CREATE(user_hello);
#endif // TEST*

	// We only have one user environment for now, so just run it.
	env_run(&envs[0]);

	// Drop into the kernel monitor.
	while (1)
		monitor(NULL);
}
コード例 #4
0
/*
 * Walk the vp->v_pages list, for every page call the callback function
 * pointed by *page_check. If page_check returns non-zero, then mark the
 * page as modified and if VMODSORT is set, move it to the end of v_pages
 * list. Moving makes sense only if we have at least two pages - this also
 * avoids having v_pages temporarily being NULL after calling page_vpsub()
 * if there was just one page.
 */
void
pvn_vplist_setdirty(vnode_t *vp, int (*page_check)(page_t *))
{
    page_t	*pp, *next, *end;
    kmutex_t	*vphm;
    int	shuffle;

    vphm = page_vnode_mutex(vp);
    mutex_enter(vphm);

    if (vp->v_pages == NULL) {
        mutex_exit(vphm);
        return;
    }

    end = vp->v_pages->p_vpprev;
    shuffle = IS_VMODSORT(vp) && (vp->v_pages != end);
    pp = vp->v_pages;

    for (;;) {
        next = pp->p_vpnext;
        if (pp->p_hash != PVN_VPLIST_HASH_TAG && page_check(pp)) {
            /*
             * hat_setmod_only() in contrast to hat_setmod() does
             * not shuffle the pages and does not grab the mutex
             * page_vnode_mutex. Exactly what we need.
             */
            hat_setmod_only(pp);
            if (shuffle) {
                page_vpsub(&vp->v_pages, pp);
                ASSERT(vp->v_pages != NULL);
                page_vpadd(&vp->v_pages->p_vpprev->p_vpnext,
                           pp);
            }
        }
        /* Stop if we have just processed the last page. */
        if (pp == end)
            break;
        pp = next;
    }

    mutex_exit(vphm);
}
コード例 #5
0
ファイル: pmap.c プロジェクト: ajsbu/cse506
// Set up a four-level page table:
//    boot_pml4e is its linear (virtual) address of the root
//
// This function only sets up the kernel part of the address space
// (ie. addresses >= UTOP).  The user part of the address space
// will be setup later.
//
// From UTOP to ULIM, the user is allowed to read but not write.
// Above ULIM the user cannot read or write.
void
x64_vm_init(void)
{
	pml4e_t* pml4e;
	uint32_t cr0;
	int i;
	size_t n;
	int r;
	struct Env *env;
	i386_detect_memory();
	//panic("i386_vm_init: This function is not finished\n");
	//////////////////////////////////////////////////////////////////////
	// create initial page directory.
	///panic("x64_vm_init: this function is not finished\n");
	pml4e = boot_alloc(PGSIZE);
	memset(pml4e, 0, PGSIZE);
	boot_pml4e = pml4e;
	boot_cr3 = PADDR(pml4e);

	//////////////////////////////////////////////////////////////////////
	// Allocate an array of npage 'struct Page's and store it in 'pages'.
	// The kernel uses this array to keep track of physical pages: for
	// each physical page, there is a corresponding struct Page in this
	// array.  'npage' is the number of physical pages in memory.
	// User-level programs will get read-only access to the array as well.
	// Your code goes here:
	pages = boot_alloc(npages * sizeof(struct Page));
	//////////////////////////////////////////////////////////////////////
	// Make 'envs' point to an array of size 'NENV' of 'struct Env'.
	// LAB 3: Your code here.
        envs = boot_alloc(NENV * sizeof(struct Env));
	//////////////////////////////////////////////////////////////////////
	// Now that we've allocated the initial kernel data structures, we set
	// up the list of free physical pages. Once we've done so, all further
	// memory management will go through the page_* functions. In
	// particular, we can now map memory using boot_map_segment or page_insert
	page_init();

	check_page_free_list(1);
	check_page_alloc();
	page_check();

	//////////////////////////////////////////////////////////////////////
	// Now we set up virtual memory 
	//////////////////////////////////////////////////////////////////////
	// Map 'pages' read-only by the user at linear address UPAGES
	// Permissions:
	//    - the new image at UPAGES -- kernel R, user R
	//      (ie. perm = PTE_U | PTE_P)
	//    - pages itself -- kernel RW, user NONE
	// Your code goes here:

	//////////////////////////////////////////////////////////////////////
	// Map the 'envs' array read-only by the user at linear address UENVS
	// (ie. perm = PTE_U | PTE_P).
	// Permissions:
	//    - the new image at UENVS  -- kernel R, user R
	//    - envs itself -- kernel RW, user NONE
	// LAB 3: Your code here.

