int main(int argc, char **argv){ int np[2]; ptrdiff_t n[3]; ptrdiff_t alloc_local; ptrdiff_t local_ni[3], local_i_start[3]; ptrdiff_t local_no[3], local_o_start[3]; pfft_complex *in, *out; pfft_plan plan=NULL; MPI_Comm comm_cart_2d; /* Set size of FFT and process mesh */ n[0] = 2; n[1] = 2; n[2] = 4; np[0] = 2; np[1] = 2; /* Initialize MPI and PFFT */ MPI_Init(&argc, &argv); pfft_init(); /* Create two-dimensional process grid of size np[0] x np[1] */ pfft_create_procmesh_2d(MPI_COMM_WORLD, np[0], np[1], &comm_cart_2d); /* Get parameters of data distribution */ alloc_local = pfft_local_size_dft_3d( n, comm_cart_2d, PFFT_TRANSPOSED_NONE, local_ni, local_i_start, local_no, local_o_start); /* Allocate memory */ in = pfft_alloc_complex(alloc_local); out = pfft_alloc_complex(alloc_local); /* Plan parallel forward FFT */ plan = pfft_plan_dft_3d(n, in, out, comm_cart_2d, PFFT_FORWARD, PFFT_TRANSPOSED_NONE); /* Initialize input with random numbers */ pfft_init_input_complex_3d(n, local_ni, local_i_start, in); /* Execute parallel forward FFT */ pfft_execute(plan); /* free mem and finalize MPI */ pfft_destroy_plan(plan); MPI_Comm_free(&comm_cart_2d); pfft_free(in); pfft_free(out); MPI_Finalize(); return 0; }
int main(int argc, char **argv) { int n[3]; pfft_complex *in, *out; FFTW(plan) plan_forw=NULL, plan_back=NULL; double err, time, time_fftw[2], max_time_fftw[2]; unsigned fftw_flag; /* setup default parameters */ int iter = 10, inplace = 0, patience = 0; /* Set size of FFT and process mesh */ n[0] = n[1] = n[2] = 16; /* Initialize MPI and PFFT */ MPI_Init(&argc, &argv); pfft_init(); /* read parameters from command line */ init_parameters(argc, argv, n, &iter, &inplace, &patience); /* setup FFTWs planing depth */ switch(patience){ case 1: fftw_flag = FFTW_MEASURE; break; case 2: fftw_flag = FFTW_PATIENT; break; case 3: fftw_flag = FFTW_EXHAUSTIVE; break; default: fftw_flag = FFTW_ESTIMATE; } if(!inplace) fftw_flag |= FFTW_DESTROY_INPUT; /* Allocate memory */ in = pfft_alloc_complex(n[0]*n[1]*n[2]); out = (inplace) ? in : pfft_alloc_complex(n[0]*n[1]*n[2]); /* We often want to scale large FFTs, which do not fit on few processes. */ if( (in == NULL) || (out == NULL)){ fprintf(stderr, "!!! Error: Not enough memory to allocate input/output arrays !!!\n"); MPI_Finalize(); MPI_Finalize(); return 1; } ptrdiff_t local_ni[3], local_i_start[3], n_ptr[3]; for(int t=0; t<3; t++){ local_i_start[t] = 0; n_ptr[t] = local_ni[t] = (ptrdiff_t) n[t]; } plan_forw = FFTW(plan_dft_3d)(n[0], n[1], n[2], in, out, FFTW_FORWARD, fftw_flag); plan_back = FFTW(plan_dft_3d)(n[0], n[1], n[2], out, in, FFTW_BACKWARD, fftw_flag); /* Initialize input with random numbers */ pfft_init_input_complex_3d(n_ptr, local_ni, local_i_start, in); time_fftw[0] = time_fftw[1] = 0; for(int t=0; t<iter; t++){ /* execute parallel forward FFT */ time_fftw[0] -= MPI_Wtime(); FFTW(execute)(plan_forw); time_fftw[0] += MPI_Wtime(); /* execute parallel backward FFT */ time_fftw[1] -= MPI_Wtime(); FFTW(execute)(plan_back); time_fftw[1] += MPI_Wtime(); } /* Scale data */ for(int t=0; t<iter; t++) for(ptrdiff_t l=0; l < n[0] * n[1] * n[2]; l++) in[l] /= (n[0]*n[1]*n[2]); printf("fftw_forw = %.2e, fftw_back = %.2e\n", time_fftw[0]/iter, time_fftw[1]/iter); err = pfft_check_output_complex_3d(n_ptr, local_ni, local_i_start, in, MPI_COMM_WORLD); printf("Error after several forward and backward FFTWs of size n=(%td, %td, %td):\n", n[0], n[1], n[2]); printf("maxerror = %6.2e;\n", err); /* free mem and finalize */ FFTW(destroy_plan)(plan_forw); FFTW(destroy_plan)(plan_back); pfft_free(in); if(!inplace) pfft_free(out); MPI_Finalize(); return 0; }
int main(int argc, char **argv) { int np[2]; ptrdiff_t n[3]; ptrdiff_t alloc_local; ptrdiff_t local_ni[3], local_i_start[3]; ptrdiff_t local_no[3], local_o_start[3]; double err; pfft_complex *in, *out; pfft_plan plan_forw=NULL, plan_back=NULL; MPI_Comm comm_cart_2d; /* Set size of FFT and process mesh */ n[0] = 29; n[1] = 27; n[2] = 31; np[0] = 2; np[1] = 2; /* Initialize MPI and PFFT */ MPI_Init(&argc, &argv); pfft_init(); /* Create two-dimensional process grid of size np[0] x np[1], if possible */ if( pfft_create_procmesh_2d(MPI_COMM_WORLD, np[0], np[1], &comm_cart_2d) ){ pfft_fprintf(MPI_COMM_WORLD, stderr, "Error: This test file only works with %d processes.\n", np[0]*np[1]); MPI_Finalize(); return 1; } /* Get parameters of data distribution */ alloc_local = pfft_local_size_dft_3d(n, comm_cart_2d, PFFT_TRANSPOSED_OUT, local_ni, local_i_start, local_no, local_o_start); /* Allocate memory */ in = pfft_alloc_complex(alloc_local); out = pfft_alloc_complex(alloc_local); /* Plan parallel forward FFT */ plan_forw = pfft_plan_dft_3d( n, in, out, comm_cart_2d, PFFT_FORWARD, PFFT_TRANSPOSED_OUT| PFFT_MEASURE| PFFT_DESTROY_INPUT); /* Plan parallel backward FFT */ plan_back = pfft_plan_dft_3d( n, out, in, comm_cart_2d, PFFT_BACKWARD, PFFT_TRANSPOSED_IN| PFFT_MEASURE| PFFT_DESTROY_INPUT); /* Initialize input with random numbers */ pfft_init_input_complex_3d(n, local_ni, local_i_start, in); /* execute parallel forward FFT */ pfft_execute(plan_forw); /* execute parallel backward FFT */ pfft_execute(plan_back); /* Scale data */ for(ptrdiff_t l=0; l < local_ni[0] * local_ni[1] * local_ni[2]; l++) in[l] /= (n[0]*n[1]*n[2]); /* Print error of back transformed data */ MPI_Barrier(MPI_COMM_WORLD); err = pfft_check_output_complex_3d(n, local_ni, local_i_start, in, comm_cart_2d); pfft_printf(comm_cart_2d, "Error after one forward and backward trafo of size n=(%td, %td, %td):\n", n[0], n[1], n[2]); pfft_printf(comm_cart_2d, "maxerror = %6.2e;\n", err); /* free mem and finalize */ pfft_destroy_plan(plan_forw); pfft_destroy_plan(plan_back); MPI_Comm_free(&comm_cart_2d); pfft_free(in); pfft_free(out); MPI_Finalize(); return 0; }
