void extract_plan_fragment( State *S ) { EhcNode *i; int ops[MAX_PLAN_LENGTH], num_ops; State_pointer states[MAX_PLAN_LENGTH]; int j, mem, prev; num_ops = 0; for ( i = lehc_current_start; i->father; i = i->father ) { if ( num_ops == MAX_PLAN_LENGTH ) { printf("\nincrease MAX_PLAN_LENGTH! currently %d\n\n", MAX_PLAN_LENGTH); exit( 1 ); } states[num_ops] = &(i->S); ops[num_ops++] = i->op; } mem = gnum_plan_ops; for ( j = num_ops - 1; j > -1; j-- ) { if ( gnum_plan_ops == MAX_PLAN_LENGTH ) { printf("\nincrease MAX_PLAN_LENGTH! currently %d\n\n", MAX_PLAN_LENGTH); exit( 1 ); } source_to_dest( &(gplan_states[gnum_plan_ops+1]), states[j] ); gplan_ops[gnum_plan_ops++] = ops[j]; if ( gcmd_line.A && gcmd_line.debug ) { printf("\n------------EHC SELECTING: "); print_op_name( ops[j] ); } } if ( gcmd_line.A && gcmd_line.debug ) { printf("\n\nnew op path is:"); for ( j = 0; j < gnum_plan_ops; j++ ) { printf("\n");print_op_name( gplan_ops[j] ); } } prev = gnum_fixed_clauses; extend_fixed_clauses_base( mem, gnum_plan_ops ); extend_fixed_clauses_base_encoding( prev ); }
void print_fixpoint_result( void ) { int time, i; Bool hit, hit_F, hit_E; time = 0; while ( 1 ) { hit = FALSE; hit_F = FALSE; hit_E = FALSE; for ( i = 0; i < gnum_ft_conn; i++ ) { if ( gft_conn[i].level == time ) { hit = TRUE; hit_F = TRUE; break; } } for ( i = 0; i < gnum_ef_conn; i++ ) { if ( gef_conn[i].level == time ) { hit = TRUE; hit_E = TRUE; break; } } if ( !hit ) { break; } printf("\n\nLEVEL %d:", time); if ( hit_F ) { printf("\n\nFACTS:"); for ( i = 0; i < gnum_ft_conn; i++ ) { if ( gft_conn[i].level == time ) { printf("\n"); print_ft_name( i ); } } } if ( hit_E ) { printf("\n\nEFS:"); for ( i = 0; i < gnum_ef_conn; i++ ) { if ( gef_conn[i].level == time ) { printf("\neffect %d to ", i); print_op_name( gef_conn[i].op ); } } } time++; } fflush( stdout ); }
void print_plan( void ) { int i; printf("\n\nff: found legal plan as follows"); printf("\n\nstep "); for ( i = 0; i < gnum_plan_ops; i++ ) { printf("%4d: ", i); print_op_name( gplan_ops[i] ); printf("\n "); } }
void print_plan( void ) { int i; float cost = 0.0; printf("\n\nff: found legal plan (steps: %d) as follows", gnum_plan_ops); printf("\n\nstep "); for ( i = 0; i < gnum_plan_ops; i++ ) { printf("%4d: ", i); print_op_name( gplan_ops[i] ); if(gop_conn[gplan_ops[i]].num_E != 1) { printf(" -- MULTI-EFFECT OP! -- "); } else { cost += get_cost(gop_conn[gplan_ops[i]].E[0]); printf(" (%f) ", get_cost(gop_conn[gplan_ops[i]].E[0]) ); if(artificial_gtt) { printf("(+1 artificial)"); } /* switch( get_action_type(gplan_ops[i]) ) { case SG_AT_COLLECT_REWARD: printf( " - reward"); break; case SG_AT_FOREGO_REWARD: printf( " - forego"); break; case SG_AT_OTHER: printf( " - other"); break; } */ } printf("\n "); } printf( "\n\tTotal cost of plan: %f ", cost); }
void print_plan( void ) { int i; float cost = 0; printf("\n\nff: found legal plan as follows"); printf("\nstep "); for ( i = 0; i < gnum_plan_ops; i++ ) { printf("%4d: ", i); print_op_name( gplan_ops[i] ); if ( i < gnum_plan_ops-1 ) { printf("\n "); } if ( goptimization_established ) { cost += gop_conn[gplan_ops[i]].cost; } } if ( goptimization_established ) { printf("\nplan cost: %f", cost); } }
void collect_H_info( void ) { static Bool first_call = TRUE; static int *H, num_H, *D; int i, j, k, ft, ef, op, d; if ( first_call ) { gH = ( int * ) calloc( gnum_op_conn, sizeof( int ) ); H = ( int * ) calloc( gnum_op_conn, sizeof( int ) ); D = ( int * ) calloc( gnum_op_conn, sizeof( int ) ); gnum_H = 0; num_H = 0; first_call = FALSE; } for ( i = 0; i < gnum_H; i++ ) { gop_conn[gH[i]].is_in_H = FALSE; } num_H = 0; for ( i = 0; i < lnum_goals_at[1]; i++ ) { ft = lgoals_at[1][i]; for ( j = 0; j < gft_conn[ft].num_A; j++ ) { ef = gft_conn[ft].A[j]; if ( gef_conn[ef].level != 0 ) { continue; } op = gef_conn[ef].op; if ( gop_conn[op].is_in_H ) { continue; } gop_conn[op].is_in_H = TRUE; H[num_H++] = op; } } /* H collected; now order it * here: count number of goal- and subgoal facts that * op deletes (with level 0 effects). order less deletes * before more deletes. * start from back of H, to prefer down under * goals to upper goals. */ gnum_H = 0; for ( i = num_H - 1; i > -1; i-- ) { d = 0; for ( j = 0; j < gop_conn[H[i]].num_E; j++ ) { ef = gop_conn[H[i]].E[j]; if ( gef_conn[ef].level != 0 ) continue; for ( k = 0; k < gef_conn[ef].num_D; k++ ) { if ( gft_conn[gef_conn[ef].D[k]].is_goal ) d++; } } for ( j = 0; j < gnum_H; j++ ) { if ( D[j] > d ) break; } for ( k = gnum_H; k > j; k-- ) { gH[k] = gH[k-1]; D[k] = D[k-1]; } gH[j] = H[i]; D[j] = d; gnum_H++; } if ( gcmd_line.display_info == 124 ) { printf("\ncollected H: "); for ( i = 0; i < gnum_H; i++ ) { print_op_name( gH[i] ); printf("\n "); } } }
