コード例 #1
0
ファイル: scp_method.cpp プロジェクト: drewm1980/acado
returnValue SCPmethod::performCurrentStep( )
{
	returnValue returnvalue;

	if ( isInRealTimeMode == BT_TRUE )
	{
		if ( bandedCPsolver->finalizeSolve( bandedCP ) != SUCCESSFUL_RETURN )
			return ACADOERROR( RET_NLP_STEP_FAILED );
		
// 		bandedCP.deltaX.print();
    }

//     acadoPrintf("bandedCP.dynResiduum = \n");
//     bandedCP.dynResiduum.print();
//     acadoPrintf("bandedCP.lambdaDynamic = \n");
//     bandedCP.lambdaDynamic.print();

	oldIter = iter;

    // Perform a globalized step:
    // --------------------------
	int printLevel;
	get( PRINTLEVEL,printLevel );

	if ( (PrintLevel)printLevel >= HIGH ) 
		acadoPrintf( "--> Perform globalized SQP step ...\n" );
	
	clock.reset( );
	clock.start( );

	#ifdef SIM_DEBUG
/*	printf("performing the current step...: old iterate \n");
	(iter.x->getVector(0)).print("iter.x(0)");
	(iter.u->getVector(0)).print("iter.u(0)");
	(iter.x->getVector(1)).print("iter.x(1)");
	(iter.u->getVector(1)).print("iter.u(1)");*/
	#endif

	returnvalue = scpStep->performStep( iter,bandedCP,eval );
	if( returnvalue != SUCCESSFUL_RETURN )
		ACADOERROR( RET_NLP_STEP_FAILED );

	hasPerformedStep = BT_TRUE;

	clock.stop( );
	setLast( LOG_TIME_GLOBALIZATION,clock.getTime() );

	if ( (PrintLevel)printLevel >= HIGH ) 
		acadoPrintf( "<-- Perform globalized SQP step done.\n" );

	printIteration( );

	// Check convergence criterion if no real-time iterations are performed
	int terminateAtConvergence = 0;
	get( TERMINATE_AT_CONVERGENCE,terminateAtConvergence );

	if ( (BooleanType)terminateAtConvergence == BT_TRUE )
	{
		if ( checkForConvergence( ) == CONVERGENCE_ACHIEVED )
		{
			stopClockAndPrintRuntimeProfile( );
			return CONVERGENCE_ACHIEVED;
		}
	}

	if ( numberOfSteps >= 0 )
		set( KKT_TOLERANCE_SAFEGUARD,0.0 );
	
	return CONVERGENCE_NOT_YET_ACHIEVED;
}
コード例 #2
0
ファイル: sqpmethod.cpp プロジェクト: BrechtBa/casadi
  void Sqpmethod::evaluate() {
    if (inputs_check_) checkInputs();
    checkInitialBounds();

    if (gather_stats_) {
      Dict iterations;
      iterations["inf_pr"] = std::vector<double>();
      iterations["inf_du"] = std::vector<double>();
      iterations["ls_trials"] = std::vector<double>();
      iterations["d_norm"] = std::vector<double>();
      iterations["obj"] = std::vector<double>();
      stats_["iterations"] = iterations;
    }


    // Get problem data
    const vector<double>& x_init = input(NLP_SOLVER_X0).data();
    const vector<double>& lbx = input(NLP_SOLVER_LBX).data();
    const vector<double>& ubx = input(NLP_SOLVER_UBX).data();
    const vector<double>& lbg = input(NLP_SOLVER_LBG).data();
    const vector<double>& ubg = input(NLP_SOLVER_UBG).data();

    // Set linearization point to initial guess
    copy(x_init.begin(), x_init.end(), x_.begin());

    // Initialize Lagrange multipliers of the NLP
    copy(input(NLP_SOLVER_LAM_G0).begin(), input(NLP_SOLVER_LAM_G0).end(), mu_.begin());
    copy(input(NLP_SOLVER_LAM_X0).begin(), input(NLP_SOLVER_LAM_X0).end(), mu_x_.begin());

    t_eval_f_ = t_eval_grad_f_ = t_eval_g_ = t_eval_jac_g_ = t_eval_h_ =
        t_callback_fun_ = t_callback_prepare_ = t_mainloop_ = 0;

    n_eval_f_ = n_eval_grad_f_ = n_eval_g_ = n_eval_jac_g_ = n_eval_h_ = 0;

    double time1 = clock();

    // Initial constraint Jacobian
    eval_jac_g(x_, gk_, Jk_);

    // Initial objective gradient
    eval_grad_f(x_, fk_, gf_);

    // Initialize or reset the Hessian or Hessian approximation
    reg_ = 0;
    if (exact_hessian_) {
      eval_h(x_, mu_, 1.0, Bk_);
    } else {
      reset_h();
    }

    // Evaluate the initial gradient of the Lagrangian
    copy(gf_.begin(), gf_.end(), gLag_.begin());
    if (ng_>0) casadi_mv_t(Jk_.ptr(), Jk_.sparsity(), getPtr(mu_), getPtr(gLag_));
    // gLag += mu_x_;
    transform(gLag_.begin(), gLag_.end(), mu_x_.begin(), gLag_.begin(), plus<double>());

    // Number of SQP iterations
    int iter = 0;

