コード例 #1
0
ファイル: x11c.c プロジェクト: distanceModling/DAKOTA
int
main(int argc, char *argv[])
{
  int i, j, k;
  PLFLT *x, *y, **z;
  PLFLT xx, yy;
  int nlevel = LEVELS;
  PLFLT clevel[LEVELS];
  PLFLT zmin, zmax, step;

  /* Parse and process command line arguments */

  (void) plparseopts(&argc, argv, PL_PARSE_FULL);

  /* Initialize plplot */

  plinit();

  x = (PLFLT *) calloc(XPTS, sizeof(PLFLT));
  y = (PLFLT *) calloc(YPTS, sizeof(PLFLT));

  plAlloc2dGrid(&z, XPTS, YPTS);
  for (i = 0; i < XPTS; i++) {
    x[i] = 3. * (double) (i - (XPTS / 2)) / (double) (XPTS / 2);
  }

  for (i = 0; i < YPTS; i++)
    y[i] = 3.* (double) (i - (YPTS / 2)) / (double) (YPTS / 2);

  for (i = 0; i < XPTS; i++) {
    xx = x[i];
    for (j = 0; j < YPTS; j++) {
      yy = y[j];
      z[i][j] = 3. * (1.-xx)*(1.-xx) * exp(-(xx*xx) - (yy+1.)*(yy+1.)) -
	10. * (xx/5. - pow(xx,3.) - pow(yy,5.)) * exp(-xx*xx-yy*yy) -
	1./3. * exp(-(xx+1)*(xx+1) - (yy*yy));
		 
      if(0) { /* Jungfraujoch/Interlaken */
	if (z[i][j] < -1.)
	  z[i][j] = -1.;
      }
    }
  }

  plMinMax2dGrid(z, XPTS, YPTS, &zmax, &zmin);  
  step = (zmax - zmin)/(nlevel+1);
  for (i=0; i<nlevel; i++)
    clevel[i] = zmin + step + step*i;

  cmap1_init();
  for (k = 0; k < 2; k++) {
    for (i=0; i<4; i++) {
      pladv(0);
      plcol0(1);
      plvpor(0.0, 1.0, 0.0, 0.9);
      plwind(-1.0, 1.0, -1.0, 1.5);
      plw3d(1.0, 1.0, 1.2, -3.0, 3.0, -3.0, 3.0, zmin, zmax, alt[k], az[k]);
      plbox3("bnstu", "x axis", 0.0, 0,
	     "bnstu", "y axis", 0.0, 0,
	     "bcdmnstuv", "z axis", 0.0, 4);

      plcol0(2);

      /* wireframe plot */
      if (i==0)
	plmesh(x, y, z, XPTS, YPTS, opt[k]);

      /* magnitude colored wireframe plot */
      else if (i==1)
	plmesh(x, y, z, XPTS, YPTS, opt[k] | MAG_COLOR);

      /* magnitude colored wireframe plot with sides */
      else if (i==2)
	plot3d(x, y, z, XPTS, YPTS, opt[k] | MAG_COLOR, 1);

      /* magnitude colored wireframe plot with base contour */
      else if (i==3)
	plmeshc(x, y, z, XPTS, YPTS, opt[k] | MAG_COLOR | BASE_CONT,
		clevel, nlevel);

      plcol0(3);
      plmtex("t", 1.0, 0.5, 0.5, title[k]);
    }
  }

/* Clean up */
  
  free((void *) x);
  free((void *) y);
  plFree2dGrid(z, XPTS, YPTS);

  plend();

  exit(0);
}
コード例 #2
0
ファイル: x08c.c プロジェクト: FreeScienceCommunity/PLPlot
int
main( int argc, const char *argv[] )
{
    int      i, j, k;
    PLFLT    *x, *y, **z, *z_row_major, *z_col_major;
    PLFLT    dx = 2. / (PLFLT) ( XPTS - 1 );
    PLFLT    dy = 2. / (PLFLT) ( YPTS - 1 );
    PLfGrid2 grid_c, grid_row_major, grid_col_major;
    PLFLT    xx, yy, r;
    PLINT    ifshade;
    PLFLT    zmin, zmax, step;
    PLFLT    clevel[LEVELS];
    PLINT    nlevel = LEVELS;

    PLINT    indexxmin = 0;
    PLINT    indexxmax = XPTS;
    PLINT    *indexymin;
    PLINT    *indexymax;
    PLFLT    **zlimited;
    // parameters of ellipse (in x, y index coordinates) that limits the data.
    // x0, y0 correspond to the exact floating point centre of the index
    // range.
    PLFLT x0 = 0.5 * (PLFLT) ( XPTS - 1 );
    PLFLT a  = 0.9 * x0;
    PLFLT y0 = 0.5 * (PLFLT) ( YPTS - 1 );
    PLFLT b  = 0.7 * y0;
    PLFLT square_root;