int main(int argc, char **argv){ ptrdiff_t n[3], gc_below[3], gc_above[3]; ptrdiff_t local_ni[3], local_i_start[3]; ptrdiff_t local_no[3], local_o_start[3]; ptrdiff_t local_ngc[3], local_gc_start[3]; ptrdiff_t alloc_local, alloc_local_gc; int np[3], rnk_self, size, patience, verbose; unsigned pfft_flags=0; double err; MPI_Comm comm_cart_3d; pfft_complex *data; pfft_gcplan ths; MPI_Init(&argc, &argv); pfft_init(); MPI_Comm_rank(MPI_COMM_WORLD, &rnk_self); MPI_Comm_size(MPI_COMM_WORLD, &size); /* default values */ n[0] = n[1] = n[2] = 2; /* n[0] = 3; n[1] = 5; n[2] = 7;*/ np[0]=1; np[1]=1; np[2] = 3; verbose = 1; for(int t=0; t<3; t++){ gc_below[t] = 0; gc_above[t] = 0; } gc_below[0] = 0; gc_above[0] = 2; /* set values by commandline */ init_parameters(argc, argv, n, np, gc_below, gc_above, &patience, &verbose); switch(patience){ case 0: pfft_flags = PFFT_ESTIMATE; break; case 2: pfft_flags = PFFT_PATIENT; break; case 3: pfft_flags = PFFT_EXHAUSTIVE; break; default: pfft_flags = PFFT_MEASURE; } /* Create three-dimensional process grid of size np[0] x np[1] x np[2], if possible */ if( pfft_create_procmesh(3, MPI_COMM_WORLD, np, &comm_cart_3d) ){ pfft_fprintf(MPI_COMM_WORLD, stderr, "Error: This test file only works with %d processes.\n", np[0]*np[1]*np[2]); MPI_Finalize(); return 1; } /* Get parameters of data distribution */ alloc_local = pfft_local_size_dft_3d(n, comm_cart_3d, PFFT_TRANSPOSED_NONE, local_ni, local_i_start, local_no, local_o_start); alloc_local_gc = pfft_local_size_gc_3d( local_ni, local_i_start, alloc_local, gc_below, gc_above, local_ngc, local_gc_start); /* Allocate memory */ data = pfft_alloc_complex(alloc_local_gc); /* Plan parallel ghost cell send */ ths = pfft_plan_cgc_3d(n, gc_below, gc_above, data, comm_cart_3d, PFFT_GC_NONTRANSPOSED); /* Initialize input with random numbers */ pfft_init_input_complex_3d(n, local_ni, local_i_start, data); /* check gcell input */ if(verbose) pfft_apr_complex_3d(data, local_ni, local_i_start, "gcell input", comm_cart_3d); /* Execute parallel ghost cell send */ pfft_exchange(ths); /* check output */ if(verbose) pfft_apr_complex_3d(data, local_ngc, local_gc_start, "exchanged gcells", comm_cart_3d); /* Execute adjoint parallel ghost cell send */ pfft_reduce(ths); /* check input */ if(verbose) pfft_apr_complex_3d(data, local_no, local_o_start, "reduced gcells", comm_cart_3d); /* Scale data */ for(ptrdiff_t l=0; l < local_ni[0] * local_ni[1] * local_ni[2]; l++) data[l] /= 4; /* Print error of back transformed data */ MPI_Barrier(comm_cart_3d); err = pfft_check_output_complex_3d(n, local_ni, local_i_start, data, comm_cart_3d); pfft_printf(comm_cart_3d, "Error after one forward and backward trafo of size n=(%td, %td, %td):\n", n[0], n[1], n[2]); pfft_printf(comm_cart_3d, "maxerror = %6.2e;\n", err); /* free mem and finalize */ pfft_destroy_gcplan(ths); MPI_Comm_free(&comm_cart_3d); pfft_free(data); MPI_Finalize(); return 0; }
int main(int argc, char **argv) { int nthreads=1; /*number of threads to initialize openmp with*/ int runs=1; /*number of runs for testing*/ int np[2]; ptrdiff_t n[3]; ptrdiff_t alloc_local; ptrdiff_t local_ni[3], local_i_start[3]; ptrdiff_t local_no[3], local_o_start[3]; double err; pfft_complex *in, *out; pfft_plan plan_forw=NULL, plan_back=NULL; MPI_Comm comm_cart_2d; /* Init OpenMP */ pfft_get_args(argc,argv,"-pfft_omp_threads",1,PFFT_INT,&nthreads); pfft_get_args(argc,argv,"-pfft_runs",1,PFFT_INT,&runs); pfft_plan_with_nthreads(nthreads); /* Set