    // Number of line-search iterations
    int ls_iter = 0;

    // Last linesearch successfull
    bool ls_success = true;

    // Reset
    merit_mem_.clear();
    sigma_ = 0.;    // NOTE: Move this into the main optimization loop

    // Default stepsize
    double t = 0;

    // MAIN OPTIMIZATION LOOP
    while (true) {

      // Primal infeasability
      double pr_inf = primalInfeasibility(x_, lbx, ubx, gk_, lbg, ubg);

      // inf-norm of lagrange gradient
      double gLag_norminf = norm_inf(gLag_);

      // inf-norm of step
      double dx_norminf = norm_inf(dx_);

      // Print header occasionally
      if (iter % 10 == 0) printIteration(userOut());

      // Printing information about the actual iterate
      printIteration(userOut(), iter, fk_, pr_inf, gLag_norminf, dx_norminf,
                     reg_, ls_iter, ls_success);

      if (gather_stats_) {
        Dict iterations = stats_["iterations"];
        std::vector<double> tmp=iterations["inf_pr"];
        tmp.push_back(pr_inf);
        iterations["inf_pr"] = tmp;

        tmp=iterations["inf_du"];
        tmp.push_back(gLag_norminf);
        iterations["inf_du"] = tmp;

        tmp=iterations["d_norm"];
        tmp.push_back(dx_norminf);
        iterations["d_norm"] = tmp;

        std::vector<int> tmp2=iterations["ls_trials"];
        tmp2.push_back(ls_iter);
        iterations["ls_trials"] = tmp2;

        tmp=iterations["obj"];
        tmp.push_back(fk_);
        iterations["obj"] = tmp;

        stats_["iterations"] = iterations;
      }

      // Call callback function if present
      if (!callback_.isNull()) {
        double time1 = clock();

        if (!output(NLP_SOLVER_F).isempty()) output(NLP_SOLVER_F).set(fk_);
        if (!output(NLP_SOLVER_X).isempty()) output(NLP_SOLVER_X).setNZ(x_);
        if (!output(NLP_SOLVER_LAM_G).isempty()) output(NLP_SOLVER_LAM_G).setNZ(mu_);
        if (!output(NLP_SOLVER_LAM_X).isempty()) output(NLP_SOLVER_LAM_X).setNZ(mu_x_);
        if (!output(NLP_SOLVER_G).isempty()) output(NLP_SOLVER_G).setNZ(gk_);

        Dict iteration;
        iteration["iter"] = iter;
        iteration["inf_pr"] = pr_inf;
        iteration["inf_du"] = gLag_norminf;
        iteration["d_norm"] = dx_norminf;
        iteration["ls_trials"] = ls_iter;
        iteration["obj"] = fk_;
        stats_["iteration"] = iteration;

        double time2 = clock();
        t_callback_prepare_ += (time2-time1)/CLOCKS_PER_SEC;
        time1 = clock();
        int ret = callback_(ref_, user_data_);
        time2 = clock();
        t_callback_fun_ += (time2-time1)/CLOCKS_PER_SEC;
        if (ret) {
          userOut() << endl;
          userOut() << "casadi::SQPMethod: aborted by callback..." << endl;
          stats_["return_status"] = "User_Requested_Stop";
          break;
        }
      }

      // Checking convergence criteria
      if (pr_inf < tol_pr_ && gLag_norminf < tol_du_) {
        userOut() << endl;
        userOut() << "casadi::SQPMethod: Convergence achieved after "
                  << iter << " iterations." << endl;
        stats_["return_status"] = "Solve_Succeeded";
        break;
      }

      if (iter >= max_iter_) {
        userOut() << endl;
        userOut() << "casadi::SQPMethod: Maximum number of iterations reached." << endl;
        stats_["return_status"] = "Maximum_Iterations_Exceeded";
        break;
      }

      if (iter > 0 && dx_norminf <= min_step_size_) {
        userOut() << endl;
        userOut() << "casadi::SQPMethod: Search direction becomes too small without "
            "convergence criteria being met." << endl;
        stats_["return_status"] = "Search_Direction_Becomes_Too_Small";
        break;
      }

      // Start a new iteration
      iter++;

      log("Formulating QP");
      // Formulate the QP
      transform(lbx.begin(), lbx.end(), x_.begin(), qp_LBX_.begin(), minus<double>());
      transform(ubx.begin(), ubx.end(), x_.begin(), qp_UBX_.begin(), minus<double>());
      transform(lbg.begin(), lbg.end(), gk_.begin(), qp_LBA_.begin(), minus<double>());
      transform(ubg.begin(), ubg.end(), gk_.begin(), qp_UBA_.begin(), minus<double>());

      // Solve the QP
      solve_QP(Bk_, gf_, qp_LBX_, qp_UBX_, Jk_, qp_LBA_, qp_UBA_, dx_, qp_DUAL_X_, qp_DUAL_A_);
      log("QP solved");

      // Detecting indefiniteness
      double gain = casadi_quad_form(Bk_.ptr(), Bk_.sparsity(), getPtr(dx_));
      if (gain < 0) {
        casadi_warning("Indefinite Hessian detected...");
      }

      // Calculate penalty parameter of merit function
      sigma_ = std::max(sigma_, 1.01*norm_inf(qp_DUAL_X_));
      sigma_ = std::max(sigma_, 1.01*norm_inf(qp_DUAL_A_));

