コード例 #1
0
    return GSL_SUCCESS;
}

struct Parameters{ };

TEST_CASE( "Print Cartesian state to Two-Line-Elements table header", "[print]" )
{
    // Set expected output string.
    std::ostringstream tableHeader;
    tableHeader
        << "#  a              e              i              AoP            RAAN           "
        << "TA             f1             f2             f3             f4             "
        << "f5             f6             "
        << std::endl;

    REQUIRE( printCartesianToTleSolverStateTableHeader( ) == tableHeader.str( ) );
}

TEST_CASE( "Print Cartesian state to Two-Line-Elements solver state", "[print]" )
{
    // Set initial guess for GSL solver.
    gsl_vector* initialGuess = gsl_vector_alloc( 6 );
    gsl_vector_set( initialGuess, 0, 0.1 );
    gsl_vector_set( initialGuess, 1, 0.2 );
    gsl_vector_set( initialGuess, 2, 0.3 );
    gsl_vector_set( initialGuess, 3, 0.4 );
    gsl_vector_set( initialGuess, 4, 0.5 );
    gsl_vector_set( initialGuess, 5, 0.6 );

    // Set up dummy GSL solver.
    Parameters parameters;
コード例 #2
0
const Tle convertCartesianStateToTwoLineElements(
    const Vector6& cartesianState,
    const DateTime& epoch,
    std::string& solverStatusSummary,
    int& numberOfIterations,
    const Tle& referenceTle,
    const Real earthGravitationalParameter,
    const Real earthMeanRadius,
    const Real absoluteTolerance,
    const Real relativeTolerance,
    const int maximumIterations )
{
    // Store reference TLE as the template TLE and update epoch.
    Tle templateTle = referenceTle;
    templateTle.updateEpoch( epoch );

    // Set up parameters for residual function.
    CartesianToTwoLineElementsParameters< Vector6 > parameters( cartesianState, templateTle );

    // Set up residual function.
    gsl_multiroot_function cartesianToTwoLineElementsFunction
        = { &computeCartesianToTwoLineElementResiduals< Real, Vector6 >,
            6,
            &parameters };

    // Compute current state in Keplerian elements, for use as initial guess for the TLE mean
    // elements.
    const Vector6 initialKeplerianElements = astro::convertCartesianToKeplerianElements(
        parameters.targetState, earthGravitationalParameter );

    // Compute initial guess for TLE mean elements.
    const Vector6 initialTleMeanElements
        = computeInitialGuessTleMeanElements( initialKeplerianElements,
                                              earthGravitationalParameter );

    // Set initial guess.
    gsl_vector* initialGuessTleMeanElements = gsl_vector_alloc( 6 );
    for ( int i = 0; i < 6; i++ )
    {
        gsl_vector_set( initialGuessTleMeanElements, i, initialTleMeanElements[ i ] );
    }

    // Set up solver type (derivative free).
    const gsl_multiroot_fsolver_type* solverType = gsl_multiroot_fsolver_hybrids;

    // Allocate memory for solver.
    gsl_multiroot_fsolver* solver = gsl_multiroot_fsolver_alloc( solverType, 6 );

    // Set solver to use residual function with initial guess for TLE mean elements.
    gsl_multiroot_fsolver_set( solver,
                               &cartesianToTwoLineElementsFunction,
                               initialGuessTleMeanElements );

     // Declare current solver status and iteration counter.
    int solverStatus = false;
    int counter = 0;

    // Set up buffer to store solver status summary table.
    std::ostringstream summary;

    // Print header for summary table to buffer.
    summary << printCartesianToTleSolverStateTableHeader( );

    do
    {
        // Print current state of solver for summary table.
        summary << printCartesianToTleSolverState( counter, solver );

        // Increment iteration counter.
        ++counter;

        // Execute solver iteration.
        solverStatus = gsl_multiroot_fsolver_iterate( solver );

        // Check if solver is stuck; if it is stuck, break from loop.
        if ( solverStatus )
        {
            solverStatusSummary = summary.str( );
            throw std::runtime_error( "ERROR: Non-linear solver is stuck!" );
        }

        // Check if root has been found (within tolerance).
        solverStatus = gsl_multiroot_test_delta(
          solver->dx, solver->x, absoluteTolerance, relativeTolerance );
    } while ( solverStatus == GSL_CONTINUE && counter < maximumIterations );

    // Save number of iterations.
    numberOfIterations = counter - 1;

    // Print final status of solver to buffer.
    summary << std::endl;
    summary << "Status of non-linear solver: " << gsl_strerror( solverStatus ) << std::endl;
    summary << std::endl;

    // Write buffer contents to solver status summary string.
    solverStatusSummary = summary.str( );

    // Generate TLE with converged mean elements.
    Tle virtualTle = templateTle;

    Real convergedMeanEccentricity = gsl_vector_get( solver->x, 2 );
    if ( convergedMeanEccentricity < 0.0 )
    {
        convergedMeanEccentricity = std::fabs( gsl_vector_get( solver->x, 2 ) );
    }

    if ( convergedMeanEccentricity > 0.999 )
    {
        convergedMeanEccentricity = 0.99;
    }

    virtualTle.updateMeanElements( sml::computeModulo( std::fabs( gsl_vector_get( solver->x, 0 ) ), 180.0 ),
                                   sml::computeModulo( gsl_vector_get( solver->x, 1 ), 360.0 ),
                                   convergedMeanEccentricity,
                                   sml::computeModulo( gsl_vector_get( solver->x, 3 ), 360.0 ),
                                   sml::computeModulo( gsl_vector_get( solver->x, 4 ), 360.0 ),
                                   std::fabs( gsl_vector_get( solver->x, 5 ) ) );

    // Free up memory.
    gsl_multiroot_fsolver_free( solver );
    gsl_vector_free( initialGuessTleMeanElements );

    return virtualTle;
}