size of FFT and process mesh */ n[0] = NNN;n[1] =NNN; n[2] =NNN; np[0] = 1; np[1] = 1; /* Initialize MPI and PFFT */ MPI_Init(&argc, &argv); pfft_init(); pfft_plan_with_nthreads(nthreads); pfft_printf(MPI_COMM_WORLD, "# %4d threads will be used for openmp (default is 1)\n", nthreads); /* Create two-dimensional process grid of size np[0] x np[1], if possible */ if( pfft_create_procmesh_2d(MPI_COMM_WORLD, np[0], np[1], &comm_cart_2d) ){ pfft_fprintf(MPI_COMM_WORLD, stderr, "Error: This test file only works with %d processes.\n", np[0]*np[1]); MPI_Finalize(); return 1; } /* Get parameters of data distribution */ alloc_local = pfft_local_size_dft_3d(n, comm_cart_2d, PFFT_TRANSPOSED_NONE, local_ni, local_i_start, local_no, local_o_start); /* Allocate memory */ in = pfft_alloc_complex(alloc_local); out = pfft_alloc_complex(alloc_local); /* Plan parallel forward FFT */ plan_forw = pfft_plan_dft_3d( n, in, out, comm_cart_2d, PFFT_FORWARD, PFFT_TRANSPOSED_OUT| PFFT_MEASURE| PFFT_DESTROY_INPUT| PFFT_TUNE| PFFT_SHIFTED_IN); /* Plan parallel backward FFT */ plan_back = pfft_plan_dft_3d( n, out, in, comm_cart_2d, PFFT_BACKWARD, PFFT_TRANSPOSED_IN| PFFT_MEASURE| PFFT_DESTROY_INPUT| PFFT_TUNE| PFFT_SHIFTED_OUT); /* Initialize input with random numbers */ pfft_init_input_complex_3d(n, local_ni, local_i_start, in); for(int i=0; i<runs; i++) { /* execute parallel forward FFT */ pfft_execute(plan_forw); /* clear the old input */ /* pfft_clear_input_complex_3d(n, local_ni, local_i_start, in); */ /* execute parallel backward FFT */ pfft_execute(plan_back); /* Scale data */ ptrdiff_t l; for(l=0; l < local_ni[0] * local_ni[1] * local_ni[2]; l++) in[l] /= (n[0]*n[1]*n[2]); } pfft_print_average_timer_adv(plan_forw, MPI_COMM_WORLD); pfft_print_average_timer_adv(plan_back, MPI_COMM_WORLD); /* Print error of back transformed data */ err = pfft_check_output_complex_3d(n, local_ni, local_i_start, in, comm_cart_2d); pfft_printf(comm_cart_2d, "Error after %d forward and backward trafos of size n=(%td, %td, %td):\n", runs, n[0], n[1], n[2]); pfft_printf(comm_cart_2d, "maxerror = %6.2e;\n", err); /* free mem and finalize */ pfft_destroy_plan(plan_forw); pfft_destroy_plan(plan_back); MPI_Comm_free(&comm_cart_2d); pfft_free(in); pfft_free(out); MPI_Finalize(); return 0; }
int main(int argc, char **argv){ ptrdiff_t n[3], gc_below[3], gc_above[3]; ptrdiff_t local_ni[3], local_i_start[3]; ptrdiff_t local_no[3], local_o_start[3]; ptrdiff_t local_ngc[3], local_gc_start[3]; ptrdiff_t alloc_local, alloc_local_gc; int np[3], rnk_self, size, verbose; double err; MPI_Comm comm_cart_2d; pfft_complex *cdata; pfft_gcplan ths; MPI_Init(&argc, &argv); pfft_init(); MPI_Comm_rank(MPI_COMM_WORLD, &rnk_self); MPI_Comm_size(MPI_COMM_WORLD, &size); /* default values */ n[0] = n[1] = n[2] = 8; /* n[0] = 3; n[1] = 5; n[2] = 7;*/ np[0]=2; np[1]=2; np[2] = 1; verbose = 0; for(int t=0; t<3; t++){ gc_below[t] = 0; gc_above[t] = 0; } gc_below[0] = 0; gc_above[0] = 4; /* set values by commandline */ init_parameters(argc, argv, n, np, gc_below, gc_above, &verbose); /* Create two-dimensional process grid of size np[0] x np[1], if possible */ if( pfft_create_procmesh_2d(MPI_COMM_WORLD, np[0], np[1], &comm_cart_2d) ){ pfft_fprintf(MPI_COMM_WORLD, stderr, "Error: This test file only works with %d processes.