      // Calculate L1-merit function in the actual iterate
      double l1_infeas = primalInfeasibility(x_, lbx, ubx, gk_, lbg, ubg);

      // Right-hand side of Armijo condition
      double F_sens = inner_prod(dx_, gf_);
      double L1dir = F_sens - sigma_ * l1_infeas;
      double L1merit = fk_ + sigma_ * l1_infeas;

      // Storing the actual merit function value in a list
      merit_mem_.push_back(L1merit);
      if (merit_mem_.size() > merit_memsize_) {
        merit_mem_.pop_front();
      }
      // Stepsize
      t = 1.0;
      double fk_cand;
      // Merit function value in candidate
      double L1merit_cand = 0;

      // Reset line-search counter, success marker
      ls_iter = 0;
      ls_success = true;

      // Line-search
      log("Starting line-search");
      if (max_iter_ls_>0) { // max_iter_ls_== 0 disables line-search

        // Line-search loop
        while (true) {
          for (int i=0; i<nx_; ++i) x_cand_[i] = x_[i] + t * dx_[i];

          try {
            // Evaluating objective and constraints
            eval_f(x_cand_, fk_cand);
            eval_g(x_cand_, gk_cand_);
          } catch(const CasadiException& ex) {
            // Silent ignore; line-search failed
            ls_iter++;
            // Backtracking
            t = beta_ * t;
            continue;
          }

          ls_iter++;

          // Calculating merit-function in candidate
          l1_infeas = primalInfeasibility(x_cand_, lbx, ubx, gk_cand_, lbg, ubg);

          L1merit_cand = fk_cand + sigma_ * l1_infeas;
          // Calculating maximal merit function value so far
          double meritmax = *max_element(merit_mem_.begin(), merit_mem_.end());
          if (L1merit_cand <= meritmax + t * c1_ * L1dir) {
            // Accepting candidate
            log("Line-search completed, candidate accepted");
            break;
          }

          // Line-search not successful, but we accept it.
          if (ls_iter == max_iter_ls_) {
            ls_success = false;
            log("Line-search completed, maximum number of iterations");
            break;
          }

          // Backtracking
          t = beta_ * t;
        }

        // Candidate accepted, update dual variables
        for (int i=0; i<ng_; ++i) mu_[i] = t * qp_DUAL_A_[i] + (1 - t) * mu_[i];
        for (int i=0; i<nx_; ++i) mu_x_[i] = t * qp_DUAL_X_[i] + (1 - t) * mu_x_[i];

        // Candidate accepted, update the primal variable
        copy(x_.begin(), x_.end(), x_old_.begin());
        copy(x_cand_.begin(), x_cand_.end(), x_.begin());

      } else {
        // Full step
        copy(qp_DUAL_A_.begin(), qp_DUAL_A_.end(), mu_.begin());
        copy(qp_DUAL_X_.begin(), qp_DUAL_X_.end(), mu_x_.begin());

        copy(x_.begin(), x_.end(), x_old_.begin());
        // x+=dx
        transform(x_.begin(), x_.end(), dx_.begin(), x_.begin(), plus<double>());
      }

      if (!exact_hessian_) {
        // Evaluate the gradient of the Lagrangian with the old x but new mu (for BFGS)
        copy(gf_.begin(), gf_.end(), gLag_old_.begin());
        if (ng_>0) casadi_mv_t(Jk_.ptr(), Jk_.sparsity(), getPtr(mu_), getPtr(gLag_old_));
        // gLag_old += mu_x_;
        transform(gLag_old_.begin(), gLag_old_.end(), mu_x_.begin(), gLag_old_.begin(),
                  plus<double>());
      }

      // Evaluate the constraint Jacobian
      log("Evaluating jac_g");
      eval_jac_g(x_, gk_, Jk_);

      // Evaluate the gradient of the objective function
      log("Evaluating grad_f");
      eval_grad_f(x_, fk_, gf_);

      // Evaluate the gradient of the Lagrangian with the new x and new mu
      copy(gf_.begin(), gf_.end(), gLag_.begin());
      if (ng_>0) casadi_mv_t(Jk_.ptr(), Jk_.sparsity(), getPtr(mu_), getPtr(gLag_));

      // gLag += mu_x_;
      transform(gLag_.begin(), gLag_.end(), mu_x_.begin(), gLag_.begin(), plus<double>());

      // Updating Lagrange Hessian
      if (!exact_hessian_) {
        log("Updating Hessian (BFGS)");
        // BFGS with careful updates and restarts
        if (iter % lbfgs_memory_ == 0) {
          // Reset Hessian approximation by dropping all off-diagonal entries
          const int* colind = Bk_.colind();      // Access sparsity (column offset)
          int ncol = Bk_.size2();
          const int* row = Bk_.row();            // Access sparsity (row)
          vector<double>& data = Bk_.data();             // Access nonzero elements
          for (int cc=0; cc<ncol; ++cc) {     // Loop over the columns of the Hessian
            for (int el=colind[cc]; el<colind[cc+1]; ++el) {
              // Loop over the nonzero elements of the column
              if (cc!=row[el]) data[el] = 0;               // Remove if off-diagonal entries
            }
          }
        }