void achieve_goals( int time ) { int i, j, k, ft, min_p, min_e, ef, p, op; if ( gcmd_line.display_info == 123 ) { printf("\nselecting at step %3d: ", time-1); } for ( i = 0; i < lnum_goals_at[time]; i++ ) { ft = lgoals_at[time][i]; if ( gft_conn[ft].is_true == time ) { /* fact already added by prev now selected op */ continue; } min_p = INFINITY; min_e = -1; for ( j = 0; j < gft_conn[ft].num_A; j++ ) { ef = gft_conn[ft].A[j]; if ( gef_conn[ef].level != time - 1 ) continue; p = 0; for ( k = 0; k < gef_conn[ef].num_PC; k++ ) { p += gft_conn[gef_conn[ef].PC[k]].level; } if ( LESS( p, min_p ) ) { min_p = p; min_e = ef; } } ef = min_e; if ( !gef_conn[ef].in_plan ) { gef_conn[ef].in_plan = TRUE; gin_plan_E[gnum_in_plan_E++] = ef; } op = gef_conn[ef].op; if ( gop_conn[op].is_used != time ) { gop_conn[op].is_used = time; lused_O[lnum_used_O++] = op; if ( gcmd_line.display_info == 123 ) { print_op_name( op ); printf("\n "); } } for ( j = 0; j < gef_conn[ef].num_PC; j++ ) { ft = gef_conn[ef].PC[j]; if ( gft_conn[ft].is_true == time ) { /* a prev at this level selected op accidently adds this precond, * so we can order that op before this one and get the precond added for free. */ continue; } if ( gft_conn[ft].is_goal ) { /* this fact already is a goal */ continue; } lgoals_at[gft_conn[ft].level][lnum_goals_at[gft_conn[ft].level]++] = ft; gft_conn[ft].is_goal = TRUE; if ( !gft_conn[ft].ch ) { lch_F[lnum_ch_F++] = ft; gft_conn[ft].ch = TRUE; } } for ( j = 0; j < gef_conn[ef].num_A; j++ ) { ft = gef_conn[ef].A[j]; gft_conn[ft].is_true = time; if ( !gft_conn[ft].ch ) { lch_F[lnum_ch_F++] = ft; gft_conn[ft].ch = TRUE; } } for ( j = 0; j < gef_conn[ef].num_I; j++ ) { for ( k = 0; k < gef_conn[gef_conn[ef].I[j]].num_A; k++ ) { ft = gef_conn[gef_conn[ef].I[j]].A[k]; gft_conn[ft].is_true = time; if ( !gft_conn[ft].ch ) { lch_F[lnum_ch_F++] = ft; gft_conn[ft].ch = TRUE; } } } } }
void build_connectivity_graph( void ) { int i, j, k, l, n_op, n_ef, m, na, nd; Action *a; int *same_effects, sn; Bool *had_effects; ActionEffect *e, *e_; /* * DEA - University of Brescia */ // struct timeb tp; int tmpnum; int sizeofgop, sizeofgef, sizeofgft; sizeofgop = 0; sizeofgef = 0; sizeofgft = 0; // ftime( &tp ); // srandom( tp.millitm ); srandom(seed); /* * End of DEA */ gnum_ft_conn = gnum_relevant_facts; /* * DEA - University of Brescia */ gnum_ft_block = gnum_ft_conn / 32 + 1; /* * End of DEA */ gnum_op_conn = gnum_actions; gft_conn = ( FtConn * ) calloc( gnum_ft_conn, sizeof( FtConn ) ); gop_conn = ( OpConn * ) calloc( gnum_op_conn, sizeof( OpConn ) ); gef_conn = ( EfConn * ) calloc( lnum_effects, sizeof( EfConn ) ); gnum_ef_conn = 0; same_effects = ( int * ) calloc( lnum_effects, sizeof( int ) ); had_effects = ( Bool * ) calloc( lnum_effects, sizeof( Bool ) ); for ( i = 0; i < gnum_ft_conn; i++ ) { gft_conn[i].num_PC = 0; gft_conn[i].num_A = 0; gft_conn[i].num_D = 0; /* * DEA - University of Brescia */ // gft_conn[i].rand = random () % BIG_INT; gft_conn[i].rand = MY_RANDOM % BIG_INT; /* * End of DEA */ } for ( i = 0; i < gnum_op_conn; i++ ) { gop_conn[i].num_E = 0; } for ( i = 0; i < gnum_ef_conn; i++ ) { gef_conn[i].num_PC = 0; gef_conn[i].num_A = 0; gef_conn[i].num_D = 0; gef_conn[i].num_I = 0; } n_op = 0; n_ef = 0; for ( a = gactions; a; a = a->next ) { gop_conn[n_op].action = a; gop_conn[n_op].E = ( int * ) calloc( a->num_effects, sizeof( int ) ); for ( i = 0; i < a->num_effects; i++ ) { had_effects[i] = FALSE; } for ( i = 0; i < a->num_effects; i++ ) { if ( had_effects[i] ) { continue; } had_effects[i] = TRUE; e = &(a->effects[i]); gop_conn[n_op].E[gop_conn[n_op].num_E++] = n_ef; gef_conn[n_ef].op = n_op; sn = 0; for ( j = i + 1; j < a->num_effects; j++ ) { if ( had_effects[j] ) { continue; } e_ = &(a->effects[j]); /* check conditions */ for ( k = 0; k < e_->num_conditions; k++ ) { for ( l = 0; l < e->num_conditions; l++ ) { if ( e_->conditions[k] == e->conditions[l] ) { break; } } if ( l == e->num_conditions ) { break; } } if ( k < e_->num_conditions ) { continue; } if ( e->num_conditions == e_->num_conditions ) { same_effects[sn++] = j; } } na = e->num_adds; nd = e->num_dels; for ( j = 0; j < sn; j++ ) { na += a->effects[same_effects[j]].num_adds; nd += a->effects[same_effects[j]].num_dels; } /* * DEA - University of Brescia */ tmpnum = get_num_of_effects_of (n_ef, AT_END_TIME, 1); // gef_conn[n_ef].A = (int *) calloc (na, sizeof (int)); gef_conn[n_ef].A = ( int * ) calloc( na + tmpnum, sizeof( int ) ); tmpnum = get_num_of_effects_of (n_ef, AT_START_TIME, 1); if (tmpnum) gef_conn[n_ef].sf->A_start = (int *) calloc (tmpnum, sizeof (int)); /*cancellanti */ tmpnum = get_num_of_effects_of (n_ef, AT_START_TIME, 0); if (tmpnum) gef_conn[n_ef].sf->D_start =(int *) calloc (tmpnum, sizeof (int)); /* * End of DEA */ gef_conn[n_ef].D = ( int * ) calloc( nd, sizeof( int ) ); for ( j = 0; j < e->num_adds; j++ ) { for ( k = 0; k < gef_conn[n_ef].num_A; k++ ) { if ( gef_conn[n_ef].A[k] == e->adds[j] ) break; } if ( k < gef_conn[n_ef].num_A ) continue; gef_conn[n_ef].A[gef_conn[n_ef].num_A++] = e->adds[j]; } for ( j = 0; j < e->num_dels; j++ ) { for ( k = 0; k < gef_conn[n_ef].num_D; k++ ) { if ( gef_conn[n_ef].D[k] == e->dels[j] ) break; } if ( k < gef_conn[n_ef].num_D ) continue; gef_conn[n_ef].D[gef_conn[n_ef].num_D++] = e->dels[j]; } for ( j = 0; j < sn; j++ ) { e_ = &(a->effects[same_effects[j]]); for ( l = 0; l < e_->num_adds; l++ ) { for ( k = 0; k < gef_conn[n_ef].num_A; k++ ) { if ( gef_conn[n_ef].A[k] == e_->adds[l] ) break; } if ( k < gef_conn[n_ef].num_A ) continue; gef_conn[n_ef].A[gef_conn[n_ef].num_A++] = e_->adds[l]; } for ( l = 0; l < e_->num_dels; l++ ) { for ( k = 0; k < gef_conn[n_ef].num_D; k++ ) { if ( gef_conn[n_ef].D[k] == e_->dels[l] ) break; } if ( k < gef_conn[n_ef].num_D ) continue; gef_conn[n_ef].D[gef_conn[n_ef].num_D++] = e_->dels[l]; } } a->effects[i].ef_conn_pos = n_ef; for ( j = 0; j < sn; j++ ) { had_effects[same_effects[j]] = TRUE; a->effects[same_effects[j]].ef_conn_pos = n_ef; } /* * DEA - University of Brescia */ tmpnum = get_num_of_preconds_of(n_ef,AT_START_TIME); // gef_conn[n_ef].PC = (int *) calloc (e->num_conditions + a->num_preconds, sizeof (int)); gef_conn[n_ef].PC = ( int * ) calloc( e->num_conditions + a->num_preconds + tmpnum, sizeof( int ) ); /*alloco lo spazio anche per le condizioni overall */ tmpnum = get_num_of_preconds_of (n_ef, OVER_ALL_TIME); if (tmpnum) gef_conn[n_ef].sf->PC_overall = (int *) calloc (tmpnum, sizeof (int)); /*alloco lo spazio anche per le condizioni at end */ tmpnum = get_num_of_preconds_of (n_ef, AT_END_TIME); if (tmpnum) gef_conn[n_ef].sf->PC_end = (int *) calloc (tmpnum, sizeof (int)); /* * End of DEA */ for ( j = 0; j < a->num_preconds; j++ ) { for ( k = 0; k < gef_conn[n_ef].num_PC; k++ ) { if ( gef_conn[n_ef].PC[k] == a->preconds[j] ) break; } if ( k < gef_conn[n_ef].num_PC ) continue; gef_conn[n_ef].PC[gef_conn[n_ef].num_PC++] = a->preconds[j]; } for ( j = 0; j < e->num_conditions; j++ ) { for ( k = 0; k < gef_conn[n_ef].num_PC; k++ ) { if ( gef_conn[n_ef].PC[k] == e->conditions[j] ) break; } if ( k < gef_conn[n_ef].num_PC ) continue; gef_conn[n_ef].PC[gef_conn[n_ef].num_PC++] = e->conditions[j]; } n_ef++; gnum_ef_conn++; }/* ende all a->effects */ /* setup implied effects info */ if ( a->num_effects > 1 ) { m = 0; for ( i = a->effects[0].ef_conn_pos; i < n_ef - 1; i++ ) { for ( j = i+1; j < n_ef; j++ ) { /* i ==> j ? */ for ( k = 0; k < gef_conn[j].num_PC; k++ ) { for ( l = 0; l < gef_conn[i].num_PC; l++ ) { if ( gef_conn[i].PC[l] == gef_conn[j].PC[k] ) break; } if ( l == gef_conn[i].num_PC ) break; } if ( k == gef_conn[j].num_PC ) { gef_conn[i].num_I++; } /* j ==> i ? */ for ( k = 0; k < gef_conn[i].num_PC; k++ ) { for ( l = 0; l < gef_conn[j].num_PC; l++ ) { if ( gef_conn[j].PC[l] == gef_conn[i].PC[k] ) break; } if ( l == gef_conn[j].num_PC ) break; } if ( k == gef_conn[i].num_PC ) { gef_conn[j].num_I++; } } } for ( i = a->effects[0].ef_conn_pos; i < n_ef; i++ ) { gef_conn[i].I = ( int * ) calloc( gef_conn[i].num_I, sizeof( int ) ); gef_conn[i].num_I = 0; } for ( i = a->effects[0].ef_conn_pos; i < n_ef - 1; i++ ) { for ( j = i+1; j < n_ef; j++ ) { /* i ==> j ? */ for ( k = 0; k < gef_conn[j].num_PC; k++ ) { for ( l = 0; l < gef_conn[i].num_PC; l++ ) { if ( gef_conn[i].PC[l] == gef_conn[j].PC[k] ) break; } if ( l == gef_conn[i].num_PC ) break; } if ( k == gef_conn[j].num_PC ) { gef_conn[i].I[gef_conn[i].num_I++] = j; } /* j ==> i ? */ for ( k = 0; k < gef_conn[i].num_PC; k++ ) { for ( l = 0; l < gef_conn[j].num_PC; l++ ) { if ( gef_conn[j].PC[l] == gef_conn[i].PC[k] ) break; } if ( l == gef_conn[j].num_PC ) break; } if ( k == gef_conn[i].num_PC ) { gef_conn[j].I[gef_conn[j].num_I++] = i; } } } } /* first sweep: only count the space we need for the fact arrays ! */ if ( a->num_effects > 0 ) { for ( i = a->effects[0].ef_conn_pos; i < n_ef; i++ ) { for ( j = 0; j < gef_conn[i].num_PC; j++ ) { gft_conn[gef_conn[i].PC[j]].num_PC++; } for ( j = 0; j < gef_conn[i].num_A; j++ ) { gft_conn[gef_conn[i].A[j]].num_A++; } for ( j = 0; j < gef_conn[i].num_D; j++ ) { gft_conn[gef_conn[i].D[j]].num_D++; } } } n_op++; } for ( i = 0; i < gnum_ft_conn; i++ ) { gft_conn[i].PC = ( int * ) calloc( gft_conn[i].num_PC, sizeof( int ) ); gft_conn[i].num_PC = 0; gft_conn[i].A = ( int * ) calloc( gft_conn[i].num_A, sizeof( int ) ); gft_conn[i].num_A = 0; gft_conn[i].D = ( int * ) calloc( gft_conn[i].num_D, sizeof( int ) ); gft_conn[i].num_D = 0; gft_conn[i].is_global_goal = FALSE; } for ( i = 0; i < ggoal_state.num_F; i++ ) { gft_conn[ggoal_state.F[i]].is_global_goal = TRUE; } for ( i = 0; i < gnum_ef_conn; i++ ) { for ( j = 0; j < gef_conn[i].num_PC; j++ ) { gft_conn[gef_conn[i].PC[j]].PC[gft_conn[gef_conn[i].PC[j]].num_PC++] = i; } for ( j = 0; j < gef_conn[i].num_A; j++ ) { gft_conn[gef_conn[i].A[j]].A[gft_conn[gef_conn[i].A[j]].num_A++] = i; } for ( j = 0; j < gef_conn[i].num_D; j++ ) { gft_conn[gef_conn[i].D[j]].D[gft_conn[gef_conn[i].D[j]].num_D++] = i; } } free( same_effects ); free( had_effects ); if ( gcmd_line.display_info == 121) { printf("\n\ncreated connectivity graph as follows:"); printf("\n\n------------------OP ARRAY:-----------------------"); for ( i = 0; i < gnum_op_conn; i++ ) { /* * DEA - University of Brescia */ sizeofgop += sizeof (gop_conn[i]) + sizeof (int) * (gop_conn[i].num_E - 1); /* * End of DEA */ printf("\n\nOP: "); print_op_name( i ); printf("\n----------EFFS:"); for ( j = 0; j < gop_conn[i].num_E; j++ ) { printf("\neffect %d", gop_conn[i].E[j]); } /* * DEA - University of Brescia */ printf ("\nSIZE = %d", sizeof (gop_conn[i]) + sizeof (int) * (gop_conn[i].num_E - 1)); /* * End of DEA */ } printf("\n\n-------------------EFFECT ARRAY:----------------------"); for ( i = 0; i < gnum_ef_conn; i++ ) { /* * DEA - University of Brescia */ sizeofgef += sizeof (gef_conn[i]) + sizeof (int) * (gef_conn[i].num_PC - 1) + sizeof (int) * (gef_conn[i].num_A - 1) + sizeof (int) * (gef_conn[i].num_D - 1); /* * End of DEA */ printf("\n\neffect %d of op %d: ", i, gef_conn[i].op); print_op_name( gef_conn[i].op ); printf("\n----------PCS:"); for ( j = 0; j < gef_conn[i].num_PC; j++ ) { printf("\n"); print_ft_name( gef_conn[i].PC[j] ); } printf("\n----------ADDS:"); for ( j = 0; j < gef_conn[i].num_A; j++ ) { printf("\n"); print_ft_name( gef_conn[i].A[j] ); } printf("\n----------DELS:"); for ( j = 0; j < gef_conn[i].num_D; j++ ) { printf("\n"); print_ft_name( gef_conn[i].D[j] ); } printf("\n----------IMPLIEDS:"); for ( j = 0; j < gef_conn[i].num_I; j++ ) { printf("\nimplied effect %d of op %d: ", gef_conn[i].I[j], gef_conn[gef_conn[i].I[j]].op); print_op_name( gef_conn[gef_conn[i].I[j]].op ); } } printf("\n\n----------------------FT ARRAY:-----------------------------"); for ( i = 0; i < gnum_ft_conn; i++ ) { /* * DEA - University of Brescia */ sizeofgft += sizeof (gft_conn[i]) + sizeof (int) * (gft_conn[i].num_PC - 1) + sizeof (int) * (gft_conn[i].num_A - 1) + sizeof (int) * (gft_conn[i].num_D - 1); // printf("\n\nFT: "); printf ("\n ----------------- \n\n %d FT: ", i); /* * End of DEA */ print_ft_name( i ); printf(" rand: %d", gft_conn[i].rand); printf("\n----------PRE COND OF:"); for ( j = 0; j < gft_conn[i].num_PC; j++ ) { printf("\neffect %d", gft_conn[i].PC[j]); } printf("\n----------ADD BY:"); for ( j = 0; j < gft_conn[i].num_A; j++ ) { printf("\neffect %d", gft_conn[i].A[j]); } printf("\n----------DEL BY:"); for ( j = 0; j < gft_conn[i].num_D; j++ ) { printf("\neffect %d", gft_conn[i].D[j]); } /* * DEA - University of Brescia */ printf ("\nSIZE= %d", sizeof (gft_conn[i]) + sizeof (int) * (gft_conn[i].num_PC - 1) + sizeof (int) * (gft_conn[i].num_A - 1) + sizeof (int) * (gft_conn[i].num_D - 1)); /* * End of DEA */ } } /* * DEA - University of Brescia */ gnum_ef_block = gnum_ef_conn / 32 + 1; for (i = 0; i < gnum_ft_conn; i++) gft_conn[i].position = i; for (i = 0; i < gnum_ef_conn; i++) gef_conn[i].position = i; if (DEBUG0) { // printf ("Number of actions : %7d", gnum_ef_conn); // printf ("\nNumber of facts : %7d", gnum_ft_conn); // fflush(stdout); } if (gcmd_line.display_info == 121) { printf ("\nDim. azioni (gop_conn): %7d", sizeofgop); printf ("\nDim. 'effetti' (gef_conn): %7d", sizeofgef); printf ("\nDim. fatti (gft_conn): %7d", sizeofgft); } /* * End of DEA */ }
void build_connectivity_graph( void ) { int i, j, n; Action *a; struct timeb tp; ftime( &tp ); srandom( tp.millitm ); gnum_ft_conn = gnum_relevant_facts; gnum_op_conn = gnum_actions; gft_conn = ( FtConn * ) calloc( gnum_ft_conn, sizeof( FtConn ) ); gop_conn = ( OpConn * ) calloc( gnum_op_conn, sizeof( OpConn ) ); for ( i = 0; i < gnum_ft_conn; i++ ) { gft_conn[i].num_P = 0; gft_conn[i].num_A = 0; gft_conn[i].num_D = 0; gft_conn[i].rand = random() % STATE_HASH_SIZE; } for ( i = 0; i < gnum_op_conn; i++ ) { gop_conn[i].num_P = 0; gop_conn[i].num_A = 0; gop_conn[i].num_D = 0; } n = 0; for ( a = gactions; a; a = a->next ) { /* ops are simply copied over. a waste of time and memory, * but, usually there are not so many actions after * the fixpoint. can speed that up for optimization, but * keep it the clean and tidy way for the time being. */ gop_conn[n].op = a->op; for ( i = 0; i < goperators[a->op]->num_vars; i++ ) { gop_conn[n].inst_table[i] = a->inst_table[i]; } gop_conn[n].P = ( int * ) calloc( a->num_preconds, sizeof( int ) ); for ( i = 0; i < a->num_preconds; i++ ) { gop_conn[n].P[i] = a->preconds[i]; } gop_conn[n].num_P = a->num_preconds; gop_conn[n].A = ( int * ) calloc( a->num_adds, sizeof( int ) ); for ( i = 0; i < a->num_adds; i++ ) { gop_conn[n].A[i] = a->adds[i]; } gop_conn[n].num_A = a->num_adds; gop_conn[n].D = ( int * ) calloc( a->num_dels, sizeof( int ) ); for ( i = 0; i < a->num_dels; i++ ) { gop_conn[n].D[i] = a->dels[i]; } gop_conn[n].num_D = a->num_dels; /* first sweep: only count the space we need for the fact arrays ! */ for ( i = 0; i < a->num_preconds; i++ ) { gft_conn[a->preconds[i]].num_P++; } for ( i = 0; i < a->num_adds; i++ ) { gft_conn[a->adds[i]].num_A++; } for ( i = 0; i < a->num_dels; i++ ) { gft_conn[a->dels[i]].num_D++; } n++; } for ( i = 0; i < gnum_ft_conn; i++ ) { gft_conn[i].P = ( int * ) calloc( gft_conn[i].num_P, sizeof( int ) ); gft_conn[i].num_P = 0; gft_conn[i].A = ( int * ) calloc( gft_conn[i].num_A, sizeof( int ) ); gft_conn[i].num_A = 0; gft_conn[i].D = ( int * ) calloc( gft_conn[i].num_D, sizeof( int ) ); gft_conn[i].num_D = 0; } n = 0; for ( a = gactions; a; a = a->next ) { /* second sweep: now put the op numbers into the arrays */ for ( i = 0; i < a->num_preconds; i++ ) { gft_conn[a->preconds[i]].P[gft_conn[a->preconds[i]].num_P++] = n; } for ( i = 0; i < a->num_adds; i++ ) { gft_conn[a->adds[i]].A[gft_conn[a->adds[i]].num_A++] = n; } for ( i = 0; i < a->num_dels; i++ ) { gft_conn[a->dels[i]].D[gft_conn[a->dels[i]].num_D++] = n; } n++; } if ( gcmd_line.display_info == 111 ) { printf("\n\ncreated connectivity graph as follows:"); printf("\n\nOP ARRAY:"); for ( i = 0; i < gnum_op_conn; i++ ) { printf("\n\nOP: "); print_op_name( i ); printf("\n----------PRES:"); for ( j = 0; j < gop_conn[i].num_P; j++ ) { printf("\n"); print_ft_name( gop_conn[i].P[j] ); } printf("\n----------ADDS:"); for ( j = 0; j < gop_conn[i].num_A; j++ ) { printf("\n"); print_ft_name( gop_conn[i].A[j] ); } printf("\n----------DELS:"); for ( j = 0; j < gop_conn[i].num_D; j++ ) { printf("\n"); print_ft_name( gop_conn[i].D[j] ); } } printf("\n\nFT ARRAY:"); for ( i = 0; i < gnum_ft_conn; i++ ) { printf("\n\nFT: "); print_ft_name( i ); printf("\n----------PRE OF:"); for ( j = 0; j < gft_conn[i].num_P; j++ ) { printf("\n"); print_op_name( gft_conn[i].P[j] ); } printf("\n----------ADD BY:"); for ( j = 0; j < gft_conn[i].num_A; j++ ) { printf("\n"); print_op_name( gft_conn[i].A[j] ); } printf("\n----------DEL BY:"); for ( j = 0; j < gft_conn[i].num_D; j++ ) { printf("\n"); print_op_name( gft_conn[i].D[j] ); } } } }
void manual_control( void ) { static Bool fc = TRUE; static State S; int i, j, h, choice; BfsNode *tmp, *curr; if ( fc ) { make_state( &S, gnum_ft_conn ); fc = FALSE; } tmp = new_BfsNode(); copy_source_to_dest( &(tmp->S), &ginitial_state ); tmp->op = -1; curr = tmp; if ( gcmd_line.dominating ) { hash_bfs_node( curr ); } while ( TRUE ) { if ( !curr ) break; h = get_1P_and_H( &(curr->S), &ggoal_state, NULL, curr->father, curr->op ); get_A( &(curr->S) ); while ( TRUE ) { printf("\n\n\n-------------state h = %d", h); if ( h > 0 ) printf(" (resp. %d actions)", h - 1); printf(", info level %d, %d applicable actions", gcmd_line.debug, gnum_A); if ( gcmd_line.debug >= 1 ) { print_state( curr->S ); } if ( 0 ) { printf("\nH:"); for ( i = 0; i < gnum_H; i++ ) { printf(" "); print_op_name( gH[i] ); } } printf("\n"); for ( i = 0; i < gnum_A; i++ ) { printf("\n%3d ", i); for ( j = 0; j < gnum_H; j++ ) { if ( gA[i] == gH[j] ) break; } if ( j < gnum_H ) { printf("H: "); } else { printf(" : "); } print_op_name( gA[i] ); } printf("\n\n -1: retract last choice"); printf("\n -2: set info level"); printf("\n\nchoice: "); scanf("%d", &choice); if ( choice >= -2 && choice < gnum_A ) break; } if ( choice >= 0 ) { if ( !result_to_dest( &S, NULL, curr, gA[choice] ) ) { printf("\naction not applicable!"); continue; } if ( gcmd_line.dominating && bfs_state_hashed( &S, curr, gA[choice] ) ) { printf("\nthis state is dominated!\n\n"); } tmp = new_BfsNode(); copy_source_to_dest( &(tmp->S), &S ); tmp->father = curr; tmp->op = gA[choice]; curr = tmp; if ( gcmd_line.dominating ) { hash_bfs_node( curr ); } continue; } if ( choice == -1 ) { curr = curr->father; continue; } printf("\nlevel : "); scanf("%d", &gcmd_line.debug); } }