\n", np[0]*np[1]); MPI_Finalize(); return 1; } /* Get parameters of data distribution */ /* alloc_local, local_no, local_o_start are given in complex units */ /* local_ni, local_i_start are given in real units */ alloc_local = pfft_local_size_dft_r2c_3d(n, comm_cart_2d, PFFT_TRANSPOSED_NONE, local_ni, local_i_start, local_no, local_o_start); /* alloc_local_gc, local_ngc, local_gc_start are given in complex units */ alloc_local_gc = pfft_local_size_gc_3d( local_no, local_o_start, gc_below, gc_above, local_ngc, local_gc_start); /* Allocate enough memory for FFT and ghost cells */ cdata = pfft_alloc_complex(alloc_local_gc > alloc_local ? alloc_local_gc : alloc_local); /* Plan parallel ghost cell send */ ths = pfft_plan_cgc_3d(n, gc_below, gc_above, cdata, comm_cart_2d, PFFT_GC_TRANSPOSED_NONE | PFFT_GC_R2C); /* Initialize input with random numbers */ pfft_init_input_complex_3d(n, local_no, local_o_start, cdata); /* check gcell input */ if(verbose) pfft_apr_complex_3d(cdata, local_no, local_o_start, "gcell input", comm_cart_2d); /* Execute parallel ghost cell send */ pfft_exchange(ths); /* Check gcell output */ if(verbose) pfft_apr_complex_3d(cdata, local_ngc, local_gc_start, "exchanged gcells", comm_cart_2d); /* Execute adjoint parallel ghost cell send */ pfft_reduce(ths); /* check input */ if(verbose) pfft_apr_complex_3d(cdata, local_no, local_o_start, "reduced gcells", comm_cart_2d); /* Scale data */ for(ptrdiff_t l=0; l < local_no[0] * local_no[1] * local_no[2]; l++) cdata[l] /= 2; /* Print error of back transformed data */ MPI_Barrier(comm_cart_2d); err = pfft_check_output_complex_3d(n, local_no, local_o_start, cdata, comm_cart_2d); pfft_printf(comm_cart_2d, "Error after one gcell exchange and reduce of logical size n=(%td, %td, %td),\n", n[0], n[1], n[2]); pfft_printf(comm_cart_2d, "physical size pn=(%td, %td, %td),\n", n[0], n[1], n[2]/2+1); pfft_printf(comm_cart_2d, "gc_below = (%td, %td, %td), gc_above = (%td, %td, %td):\n", gc_below[0], gc_below[1], gc_below[2], gc_above[0], gc_above[1], gc_above[2]); pfft_printf(comm_cart_2d, "maxerror = %6.2e;\n", err); /* free mem and finalize */ pfft_destroy_gcplan(ths); MPI_Comm_free(&comm_cart_2d); pfft_free(cdata); MPI_Finalize(); return 0; }
static void measure_pfft( const ptrdiff_t *n, int *np, MPI_Comm comm, int loops, int inplace, unsigned pfft_opt_flags ) { ptrdiff_t alloc_local; ptrdiff_t local_ni[3], local_i_start[3]; ptrdiff_t local_no[3], local_o_start[3]; double err=0.0, timer[4], max_timer[4]; pfft_complex *in, *out; pfft_plan plan_forw=NULL, plan_back=NULL; MPI_Comm comm_cart_2d; /* Create two-dimensional process grid of size np[0] x np[1], if possible */ if( pfft_create_procmesh_2d(comm, np[0], np[1], &comm_cart_2d) ){ pfft_fprintf(comm, stderr, "Error: This test file only works with %d processes.