        // Pass to BFGS update function
        bfgs_.setInput(Bk_, BFGS_BK);
        bfgs_.setInputNZ(x_, BFGS_X);
        bfgs_.setInputNZ(x_old_, BFGS_X_OLD);
        bfgs_.setInputNZ(gLag_, BFGS_GLAG);
        bfgs_.setInputNZ(gLag_old_, BFGS_GLAG_OLD);

        // Update the Hessian approximation
        bfgs_.evaluate();

        // Get the updated Hessian
        bfgs_.getOutput(Bk_);
        if (monitored("bfgs")) {
          userOut() << "x = " << x_ << endl;
          userOut() << "BFGS = "  << endl;
          Bk_.printSparse();
        }
      } else {
        // Exact Hessian
        log("Evaluating hessian");
        eval_h(x_, mu_, 1.0, Bk_);
      }
    }

    double time2 = clock();
    t_mainloop_ = (time2-time1)/CLOCKS_PER_SEC;

    // Save results to outputs
    output(NLP_SOLVER_F).set(fk_);
    output(NLP_SOLVER_X).setNZ(x_);
    output(NLP_SOLVER_LAM_G).setNZ(mu_);
    output(NLP_SOLVER_LAM_X).setNZ(mu_x_);
    output(NLP_SOLVER_G).setNZ(gk_);

    if (hasOption("print_time") && static_cast<bool>(getOption("print_time"))) {
      // Write timings
      userOut() << "time spent in eval_f: " << t_eval_f_ << " s.";
      if (n_eval_f_>0)
        userOut() << " (" << n_eval_f_ << " calls, " << (t_eval_f_/n_eval_f_)*1000
                  << " ms. average)";
      userOut() << endl;
      userOut() << "time spent in eval_grad_f: " << t_eval_grad_f_ << " s.";
      if (n_eval_grad_f_>0)
        userOut() << " (" << n_eval_grad_f_ << " calls, "
             << (t_eval_grad_f_/n_eval_grad_f_)*1000 << " ms. average)";
      userOut() << endl;
      userOut() << "time spent in eval_g: " << t_eval_g_ << " s.";
      if (n_eval_g_>0)
        userOut() << " (" << n_eval_g_ << " calls, " << (t_eval_g_/n_eval_g_)*1000
                  << " ms. average)";
      userOut() << endl;
      userOut() << "time spent in eval_jac_g: " << t_eval_jac_g_ << " s.";
      if (n_eval_jac_g_>0)
        userOut() << " (" << n_eval_jac_g_ << " calls, "
             << (t_eval_jac_g_/n_eval_jac_g_)*1000 << " ms. average)";
      userOut() << endl;
      userOut() << "time spent in eval_h: " << t_eval_h_ << " s.";
      if (n_eval_h_>1)
        userOut() << " (" << n_eval_h_ << " calls, " << (t_eval_h_/n_eval_h_)*1000
                  << " ms. average)";
      userOut() << endl;
      userOut() << "time spent in main loop: " << t_mainloop_ << " s." << endl;
      userOut() << "time spent in callback function: " << t_callback_fun_ << " s." << endl;
      userOut() << "time spent in callback preparation: " << t_callback_prepare_ << " s." << endl;
    }

    // Save statistics
    stats_["iter_count"] = iter;

    stats_["t_eval_f"] = t_eval_f_;
    stats_["t_eval_grad_f"] = t_eval_grad_f_;
    stats_["t_eval_g"] = t_eval_g_;
    stats_["t_eval_jac_g"] = t_eval_jac_g_;
    stats_["t_eval_h"] = t_eval_h_;
    stats_["t_mainloop"] = t_mainloop_;
    stats_["t_callback_fun"] = t_callback_fun_;
    stats_["t_callback_prepare"] = t_callback_prepare_;
    stats_["n_eval_f"] = n_eval_f_;
    stats_["n_eval_grad_f"] = n_eval_grad_f_;
    stats_["n_eval_g"] = n_eval_g_;
    stats_["n_eval_jac_g"] = n_eval_jac_g_;
    stats_["n_eval_h"] = n_eval_h_;
  }
コード例 #3
0
ファイル: newton.cpp プロジェクト: cfpperche/casadi
  void Newton::solveNonLinear() {
    casadi_log("Newton::solveNonLinear:begin");

    // Set up timers for profiling
    double time_zero=0;
    double time_start=0;
    double time_stop=0;
    if (CasadiOptions::profiling && !CasadiOptions::profilingBinary) {
      time_zero = getRealTime();
      CasadiOptions::profilingLog  << "start " << this << ":" <<getOption("name") << std::endl;
    }

    // Pass the inputs to J
    for (int i=0; i<getNumInputs(); ++i) {
      if (i!=iin_) jac_.setInput(input(i), i);
    }

    // Aliases
    DMatrix &u = output(iout_);
    DMatrix &J = jac_.output(0);
    DMatrix &F = jac_.output(1+iout_);

    // Perform the Newton iterations
    int iter=0;

    bool success = true;

    while (true) {
      // Break if maximum number of iterations already reached
      if (iter >= max_iter_) {
        log("evaluate", "Max. iterations reached.");
        stats_["return_status"] = "max_iteration_reached";
        success = false;
        break;
      }

      // Start a new iteration
      iter++;