int init_act_vect (FILE * fp, PlanAction ** plan_actions, int start_level) { float start_time; char Str[MAX_LENGTH]; char opname[MAX_LENGTH]; char operands[MAX_ARITY][MAX_LENGTH]; float duration; int num_operands = 0; int act_pos; int index_of_arg[MAX_ARITY]; char *cStr, *ptchr; int i; int level = 0; Bool no_dur; printf ("\n Load input plan:\n"); while (!feof (fp)) { cStr = Str; fgets (cStr, MAX_LENGTH, fp); for (i = 0; i < MAX_LENGTH; i++) cStr[i] = toupper (cStr[i]); if ((cStr[0] == ';') || (cStr[0] == '\n') || (cStr[0] == '\0')) continue; num_operands = 0; start_time = extract_level (cStr); cStr = strchr (cStr, ':'); if (cStr == NULL) continue; cStr++; while (TRUE) { if ((cStr[0] == '(') || (cStr[0] == ' ')) { cStr++; continue; } if (cStr[0] == '\0') { printf ("init_act_vect: opname not found (not even '(' )\n"); exit (1); } break; } sscanf (cStr, "%s", opname); if (strlen (opname) == 0) { printf ("init_act_vect: opname not found\n"); exit (1); } cStr += strlen (opname); while (TRUE) { if (cStr[0] == ' ') { cStr++; continue; } break; } while (TRUE) { sscanf (cStr, "%s", operands[num_operands]); for (i = 0; i < strlen (operands[num_operands]); i++) if (operands[num_operands][i] == ')') { operands[num_operands][i] = '\0'; break; } if (strlen (operands[num_operands]) == 0) { printf ("init_act_vect: ')' not found\n"); exit (1); } index_of_arg[num_operands] = get_index_of_constant (operands[num_operands]); if (index_of_arg[num_operands] == -1) { printf ("\n\nArg not found in constants table!\n\n"); exit (1); } cStr += strlen (operands[num_operands]); num_operands++; while (TRUE) { if (cStr[0] == ' ') { cStr++; continue; } break; } if (cStr[0] == ')') break; } no_dur = FALSE; while (TRUE) { if (cStr[0] == '\0') { no_dur = TRUE; break; } if (cStr[0] != '[') { cStr++; continue; } break; } cStr++; for (ptchr = cStr;; ptchr++) { if (ptchr[0] == ']') { ptchr[0] = '\0'; break; } if (ptchr[0] == '\0') { no_dur = TRUE; break; } } if (no_dur == TRUE) duration = 1; else duration = atof (cStr); act_pos = get_action_index (opname, index_of_arg); if (act_pos == -1) { printf ("\n\naction not found in gef_conns\n\n"); } if (act_pos != -1) { store_action_vect (plan_actions, act_pos, start_time, duration); level++; } } { PlanAction *p; printf ("\n"); for (p = *plan_actions; p; p = p->next) { printf ("\n"); printf ("%5.2f: (", p->start_time); print_op_name (p->act_pos); printf (") [%5.2f ]", p->duration); } printf ("\n\n"); } return level; }
void build_connectivity_graph( void ) { int i, j, k, l, n_op, n_ef, na, nd, ef, ef_, m, l_; Action *a; int *same_effects, sn; Bool *had_effects; ActionEffect *e, *e_, *e__; struct timeb tp; ftime( &tp ); srandom( tp.millitm ); gnum_ft_conn = gnum_relevant_facts; gnum_op_conn = gnum_actions; gft_conn = ( FtConn * ) calloc( gnum_ft_conn, sizeof( FtConn ) ); gop_conn = ( OpConn * ) calloc( gnum_op_conn, sizeof( OpConn ) ); gef_conn = ( EfConn * ) calloc( lnum_effects, sizeof( EfConn ) ); gnum_ef_conn = 0; same_effects = ( int * ) calloc( lnum_effects, sizeof( int ) ); had_effects = ( Bool * ) calloc( lnum_effects, sizeof( Bool ) ); for ( i = 0; i < gnum_ft_conn; i++ ) { gft_conn[i].num_PC = 0; gft_conn[i].num_A = 0; gft_conn[i].num_D = 0; gft_conn[i].rand = random() % BIG_INT; } for ( i = 0; i < gnum_op_conn; i++ ) { gop_conn[i].num_E = 0; } for ( i = 0; i < lnum_effects; i++ ) { gef_conn[i].num_PC = 0; gef_conn[i].num_A = 0; gef_conn[i].num_D = 0; gef_conn[i].num_I = 0; gef_conn[i].removed = FALSE; } n_op = 0; n_ef = 0; for ( a = gactions; a; a = a->next ) { gop_conn[n_op].action = a; gop_conn[n_op].E = ( int * ) calloc( a->num_effects, sizeof( int ) ); for ( i = 0; i < a->num_effects; i++ ) { had_effects[i] = FALSE; } for ( i = 0; i < a->num_effects; i++ ) { if ( had_effects[i] ) { continue; } had_effects[i] = TRUE; e = &(a->effects[i]); gop_conn[n_op].E[gop_conn[n_op].num_E++] = n_ef; gef_conn[n_ef].op = n_op; gef_conn[n_ef].PC = ( int * ) calloc( e->num_conditions + a->num_preconds, sizeof( int ) ); for ( j = 0; j < a->num_preconds; j++ ) { for ( k = 0; k < gef_conn[n_ef].num_PC; k++ ) { if ( gef_conn[n_ef].PC[k] == a->preconds[j] ) break; } if ( k < gef_conn[n_ef].num_PC ) continue; gef_conn[n_ef].PC[gef_conn[n_ef].num_PC++] = a->preconds[j]; } for ( j = 0; j < e->num_conditions; j++ ) { for ( k = 0; k < gef_conn[n_ef].num_PC; k++ ) { if ( gef_conn[n_ef].PC[k] == e->conditions[j] ) break; } if ( k < gef_conn[n_ef].num_PC ) continue; gef_conn[n_ef].PC[gef_conn[n_ef].num_PC++] = e->conditions[j]; } sn = 0; for ( j = i + 1; j < a->num_effects; j++ ) { if ( had_effects[j] ) { continue; } e_ = &(a->effects[j]); /* check conditions */ for ( k = 0; k < e_->num_conditions; k++ ) { for ( l = 0; l < e->num_conditions; l++ ) { if ( e_->conditions[k] == e->conditions[l] ) { break; } } if ( l == e->num_conditions ) { break; } } if ( k < e_->num_conditions ) { continue; } if ( e->num_conditions == e_->num_conditions ) { same_effects[sn++] = j; } } na = e->num_adds; nd = e->num_dels; for ( j = 0; j < sn; j++ ) { na += a->effects[same_effects[j]].num_adds; nd += a->effects[same_effects[j]].num_dels; } gef_conn[n_ef].A = ( int * ) calloc( na, sizeof( int ) ); gef_conn[n_ef].D = ( int * ) calloc( nd, sizeof( int ) ); for ( j = 0; j < e->num_adds; j++ ) { for ( k = 0; k < gef_conn[n_ef].num_A; k++ ) { if ( gef_conn[n_ef].A[k] == e->adds[j] ) break; } if ( k < gef_conn[n_ef].num_A ) continue; /* exclude