    // Parse and process command line arguments
    plMergeOpts( options, "x08c options", NULL );
    (void) plparseopts( &argc, argv, PL_PARSE_FULL );

    // Initialize plplot

    plinit();

// Allocate data structures

    x = (PLFLT *) calloc( XPTS, sizeof ( PLFLT ) );
    y = (PLFLT *) calloc( YPTS, sizeof ( PLFLT ) );

    plAlloc2dGrid( &z, XPTS, YPTS );
    z_row_major = (PLFLT *) malloc( XPTS * YPTS * sizeof ( PLFLT ) );
    z_col_major = (PLFLT *) malloc( XPTS * YPTS * sizeof ( PLFLT ) );
    if ( !z_row_major || !z_col_major )
        plexit( "Memory allocation error" );

    grid_c.f         = z;
    grid_row_major.f = (PLFLT **) z_row_major;
    grid_col_major.f = (PLFLT **) z_col_major;
    grid_c.nx        = grid_row_major.nx = grid_col_major.nx = XPTS;
    grid_c.ny        = grid_row_major.ny = grid_col_major.ny = YPTS;

    for ( i = 0; i < XPTS; i++ )
    {
        x[i] = -1. + (PLFLT) i * dx;
        if ( rosen )
            x[i] *= 1.5;
    }

    for ( j = 0; j < YPTS; j++ )
    {
        y[j] = -1. + (PLFLT) j * dy;
        if ( rosen )
            y[j] += 0.5;
    }

    for ( i = 0; i < XPTS; i++ )
    {
        xx = x[i];
        for ( j = 0; j < YPTS; j++ )
        {
            yy = y[j];
            if ( rosen )
            {
                z[i][j] = pow( 1. - xx, 2. ) + 100. * pow( yy - pow( xx, 2. ), 2. );

                // The log argument might be zero for just the right grid.
                if ( z[i][j] > 0. )
                    z[i][j] = log( z[i][j] );
                else
                    z[i][j] = -5.; // -MAXFLOAT would mess-up up the scale
            }
            else
            {
                r       = sqrt( xx * xx + yy * yy );
                z[i][j] = exp( -r * r ) * cos( 2.0 * M_PI * r );
            }

            z_row_major[i * YPTS + j] = z[i][j];
            z_col_major[i + XPTS * j] = z[i][j];
        }
    }

    // Allocate and calculate y index ranges and corresponding zlimited.
    plAlloc2dGrid( &zlimited, XPTS, YPTS );
    indexymin = (PLINT *) malloc( XPTS * sizeof ( PLINT ) );
    indexymax = (PLINT *) malloc( XPTS * sizeof ( PLINT ) );
    if ( !indexymin || !indexymax )
        plexit( "Memory allocation error" );

    //printf("XPTS = %d\n", XPTS);
    //printf("x0 = %f\n", x0);
    //printf("a = %f\n", a);
    //printf("YPTS = %d\n", YPTS);
    //printf("y0 = %f\n", y0);
    //printf("b = %f\n", b);

    // These values should all be ignored because of the i index range.
#if 0
    for ( i = 0; i < indexxmin; i++ )
    {
        indexymin[i] = 0;
        indexymax[i] = YPTS;
        for ( j = indexymin[i]; j < indexymax[i]; j++ )
            // Mark with large value to check this is ignored.
            zlimited[i][j] = 1.e300;
    }
#endif
    for ( i = indexxmin; i < indexxmax; i++ )
    {
        square_root = sqrt( 1. - MIN( 1., pow( ( (PLFLT) i - x0 ) / a, 2. ) ) );
        // Add 0.5 to find nearest integer and therefore preserve symmetry
        // with regard to lower and upper bound of y range.
        indexymin[i] = MAX( 0, (PLINT) ( 0.5 + y0 - b * square_root ) );
        // indexymax calculated with the convention that it is 1
        // greater than highest valid index.
        indexymax[i] = MIN( YPTS, 1 + (PLINT) ( 0.5 + y0 + b * square_root ) );
        //printf("i, b*square_root, indexymin[i], YPTS - indexymax[i] = %d, %e, %d, %d\n", i, b*square_root, indexymin[i], YPTS - indexymax[i]);

#if 0
        // These values should all be ignored because of the j index range.
        for ( j = 0; j < indexymin[i]; j++ )
            // Mark with large value to check this is ignored.
            zlimited[i][j] = 1.e300;
#endif

        for ( j = indexymin[i]; j < indexymax[i]; j++ )
            zlimited[i][j] = z[i][j];