      // Print progress
      if (monitored("step") || monitored("stepsize")) {
        std::cout << "Step " << iter << "." << std::endl;
      }

      if (monitored("step")) {
        std::cout << "  u = " << u << std::endl;
      }

      // Use u to evaluate J
      jac_.setInput(u, iin_);
      for (int i=0; i<getNumInputs(); ++i)
        if (i!=iin_) jac_.setInput(input(i), i);

      if (CasadiOptions::profiling) {
        time_start = getRealTime(); // Start timer
      }

      jac_.evaluate();

      // Write out profiling information
      if (CasadiOptions::profiling && !CasadiOptions::profilingBinary) {
        time_stop = getRealTime(); // Stop timer
        CasadiOptions::profilingLog
            << (time_stop-time_start)*1e6 << " ns | "
            << (time_stop-time_zero)*1e3 << " ms | "
            << this << ":" << getOption("name") << ":0|" << jac_.get() << ":"
            << jac_.getOption("name") << "|evaluate jacobian" << std::endl;
      }

      if (monitored("F")) std::cout << "  F = " << F << std::endl;
      if (monitored("normF"))
        std::cout << "  F (min, max, 1-norm, 2-norm) = "
                  << (*std::min_element(F.data().begin(), F.data().end()))
                  << ", " << (*std::max_element(F.data().begin(), F.data().end()))
                  << ", " << sumAll(fabs(F)) << ", " << sqrt(sumAll(F*F)) << std::endl;
      if (monitored("J")) std::cout << "  J = " << J << std::endl;

      double abstol = 0;
      if (numeric_limits<double>::infinity() != abstol_) {
        abstol = std::max((*std::max_element(F.data().begin(),
                                                  F.data().end())),
                               -(*std::min_element(F.data().begin(),
                                                   F.data().end())));
        if (abstol <= abstol_) {
          casadi_log("Converged to acceptable tolerance - abstol: " << abstol_);
          break;
        }
      }

      // Prepare the linear solver with J
      linsol_.setInput(J, LINSOL_A);

      if (CasadiOptions::profiling) {
        time_start = getRealTime(); // Start timer
      }
      linsol_.prepare();
      // Write out profiling information
      if (CasadiOptions::profiling && !CasadiOptions::profilingBinary) {
        time_stop = getRealTime(); // Stop timer
        CasadiOptions::profilingLog
            << (time_stop-time_start)*1e6 << " ns | "
            << (time_stop-time_zero)*1e3 << " ms | "
            << this << ":" << getOption("name")
            << ":1||prepare linear system" << std::endl;
      }

      if (CasadiOptions::profiling) {
        time_start = getRealTime(); // Start timer
      }
      // Solve against F
      linsol_.solve(&F.front(), 1, false);
      if (CasadiOptions::profiling && !CasadiOptions::profilingBinary) {
        time_stop = getRealTime(); // Stop timer
        CasadiOptions::profilingLog
            << (time_stop-time_start)*1e6 << " ns | "
            << (time_stop-time_zero)*1e3 << " ms | "
            << this << ":" << getOption("name") << ":2||solve linear system" << std::endl;
      }

      if (monitored("step")) {
        std::cout << "  step = " << F << std::endl;
      }

      double abstolStep=0;
      if (numeric_limits<double>::infinity() != abstolStep_) {
        abstolStep = std::max((*std::max_element(F.data().begin(),
                                                  F.data().end())),
                               -(*std::min_element(F.data().begin(),
                                                   F.data().end())));
        if (monitored("stepsize")) {
          std::cout << "  stepsize = " << abstolStep << std::endl;
        }
        if (abstolStep <= abstolStep_) {
          casadi_log("Converged to acceptable tolerance - abstolStep: " << abstolStep_);
          break;
        }
      }

      if (print_iteration_) {
        // Only print iteration header once in a while
        if (iter % 10==0) {
          printIteration(std::cout);
        }

        // Print iteration information
        printIteration(std::cout, iter, abstol, abstolStep);
      }

      // Update Xk+1 = Xk - J^(-1) F
      std::transform(u.begin(), u.end(), F.begin(), u.begin(), std::minus<double>());

      // Get auxiliary outputs
      for (int i=0; i<getNumOutputs(); ++i) {
        if (i!=iout_) jac_.getOutput(output(i), 1+i);
      }
    }

    // Store the iteration count
    if (gather_stats_) stats_["iter"] = iter;

    if (success) stats_["return_status"] = "success";

    // Factorization up-to-date
    fact_up_to_date_ = true;

    casadi_log("Newton::solveNonLinear():end after " << iter << " steps");
  }
コード例 #4
0
ファイル: sqp_internal.cpp プロジェクト: kozatt/casadi
void SQPInternal::evaluate(int nfdir, int nadir){
  casadi_assert(nfdir==0 && nadir==0);
  
  checkInitialBounds();
  
  // Get problem data
  const vector<double>& x_init = input(NLP_X_INIT).data();
  const vector<double>& lbx = input(NLP_LBX).data();
  const vector<double>& ubx = input(NLP_UBX).data();
  const vector<double>& lbg = input(NLP_LBG).data();
  const vector<double>& ubg = input(NLP_UBG).data();
  