\n", np[0]*np[1]); return; } /* Get parameters of data distribution */ alloc_local = pfft_local_size_dft_3d(n, comm_cart_2d, PFFT_TRANSPOSED_OUT, local_ni, local_i_start, local_no, local_o_start); /* Allocate memory */ in = pfft_alloc_complex(alloc_local); out = (inplace) ? in : pfft_alloc_complex(alloc_local); /* Plan parallel forward FFT */ timer[0] = -MPI_Wtime(); plan_forw = pfft_plan_dft_3d( n, in, out, comm_cart_2d, PFFT_FORWARD, PFFT_TRANSPOSED_OUT| pfft_opt_flags); timer[0] += MPI_Wtime(); /* Plan parallel backward FFT */ timer[1] = -MPI_Wtime(); plan_back = pfft_plan_dft_3d( n, out, in, comm_cart_2d, PFFT_BACKWARD, PFFT_TRANSPOSED_IN| pfft_opt_flags); timer[1] += MPI_Wtime(); /* Initialize input with random numbers */ pfft_init_input_complex_3d(n, local_ni, local_i_start, in); pfft_reset_timer(plan_forw); pfft_reset_timer(plan_back); timer[2] = timer[3] = 0; for(int t=0; t<loops; t++){ /* execute parallel forward FFT */ MPI_Barrier(MPI_COMM_WORLD); timer[2] -= MPI_Wtime(); pfft_execute(plan_forw); timer[2] += MPI_Wtime(); /* execute parallel backward FFT */ MPI_Barrier(MPI_COMM_WORLD); timer[3] -= MPI_Wtime(); pfft_execute(plan_back); timer[3] += MPI_Wtime(); /* Scale data */ for(ptrdiff_t l=0; l < local_ni[0] * local_ni[1] * local_ni[2]; l++) in[l] /= (n[0]*n[1]*n[2]); } timer[2] /= loops; timer[3] /= loops; /* Print pfft timer */ pfft_print_average_timer_adv(plan_forw, comm_cart_2d); pfft_print_average_timer_adv(plan_back, comm_cart_2d); /* Print optimization flags */ pfft_printf(comm_cart_2d, "\nFlags = "); if(pfft_opt_flags & PFFT_TUNE) pfft_printf(comm_cart_2d, "PFFT_TUNE"); else pfft_printf(comm_cart_2d, "PFFT_NO_TUNE"); pfft_printf(comm_cart_2d, " | "); if(pfft_opt_flags & PFFT_ESTIMATE) pfft_printf(comm_cart_2d, "PFFT_ESTIMATE"); else if(pfft_opt_flags & PFFT_PATIENT) pfft_printf(comm_cart_2d, "PFFT_PATIENT"); else if(pfft_opt_flags & PFFT_EXHAUSTIVE) pfft_printf(comm_cart_2d, "PFFT_EXHAUSTIVE"); else pfft_printf(comm_cart_2d, "PFFT_MEASURE"); pfft_printf(comm_cart_2d, " | "); if(pfft_opt_flags & PFFT_DESTROY_INPUT) pfft_printf(comm_cart_2d, "PFFT_DESTROY_INPUT"); else pfft_printf(comm_cart_2d, "PFFT_PRESERVE_INPUT"); pfft_printf(comm_cart_2d, "\n"); /* Print error of back transformed data */ err = pfft_check_output_complex_3d(n, local_ni, local_i_start, in, comm_cart_2d); pfft_printf(comm_cart_2d, "Run %d loops of ", loops); if(inplace) pfft_printf(comm_cart_2d, "in-place"); else pfft_printf(comm_cart_2d, "out-of-place"); pfft_printf(comm_cart_2d, " forward and backward trafo of size n=(%td, %td, %td):\n", n[0], n[1], n[2]); MPI_Reduce(&timer, &max_timer, 4, MPI_DOUBLE, MPI_MAX, 0, comm_cart_2d); pfft_printf(comm_cart_2d, "tune_forw = %6.2e; tune_back = %6.2e, exec_forw = %6.2e, exec_back = %6.2e, error = %6.2e\n", max_timer[0], max_timer[1], max_timer[2], max_timer[3], err); /* free mem and finalize */ pfft_destroy_plan(plan_forw); pfft_destroy_plan(plan_back); MPI_Comm_free(&comm_cart_2d); if(in != out) pfft_free(out); pfft_free(in); }