#if 0
        // These values should all be ignored because of the j index range.
        for ( j = indexymax[i]; j < YPTS; j++ )
            // Mark with large value to check this is ignored.
            zlimited[i][j] = 1.e300;
#endif
    }

#if 0
    // These values should all be ignored because of the i index range.
    for ( i = indexxmax; i < XPTS; i++ )
    {
        indexymin[i] = 0;
        indexymax[i] = YPTS;
        for ( j = indexymin[i]; j < indexymax[i]; j++ )
            // Mark with large value to check this is ignored.
            zlimited[i][j] = 1.e300;
    }
#endif

    plMinMax2dGrid( (const PLFLT * const *) z, XPTS, YPTS, &zmax, &zmin );
    step = ( zmax - zmin ) / ( nlevel + 1 );
    for ( i = 0; i < nlevel; i++ )
        clevel[i] = zmin + step + step * i;

    pllightsource( 1., 1., 1. );

    for ( k = 0; k < 2; k++ )
    {
        for ( ifshade = 0; ifshade < 5; ifshade++ )
        {
            pladv( 0 );
            plvpor( 0.0, 1.0, 0.0, 0.9 );
            plwind( -1.0, 1.0, -0.9, 1.1 );
            plcol0( 3 );
            plmtex( "t", 1.0, 0.5, 0.5, title[k] );
            plcol0( 1 );
            if ( rosen )
                plw3d( 1.0, 1.0, 1.0, -1.5, 1.5, -0.5, 1.5, zmin, zmax, alt[k], az[k] );
            else
                plw3d( 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, zmin, zmax, alt[k], az[k] );

            plbox3( "bnstu", "x axis", 0.0, 0,
                "bnstu", "y axis", 0.0, 0,
                "bcdmnstuv", "z axis", 0.0, 0 );
            plcol0( 2 );

            if ( ifshade == 0 ) // diffuse light surface plot
            {
                cmap1_init( 1 );
                plfsurf3d( x, y, plf2ops_c(), (PLPointer) z, XPTS, YPTS, 0, NULL, 0 );
            }
            else if ( ifshade == 1 ) // magnitude colored plot
            {
                cmap1_init( 0 );
                plfsurf3d( x, y, plf2ops_grid_c(), ( PLPointer ) & grid_c, XPTS, YPTS, MAG_COLOR, NULL, 0 );
            }
            else if ( ifshade == 2 ) //  magnitude colored plot with faceted squares
            {
                cmap1_init( 0 );
                plfsurf3d( x, y, plf2ops_grid_row_major(), ( PLPointer ) & grid_row_major, XPTS, YPTS, MAG_COLOR | FACETED, NULL, 0 );
            }
            else if ( ifshade == 3 ) // magnitude colored plot with contours
            {
                cmap1_init( 0 );
                plfsurf3d( x, y, plf2ops_grid_col_major(), ( PLPointer ) & grid_col_major, XPTS, YPTS, MAG_COLOR | SURF_CONT | BASE_CONT, clevel, nlevel );
            }
            else // magnitude colored plot with contours and index limits.
            {
                cmap1_init( 0 );
                plsurf3dl( x, y, (const PLFLT * const *) zlimited, XPTS, YPTS, MAG_COLOR | SURF_CONT | BASE_CONT, clevel, nlevel, indexxmin, indexxmax, indexymin, indexymax );
            }
        }
    }

// Clean up

    free( (void *) x );
    free( (void *) y );
    plFree2dGrid( z, XPTS, YPTS );
    free( (void *) z_row_major );
    free( (void *) z_col_major );

    plFree2dGrid( zlimited, XPTS, YPTS );
    free( (void *) indexymin );
    free( (void *) indexymax );

    plend();

    exit( 0 );
}
コード例 #3
0
ファイル: x21c.c プロジェクト: distanceModling/DAKOTA
int
main(int argc, char *argv[])
{
  PLFLT *x, *y, *z, *clev;
  PLFLT *xg, *yg, **zg, **szg;
  PLFLT zmin, zmax, lzm, lzM;
  long ct;
  int i, j, k;
  PLINT alg;
  char ylab[40], xlab[40];
  char *title[] = {"Cubic Spline Approximation",
		   "Delaunay Linear Interpolation",
		   "Natural Neighbors Interpolation",
		   "KNN Inv. Distance Weighted",
		   "3NN Linear Interpolation",
		   "4NN Around Inv. Dist. Weighted"};

  PLFLT opt[] = {0., 0., 0., 0., 0., 0.};

  xm = ym = -0.2;
  xM = yM = 0.8;

  plMergeOpts(options, "x21c options", NULL);
  plparseopts(&argc, argv, PL_PARSE_FULL);

  opt[2] = wmin;
  opt[3] = (PLFLT) knn_order;
  opt[4] = threshold;