  // Set the static parameter
  if (parametric_) {
    const vector<double>& p = input(NLP_P).data();
    if (!F_.isNull()) F_.setInput(p,F_.getNumInputs()-1);
    if (!G_.isNull()) G_.setInput(p,G_.getNumInputs()-1);
    if (!H_.isNull()) H_.setInput(p,H_.getNumInputs()-1);
    if (!J_.isNull()) J_.setInput(p,J_.getNumInputs()-1);
  }
    
  // Set linearization point to initial guess
  copy(x_init.begin(),x_init.end(),x_.begin());
  
  // Lagrange multipliers of the NLP
  fill(mu_.begin(),mu_.end(),0);
  fill(mu_x_.begin(),mu_x_.end(),0);

  // Initial constraint Jacobian
  eval_jac_g(x_,gk_,Jk_);
  
  // Initial objective gradient
  eval_grad_f(x_,fk_,gf_);
  
  // Initialize or reset the Hessian or Hessian approximation
  reg_ = 0;
  if( hess_mode_ == HESS_BFGS){
    reset_h();
  } else {
    eval_h(x_,mu_,1.0,Bk_);
  }

  // Evaluate the initial gradient of the Lagrangian
  copy(gf_.begin(),gf_.end(),gLag_.begin());
  if(m_>0) DMatrix::mul_no_alloc_tn(Jk_,mu_,gLag_);
  // gLag += mu_x_;
  transform(gLag_.begin(),gLag_.end(),mu_x_.begin(),gLag_.begin(),plus<double>());

  // Number of SQP iterations
  int iter = 0;

  // Number of line-search iterations
  int ls_iter = 0;
  
  // Last linesearch successfull
  bool ls_success = true;
  
  // Reset
  merit_mem_.clear();
  sigma_ = 0.;    // NOTE: Move this into the main optimization loop

  // Default stepsize
  double t = 0;
  
  // MAIN OPTIMIZATION LOOP
  while(true){
    
    // Primal infeasability
    double pr_inf = primalInfeasibility(x_, lbx, ubx, gk_, lbg, ubg);
    
    // 1-norm of lagrange gradient
    double gLag_norm1 = norm_1(gLag_);
    
    // 1-norm of step
    double dx_norm1 = norm_1(dx_);
    
    // Print header occasionally
    if(iter % 10 == 0) printIteration(cout);
    
    // Printing information about the actual iterate
    printIteration(cout,iter,fk_,pr_inf,gLag_norm1,dx_norm1,reg_,ls_iter,ls_success);
    
    // Call callback function if present
    if (!callback_.isNull()) {
      callback_.input(NLP_COST).set(fk_);
      callback_.input(NLP_X_OPT).set(x_);
      callback_.input(NLP_LAMBDA_G).set(mu_);
      callback_.input(NLP_LAMBDA_X).set(mu_x_);
      callback_.input(NLP_G).set(gk_);
      callback_.evaluate();
      
      if (callback_.output(0).at(0)) {
        cout << endl;
        cout << "CasADi::SQPMethod: aborted by callback..." << endl;
        break;
      }
    }
    
    // Checking convergence criteria
    if (pr_inf < tol_pr_ && gLag_norm1 < tol_du_){
      cout << endl;
      cout << "CasADi::SQPMethod: Convergence achieved after " << iter << " iterations." << endl;
      break;
    }
    
    if (iter >= maxiter_){
      cout << endl;
      cout << "CasADi::SQPMethod: Maximum number of iterations reached." << endl;
      break;
    }
    
    // Start a new iteration
    iter++;
    
    // Formulate the QP
    transform(lbx.begin(),lbx.end(),x_.begin(),qp_LBX_.begin(),minus<double>());
    transform(ubx.begin(),ubx.end(),x_.begin(),qp_UBX_.begin(),minus<double>());
    transform(lbg.begin(),lbg.end(),gk_.begin(),qp_LBA_.begin(),minus<double>());
    transform(ubg.begin(),ubg.end(),gk_.begin(),qp_UBA_.begin(),minus<double>());

    // Solve the QP
    solve_QP(Bk_,gf_,qp_LBX_,qp_UBX_,Jk_,qp_LBA_,qp_UBA_,dx_,qp_DUAL_X_,qp_DUAL_A_);
    log("QP solved");

    // Detecting indefiniteness
    double gain = quad_form(dx_,Bk_);
    if (gain < 0){
      casadi_warning("Indefinite Hessian detected...");
    }
        
    // Calculate penalty parameter of merit function
    sigma_ = std::max(sigma_,1.01*norm_inf(qp_DUAL_X_));
    sigma_ = std::max(sigma_,1.01*norm_inf(qp_DUAL_A_));

    // Calculate L1-merit function in the actual iterate
    double l1_infeas = primalInfeasibility(x_, lbx, ubx, gk_, lbg, ubg);

    // Right-hand side of Armijo condition
    double F_sens = inner_prod(dx_, gf_);    
    double L1dir = F_sens - sigma_ * l1_infeas;
    double L1merit = fk_ + sigma_ * l1_infeas;

    // Storing the actual merit function value in a list
    merit_mem_.push_back(L1merit);
    if (merit_mem_.size() > merit_memsize_){
      merit_mem_.pop_front();
    }
    // Stepsize
    t = 1.0;
    double fk_cand;
    // Merit function value in candidate
    double L1merit_cand = 0;