	boot_map_segment(boot_pml4e, UPAGES, ROUNDUP(npages*sizeof(struct Page), PGSIZE), PADDR(pages), PTE_U | PTE_P); 
	boot_map_segment(boot_pml4e, (uintptr_t)pages, ROUNDUP(npages *sizeof(struct Page), PGSIZE), PADDR(pages), PTE_P | PTE_W);
	
        boot_map_segment(boot_pml4e, UENVS, ROUNDUP(NENV*sizeof(struct Env), PGSIZE), PADDR(envs), PTE_U | PTE_P); 
        boot_map_segment(boot_pml4e, (uintptr_t)envs, ROUNDUP(NENV *sizeof(struct Env), PGSIZE), PADDR(envs), PTE_P | PTE_W);
        
	//////////////////////////////////////////////////////////////////////
	// Use the physical memory that 'bootstack' refers to as the kernel
	// stack.  The kernel stack grows down from virtual address KSTACKTOP.
	// We consider the entire range from [KSTACKTOP-PTSIZE, KSTACKTOP) 
	// to be the kernel stack, but break this into two pieces:
	//     * [KSTACKTOP-KSTKSIZE, KSTACKTOP) -- backed by physical memory
	//     * [KSTACKTOP-PTSIZE, KSTACKTOP-KSTKSIZE) -- not backed; so if
	//       the kernel overflows its stack, it will fault rather than
	//       overwrite memory.  Known as a "guard page".
	//     Permissions: kernel RW, user NONE
	// Your code goes here:
	boot_map_segment(boot_pml4e, KSTACKTOP-KSTKSIZE, KSTKSIZE, PADDR(bootstack), PTE_P | PTE_W); 
	
	///////////////////////////////////////////////////////////////////////
	// Map all of physical memory at KERNBASE. 
	// Ie.  the VA range [KERNBASE, 2^32) should map to
	//      the PA range [0, 2^32 - KERNBASE)
	// We might not have 2^32 - KERNBASE bytes of physical memory, but
	// we just set up the mapping anyway.
	// Permissions: kernel RW, user NONE
	// Your code goes here: 
	boot_map_segment(boot_pml4e, KERNBASE,  ~(uint32_t)0 - KERNBASE + 1, 0, PTE_P | PTE_W);

	// Check that the initial page directory has been set up correctly.
	// Initialize the SMP-related parts of the memory map
	mem_init_mp();

	check_boot_pml4e(boot_pml4e);

	//////////////////////////////////////////////////////////////////////
	// Permissions: kernel RW, user NONE
	pdpe_t *pdpe = KADDR(PTE_ADDR(pml4e[0]));
	pde_t *pgdir = KADDR(PTE_ADDR(pdpe[3]));
	lcr3(boot_cr3);

	check_page_free_list(0);
}
コード例 #6
0
void kernel_init(multiboot_info_t *mboot_info)
{
	extern char __start_bss[], __stop_bss[];

	memset(__start_bss, 0, __stop_bss - __start_bss);
	/* mboot_info is a physical address.  while some arches currently have the
	 * lower memory mapped, everyone should have it mapped at kernbase by now.
	 * also, it might be in 'free' memory, so once we start dynamically using
	 * memory, we may clobber it. */
	multiboot_kaddr = (struct multiboot_info*)((physaddr_t)mboot_info
                                               + KERNBASE);
	extract_multiboot_cmdline(multiboot_kaddr);

	cons_init();
	print_cpuinfo();

	printk("Boot Command Line: '%s'\n", boot_cmdline);

	exception_table_init();
	cache_init();					// Determine systems's cache properties
	pmem_init(multiboot_kaddr);
	kmem_cache_init();              // Sets up slab allocator
	kmalloc_init();
	hashtable_init();
	radix_init();
	cache_color_alloc_init();       // Inits data structs
	colored_page_alloc_init();      // Allocates colors for agnostic processes
	acpiinit();
	topology_init();
	kthread_init();					/* might need to tweak when this happens */
	vmr_init();
	file_init();
	page_check();
	idt_init();
	kernel_msg_init();
	timer_init();
	vfs_init();
	devfs_init();
	train_timing();
	kb_buf_init(&cons_buf);
	arch_init();
	block_init();
	enable_irq();
	run_linker_funcs();
	/* reset/init devtab after linker funcs 3 and 4.  these run NIC and medium
	 * pre-inits, which need to happen before devether. */
	devtabreset();
	devtabinit();

#ifdef CONFIG_EXT2FS
	mount_fs(&ext2_fs_type, "/dev/ramdisk", "/mnt", 0);
#endif /* CONFIG_EXT2FS */
#ifdef CONFIG_ETH_AUDIO
	eth_audio_init();
#endif /* CONFIG_ETH_AUDIO */
	get_coreboot_info(&sysinfo);
	booting = 0;

#ifdef CONFIG_RUN_INIT_SCRIPT
	if (run_init_script()) {
		printk("Configured to run init script, but no script specified!\n");
		manager();
	}
#else
	manager();
#endif
}