  /* Initialize plplot */

  plinit();

  create_data(&x, &y, &z, pts); /* the sampled data */
  zmin = z[0];
  zmax = z[0];
  for (i=1; i<pts; i++) {
    if (z[i] > zmax)
      zmax = z[i];
    if (z[i] < zmin)
      zmin = z[i];
  }

  create_grid(&xg, xp, &yg, yp); /* grid the data at */
  plAlloc2dGrid(&zg, xp, yp); /* the output grided data */
  clev = (PLFLT *) malloc(nl * sizeof(PLFLT));

  sprintf(xlab, "Npts=%d gridx=%d gridy=%d", pts, xp, yp);
  plcol0(1);
  plenv(xm, xM, ym, yM, 2, 0);
  plcol0(15);
  pllab(xlab, "", "The original data");
  plcol0(2);
  plpoin(pts, x, y, 5);
  pladv(0);

  plssub(3,2);

  for (k=0; k<2; k++) {
    pladv(0);
    for (alg=1; alg<7; alg++) {

      ct = clock();
      plgriddata(x, y, z, pts, xg, xp, yg, yp, zg, alg, opt[alg-1]);
      sprintf(xlab, "time=%d ms", (clock() - ct)/1000);
      sprintf(ylab, "opt=%.3f", opt[alg-1]);

      /* - CSA can generate NaNs (only interpolates?!).
       * - DTLI and NNI can generate NaNs for points outside the convex hull
       *      of the data points.
       * - NNLI can generate NaNs if a sufficiently thick triangle is not found
       *
       * PLplot should be NaN/Inf aware, but changing it now is quite a job...
       * so, instead of not plotting the NaN regions, a weighted average over
       * the neighbors is done.
       */

      if (alg == GRID_CSA || alg == GRID_DTLI || alg == GRID_NNLI || alg == GRID_NNI) {
	int ii, jj;
	PLFLT dist, d;

	for (i=0; i<xp; i++) {
	  for (j=0; j<yp; j++) {
	    if (isnan(zg[i][j])) { /* average (IDW) over the 8 neighbors */

	      zg[i][j] = 0.; dist = 0.;

	      for (ii=i-1; ii<=i+1 && ii<xp; ii++) {
		for (jj=j-1; jj<=j+1 && jj<yp; jj++) {
		  if (ii >= 0 && jj >= 0 && !isnan(zg[ii][jj])) {
		    d = (abs(ii-i) + abs(jj-j)) == 1 ? 1. : 1.4142;
		    zg[i][j] += zg[ii][jj]/(d*d);
		    dist += d;
		  }
		}
	      }
	      if (dist != 0.)
		zg[i][j] /= dist;
	      else
		zg[i][j] = zmin;

	    }
	  }
	}
      }

      plMinMax2dGrid(zg, xp, yp, &lzM, &lzm);

      plcol0(1);
      pladv(alg);

      if (k == 0) {

	lzm = MIN(lzm, zmin);
	lzM = MAX(lzM, zmax);
	for (i=0; i<nl; i++)
	  clev[i] = lzm + (lzM-lzm)/(nl-1)*i;

	plenv0(xm, xM, ym, yM, 2, 0);
	plcol0(15);
	pllab(xlab, ylab, title[alg-1]);
	plshades(zg, xp, yp, NULL, xm, xM, ym, yM,
		 clev, nl, 1, 0, 1, plfill, 1, NULL, NULL);
	plcol0(2);
      } else {

	for (i=0; i<nl; i++)
	  clev[i] = lzm + (lzM-lzm)/(nl-1)*i;

	cmap1_init();
	plvpor(0.0, 1.0, 0.0, 0.9);
	plwind(-1.0, 1.0, -1.0, 1.5);
	/*
	 * For the comparition to be fair, all plots should have the
	 * same z values, but to get the max/min of the data generated
	 * by all algorithms would imply two passes. Keep it simple.
	 *
	 * plw3d(1., 1., 1., xm, xM, ym, yM, zmin, zmax, 30, -60);
	 */

	plw3d(1., 1., 1., xm, xM, ym, yM, lzm, lzM, 30, -60);
	plbox3("bnstu", ylab, 0.0, 0,
	       "bnstu", xlab, 0.0, 0,
	       "bcdmnstuv", "", 0.0, 4);
	plcol0(15);
	pllab("", "", title[alg-1]);
	plot3dc(xg, yg, zg, xp, yp, DRAW_LINEXY | MAG_COLOR | BASE_CONT, clev, nl);
      }
    }
  }

  plend();

  free_data(x, y, z);
  free_grid(xg, yg);
  free((void *)clev);
  plFree2dGrid(zg, xp, yp);
}