    // Reset line-search counter, success marker
    ls_iter = 0;
    ls_success = true;

    // Line-search
    log("Starting line-search");
    if(maxiter_ls_>0){ // maxiter_ls_== 0 disables line-search
      
      // Line-search loop
      while (true){
        for(int i=0; i<n_; ++i) x_cand_[i] = x_[i] + t * dx_[i];
      
        // Evaluating objective and constraints
        eval_f(x_cand_,fk_cand);
        eval_g(x_cand_,gk_cand_);
        ls_iter++;

        // Calculating merit-function in candidate
        l1_infeas = primalInfeasibility(x_cand_, lbx, ubx, gk_cand_, lbg, ubg);
      
        L1merit_cand = fk_cand + sigma_ * l1_infeas;
        // Calculating maximal merit function value so far
        double meritmax = *max_element(merit_mem_.begin(), merit_mem_.end());
        if (L1merit_cand <= meritmax + t * c1_ * L1dir){
          // Accepting candidate
	  log("Line-search completed, candidate accepted");
          break;
        }
      
        // Line-search not successful, but we accept it.
        if(ls_iter == maxiter_ls_){
          ls_success = false;
	  log("Line-search completed, maximum number of iterations");
          break;
        }
      
        // Backtracking
        t = beta_ * t;
      }
    }

    // Candidate accepted, update dual variables
    for(int i=0; i<m_; ++i) mu_[i] = t * qp_DUAL_A_[i] + (1 - t) * mu_[i];
    for(int i=0; i<n_; ++i) mu_x_[i] = t * qp_DUAL_X_[i] + (1 - t) * mu_x_[i];
    
    if( hess_mode_ == HESS_BFGS){
      // Evaluate the gradient of the Lagrangian with the old x but new mu (for BFGS)
      copy(gf_.begin(),gf_.end(),gLag_old_.begin());
      if(m_>0) DMatrix::mul_no_alloc_tn(Jk_,mu_,gLag_old_);
      // gLag_old += mu_x_;
      transform(gLag_old_.begin(),gLag_old_.end(),mu_x_.begin(),gLag_old_.begin(),plus<double>());
    }
    
    // Candidate accepted, update the primal variable
    copy(x_.begin(),x_.end(),x_old_.begin());
    copy(x_cand_.begin(),x_cand_.end(),x_.begin());

    // Evaluate the constraint Jacobian
    log("Evaluating jac_g");
    eval_jac_g(x_,gk_,Jk_);
    
    // Evaluate the gradient of the objective function
    log("Evaluating grad_f");
    eval_grad_f(x_,fk_,gf_);
    
    // Evaluate the gradient of the Lagrangian with the new x and new mu
    copy(gf_.begin(),gf_.end(),gLag_.begin());
    if(m_>0) DMatrix::mul_no_alloc_tn(Jk_,mu_,gLag_);
    // gLag += mu_x_;
    transform(gLag_.begin(),gLag_.end(),mu_x_.begin(),gLag_.begin(),plus<double>());

    // Updating Lagrange Hessian
    if( hess_mode_ == HESS_BFGS){
      log("Updating Hessian (BFGS)");
      // BFGS with careful updates and restarts
      if (iter % lbfgs_memory_ == 0){
        // Reset Hessian approximation by dropping all off-diagonal entries
        const vector<int>& rowind = Bk_.rowind();      // Access sparsity (row offset)
        const vector<int>& col = Bk_.col();            // Access sparsity (column)
        vector<double>& data = Bk_.data();             // Access nonzero elements
        for(int i=0; i<rowind.size()-1; ++i){          // Loop over the rows of the Hessian
          for(int el=rowind[i]; el<rowind[i+1]; ++el){ // Loop over the nonzero elements of the row
            if(i!=col[el]) data[el] = 0;               // Remove if off-diagonal entries
          }
        }
      }
      
      // Pass to BFGS update function
      bfgs_.setInput(Bk_,BFGS_BK);
      bfgs_.setInput(x_,BFGS_X);
      bfgs_.setInput(x_old_,BFGS_X_OLD);
      bfgs_.setInput(gLag_,BFGS_GLAG);
      bfgs_.setInput(gLag_old_,BFGS_GLAG_OLD);
      
      // Update the Hessian approximation
      bfgs_.evaluate();
      
      // Get the updated Hessian
      bfgs_.getOutput(Bk_);
    } else {
      // Exact Hessian
      log("Evaluating hessian");
      eval_h(x_,mu_,1.0,Bk_);
    }
  }
  
  // Save results to outputs
  output(NLP_COST).set(fk_);
  output(NLP_X_OPT).set(x_);
  output(NLP_LAMBDA_G).set(mu_);
  output(NLP_LAMBDA_X).set(mu_x_);
  output(NLP_G).set(gk_);
  
  // Save statistics
  stats_["iter_count"] = iter;
}
コード例 #5
0
int main(int argc, char **argv)
{
	int max = 10;
	unsigned long millis = 0L;
	char filename[256];

	unsigned short priority = 0;

	int i;
	char *argument;

	LSIteration iteration1;
	LSIteration iteration2;
	
	// testing gene algorithm:
	initGeneSystem(30);
	nextGene(1, (unsigned int) 0, 1);
	exit(0);

	// testing the timing algorithm:
	//testTimingExtrapolation();

	//startTimeMillis = getCurrentTimeMillis();
	initTiming();
	initFile();

	// process cmdline
	for (i = 1; i < argc; i++)
	{
		argument = argv[i];
		if (strlen(argument) < 2 || argument[0] != '-')
		{
			 usage();
			 exit(-2);
		}

		switch (argument[1])
		{
		case 't':
			sscanf((argument + (2 * sizeof(char))), "%lu", &millis);
			break;

		case 'n':
			sscanf((argument + (2 * sizeof(char))), "%u", &max);
			break;

		case 'o':
			sscanf((argument + (2 * sizeof(char))), "%s", &filename);
			fprintf(stderr, "Writing output to file: %s\n", filename);
			openFile(filename);
			break;

		case 'f':
			algorithm = FORWARD_ALGORITHM;
			break;

		case 'r':
			algorithm = REVERSE_ALGORITHM;
			break;

		case 'p':
			sscanf((argument + (2 * sizeof(char))), "%u", &priority);
			break;

		case 'v':
			fprintf(stderr, "Version: %s\n", VERSION);
			exit(0);

		default:
			usage();
			exit(-2);
		}
	}

#ifdef _WIN32
	// Ensure we get the lion's share of CPU by increasing process priority:
	// "above normal" seems ok, but "high" can make the system unstable - not recommended!!!
	if (priority > 0)
	{
		fprintf(stderr, "Increasing windows priority of process (%s)\n", priority == 1 ? "above normal" : "high");
		SetPriorityClass(GetCurrentProcess(), priority == 1 ? ABOVE_NORMAL_PRIORITY_CLASS :	HIGH_PRIORITY_CLASS);
	}
#endif

	fprintf(stderr, "Using %s algorithm\n", algorithm == FORWARD_ALGORITHM ? "forward" : "reverse");

	if (millis > 0L)
	{
		max = extrapolateMax(millis);
	}

	fprintf(stderr, "Running %u iterations..\n", max);

	printOn = 1;

	// print out iterations 1 and 2 first, as the algorithm only works from 3 onwards:
	iteration1.num = 1;
	iteration1.last16[0] = 1;
	iteration1.length = 1;
	printIteration(&iteration1);
	
	iteration2.num = 2;
	iteration2.last16[0] = 1;
	iteration2.last16[1] = 1;
	iteration2.length = 2;
	printIteration(&iteration2);

	if (algorithm == FORWARD_ALGORITHM)
	{
		algorithmInit(max);
		algorithmNext(1, 1, 3, 1);
		algorithmDestroy();
	}
	else if (algorithm == REVERSE_ALGORITHM)
	{
		reverseInit(max, millis);
		reverseNext(1, 1, 3, 1);
		reverseDestroy();
	}

	closeFile();

	fprintf(stderr, "Completed %u iterations in %lums.\n", max, getElapsedTimeMillis());

	return 0;
}
コード例 #6
0
ファイル: newton.cpp プロジェクト: andrescodas/casadi
  void Newton::solve(void* mem) const {
    auto m = static_cast<NewtonMemory*>(mem);

    // Get the initial guess
    casadi_copy(m->iarg[iin_], n_, m->x);

    // Perform the Newton iterations
    m->iter=0;
    bool success = true;
    while (true) {
      // Break if maximum number of iterations already reached
      if (m->iter >= max_iter_) {
        log("eval", "Max. iterations reached.");
        m->return_status = "max_iteration_reached";
        success = false;
        break;
      }

      // Start a new iteration
      m->iter++;

      // Use x to evaluate J
      copy_n(m->iarg, n_in(), m->arg);
      m->arg[iin_] = m->x;
      m->res[0] = m->jac;
      copy_n(m->ires, n_out(), m->res+1);
      m->res[1+iout_] = m->f;
      calc_function(m, "jac_f_z");

      // Check convergence
      double abstol = 0;
      if (abstol_ != numeric_limits<double>::infinity()) {
        for (int i=0; i<n_; ++i) {
          abstol = max(abstol, fabs(m->f[i]));
        }
        if (abstol <= abstol_) {
          casadi_msg("Converged to acceptable tolerance - abstol: " << abstol_);
          break;
        }
      }

      // Factorize the linear solver with J
      linsol_.factorize(m->jac);
      linsol_.solve(m->f, 1, false);

      // Check convergence again
      double abstolStep=0;
      if (numeric_limits<double>::infinity() != abstolStep_) {
        for (int i=0; i<n_; ++i) {
          abstolStep = max(abstolStep, fabs(m->f[i]));
        }
        if (abstolStep <= abstolStep_) {
          casadi_msg("Converged to acceptable tolerance - abstolStep: " << abstolStep_);
          break;
        }
      }

      if (print_iteration_) {
        // Only print iteration header once in a while
        if (m->iter % 10==0) {
          printIteration(userOut());
        }

        // Print iteration information
        printIteration(userOut(), m->iter, abstol, abstolStep);
      }

      // Update Xk+1 = Xk - J^(-1) F
      casadi_axpy(n_, -1., m->f, m->x);
    }

    // Get the solution
    casadi_copy(m->x, n_, m->ires[iout_]);

    // Store the iteration count
    if (success) m->return_status = "success";

    casadi_msg("Newton::solveNonLinear():end after " << m->iter << " steps");
  }