already true adds */ for ( k = 0; k < gef_conn[n_ef].num_PC; k++ ) { if ( gef_conn[n_ef].PC[k] == e->adds[j] ) break; } if ( k < gef_conn[n_ef].num_PC ) continue; gef_conn[n_ef].A[gef_conn[n_ef].num_A++] = e->adds[j]; } for ( j = 0; j < e->num_dels; j++ ) { for ( k = 0; k < gef_conn[n_ef].num_D; k++ ) { if ( gef_conn[n_ef].D[k] == e->dels[j] ) break; } if ( k < gef_conn[n_ef].num_D ) continue; /* exclude re-added dels; check against *all* * adds to be integrated. */ for ( k = 0; k < e->num_adds; k++ ) { if ( e->adds[k] == e->dels[j] ) break; } if ( k < e->num_adds ) continue; for ( l = 0; l < sn; l++ ) { e_ = &(a->effects[same_effects[l]]); for ( k = 0; k < e_->num_adds; k++ ) { if ( e_->adds[k] == e->dels[j] ) break; } if ( k < e_->num_adds ) break; } if ( l < sn ) continue; gef_conn[n_ef].D[gef_conn[n_ef].num_D++] = e->dels[j]; } for ( j = 0; j < sn; j++ ) { e_ = &(a->effects[same_effects[j]]); for ( l = 0; l < e_->num_adds; l++ ) { for ( k = 0; k < gef_conn[n_ef].num_A; k++ ) { if ( gef_conn[n_ef].A[k] == e_->adds[l] ) break; } if ( k < gef_conn[n_ef].num_A ) continue; for ( k = 0; k < gef_conn[n_ef].num_PC; k++ ) { if ( gef_conn[n_ef].PC[k] == e_->adds[l] ) break; } if ( k < gef_conn[n_ef].num_PC ) continue; gef_conn[n_ef].A[gef_conn[n_ef].num_A++] = e_->adds[l]; } for ( l = 0; l < e_->num_dels; l++ ) { for ( k = 0; k < gef_conn[n_ef].num_D; k++ ) { if ( gef_conn[n_ef].D[k] == e_->dels[l] ) break; } if ( k < gef_conn[n_ef].num_D ) continue; /* exclude re-added dels; check against *all* * adds to be integrated. */ for ( k = 0; k < e->num_adds; k++ ) { if ( e->adds[k] == e_->dels[l] ) break; } if ( k < e->num_adds ) continue; for ( l_ = 0; l_ < sn; l_++ ) { e__ = &(a->effects[same_effects[l_]]); for ( k = 0; k < e__->num_adds; k++ ) { if ( e__->adds[k] == e_->dels[l] ) break; } if ( k < e__->num_adds ) break; } if ( l_ < sn ) continue; gef_conn[n_ef].D[gef_conn[n_ef].num_D++] = e_->dels[l]; } } for ( j = 0; j < sn; j++ ) { had_effects[same_effects[j]] = TRUE; } n_ef++; gnum_ef_conn++; }/* ende all a->effects */ if ( gop_conn[n_op].num_E >= 1 ) { /* CHECK EMPTY EFFECTS! * * two step process --- first, remove all effects that are entirely empty. * second, check if all remaining effects are illegal * or only delete: * in that case, the op will never do any good so we * remove all its effects. */ i = 0; while ( i < gop_conn[n_op].num_E ) { if ( gef_conn[gop_conn[n_op].E[i]].num_A != 0 || gef_conn[gop_conn[n_op].E[i]].num_D != 0 ) { i++; continue; } /* we keep it in the gef_conn (seems easier), * but mark it as removed, which will exclude it from everything. */ gef_conn[gop_conn[n_op].E[i]].removed = TRUE; for ( j = i; j < gop_conn[n_op].num_E - 1; j++ ) { gop_conn[n_op].E[j] = gop_conn[n_op].E[j+1]; } gop_conn[n_op].num_E--; } m = 0; for ( i = 0; i < gop_conn[n_op].num_E; i++ ) { if ( gef_conn[gop_conn[n_op].E[i]].num_A == 0 ) { m++; } } if ( m == gop_conn[n_op].num_E ) { /* all remaining effects solely-deleters. */ for ( i = 0; i < gop_conn[n_op].num_E; i++ ) { gef_conn[gop_conn[n_op].E[i]].removed = TRUE; } gop_conn[n_op].num_E = 0; } } /* setup implied effects info */ if ( gop_conn[n_op].num_E > 1 ) { for ( i = 0; i < gop_conn[n_op].num_E; i++ ) { ef = gop_conn[n_op].E[i]; gef_conn[ef].I = ( int * ) calloc( gop_conn[n_op].num_E, sizeof( int ) ); gef_conn[ef].num_I = 0; } for ( i = 0; i < gop_conn[n_op].num_E - 1; i++ ) { ef = gop_conn[n_op].E[i]; for ( j = i+1; j < gop_conn[n_op].num_E; j++ ) { ef_ = gop_conn[n_op].E[j]; /* ef ==> ef_ ? */ for ( k = 0; k < gef_conn[ef_].num_PC; k++ ) { for ( l = 0; l < gef_conn[ef].num_PC; l++ ) { if ( gef_conn[ef].PC[l] == gef_conn[ef_].PC[k] ) break; } if ( l == gef_conn[ef].num_PC ) break; } if ( k == gef_conn[ef_].num_PC ) { gef_conn[ef].I[gef_conn[ef].num_I++] = ef_; } /* j ==> i ? */ for ( k = 0; k < gef_conn[ef].num_PC; k++ ) { for ( l = 0; l < gef_conn[ef_].num_PC; l++ ) { if ( gef_conn[ef_].PC[l] == gef_conn[ef].PC[k] ) break; } if ( l == gef_conn[ef_].num_PC ) break; } if ( k == gef_conn[ef].num_PC ) { gef_conn[ef_].I[gef_conn[ef_].num_I++] = ef; } } } } /* first sweep: only count the space we need for the fact arrays ! */ if ( gop_conn[n_op].num_E > 0 ) { for ( i = 0; i < gop_conn[n_op].num_E; i++ ) { ef = gop_conn[n_op].E[i]; for ( j = 0; j < gef_conn[ef].num_PC; j++ ) { gft_conn[gef_conn[ef].PC[j]].num_PC++; } for ( j = 0; j < gef_conn[ef].num_A; j++ ) { gft_conn[gef_conn[ef].A[j]].num_A++; } for ( j = 0; j < gef_conn[ef].num_D; j++ ) { gft_conn[gef_conn[ef].D[j]].num_D++; } } } n_op++; } for ( i = 0; i < gnum_ft_conn; i++ ) { if ( gft_conn[i].num_PC > 0 ) { gft_conn[i].PC = ( int * ) calloc( gft_conn[i].num_PC, sizeof( int ) ); } gft_conn[i].num_PC = 0; if ( gft_conn[i].num_A > 0 ) { gft_conn[i].A = ( int * ) calloc( gft_conn[i].num_A, sizeof( int ) ); } gft_conn[i].num_A = 0; if ( gft_conn[i].num_D > 0 ) { gft_conn[i].D = ( int * ) calloc( gft_conn[i].num_D, sizeof( int ) ); } gft_conn[i].num_D = 0; gft_conn[i].is_global_goal = FALSE; } for ( i = 0; i < ggoal_state.num_F; i++ ) { gft_conn[ggoal_state.F[i]].is_global_goal = TRUE; } for ( i = 0; i < gnum_ef_conn; i++ ) { if ( gef_conn[i].removed ) continue; for ( j = 0; j < gef_conn[i].num_PC; j++ ) { gft_conn[gef_conn[i].PC[j]].PC[gft_conn[gef_conn[i].PC[j]].num_PC++] = i; } for ( j = 0; j < gef_conn[i].num_A; j++ ) { gft_conn[gef_conn[i].A[j]].A[gft_conn[gef_conn[i].A[j]].num_A++] = i; } for ( j = 0; j < gef_conn[i].num_D; j++ ) { gft_conn[gef_conn[i].D[j]].D[gft_conn[gef_conn[i].D[j]].num_D++] = i; } } free( same_effects ); free( had_effects ); if ( gcmd_line.display_info == 121 ) { printf("\n\ncreated connectivity graph as follows:"); printf("\n\n------------------OP ARRAY:-----------------------"); for ( i = 0; i < gnum_op_conn; i++ ) { printf("\n\nOP: "); print_op_name( i ); printf("\n----------EFFS:"); for ( j = 0; j < gop_conn[i].num_E; j++ ) { printf("\neffect %d", gop_conn[i].E[j]); } } printf("\n\n-------------------EFFECT ARRAY:----------------------"); for ( i = 0; i < gnum_ef_conn; i++ ) { printf("\n\neffect %d of op %d: ", i, gef_conn[i].op); print_op_name( gef_conn[i].op ); if ( gef_conn[i].removed ) { printf(" --- REMOVED "); continue; } printf("\n----------PCS:"); for ( j = 0; j < gef_conn[i].num_PC; j++ ) { printf("\n"); print_ft_name( gef_conn[i].PC[j] ); } printf("\n----------ADDS:"); for ( j = 0; j < gef_conn[i].num_A; j++ ) { printf("\n"); print_ft_name( gef_conn[i].A[j] ); } printf("\n----------DELS:"); for ( j = 0; j < gef_conn[i].num_D; j++ ) { printf("\n"); print_ft_name( gef_conn[i].D[j] ); } printf("\n----------IMPLIEDS:"); for ( j = 0; j < gef_conn[i].num_I; j++ ) { printf("\nimplied effect %d of op %d: ", gef_conn[i].I[j], gef_conn[gef_conn[i].I[j]].op); print_op_name( gef_conn[gef_conn[i].I[j]].op ); } } printf("\n\n----------------------FT ARRAY:-----------------------------"); for ( i = 0; i < gnum_ft_conn; i++ ) { printf("\n\nFT: "); print_ft_name( i ); printf(" rand: %d", gft_conn[i].rand); printf("\n----------PRE COND OF:"); for ( j = 0; j < gft_conn[i].num_PC; j++ ) { printf("\neffect %d", gft_conn[i].PC[j]); } printf("\n----------ADD BY:"); for ( j = 0; j < gft_conn[i].num_A; j++ ) { printf("\neffect %d", gft_conn[i].A[j]); } printf("\n----------DEL BY:"); for ( j = 0; j < gft_conn[i].num_D; j++ ) { printf("\neffect %d", gft_conn[i].D[j]); } } } }
void achieve_goals( int time ) { int i, j, k, ft, min_p, min_e, ef, p, op; if ( gcmd_line.display_info == 123 ) { printf("\nselecting at step %3d: ", time-1); } for ( i = 0; i < lnum_goals_at[time]; i++ ) { ft = lgoals_at[time][i]; if ( gft_conn[ft].is_true == time ) { /* fact already added by prev now selected op */ continue; } min_p = INFINITY; min_e = -1; /* fact not been added by prev*/ /* for each fact, get the minimal level of precondtion*/ for ( j = 0; j < gft_conn[ft].num_A; j++ ) { ef = gft_conn[ft].A[j]; if ( gef_conn[ef].level != time - 1 ) continue; p = 0; for ( k = 0; k < gef_conn[ef].num_PC; k++ ) { p += gft_conn[gef_conn[ef].PC[k]].level; } if ( LESS( p, min_p ) ) { min_p = p; min_e = ef; } } ef = min_e; if ( !gef_conn[ef].in_plan ) { gef_conn[ef].in_plan = TRUE; gin_plan_E[gnum_in_plan_E++] = ef; } op = gef_conn[ef].op; if ( gop_conn[op].is_used != time ) { if ( gop_conn[op].is_used == INFINITY ) { lused_O[lnum_used_O++] = op; } gop_conn[op].is_used = time; lh++; if ( gcmd_line.display_info == 123 ) { print_op_name( op ); printf("\n "); } } for ( j = 0; j < gef_conn[ef].num_PC; j++ ) { ft = gef_conn[ef].PC[j]; if ( gft_conn[ft].is_true == time ) { /* a prev at this level selected op accidently adds this precond, * so we can order that op before this one and get the precond added for free. */ continue; } if ( gft_conn[ft].is_goal ) { /* this fact already is a goal */ continue; } lgoals_at[gft_conn[ft].level][lnum_goals_at[gft_conn[ft].level]++] = ft; gft_conn[ft].is_goal = TRUE; if ( !gft_conn[ft].ch ) { lch_F[lnum_ch_F++] = ft; gft_conn[ft].ch = TRUE; } } for ( j = 0; j < gef_conn[ef].num_A; j++ ) { ft = gef_conn[ef].A[j]; gft_conn[ft].is_true = time; /* NOTE: one level below a goal will only be skipped if it's true value is time-1, * so subgoals introduced by prev selected ops are not excluded here. * * --- neither those of the at this level prev selected oned - which we want - * nor those of at prev levels selected ops - which we would want to be skipped. * * --- so the ordering consraints assumed are valid but don't explore * the full potential. */ if ( !gft_conn[ft].ch ) { lch_F[lnum_ch_F++] = ft; gft_conn[ft].ch = TRUE; } } for ( j = 0; j < gef_conn[ef].num_I; j++ ) { for ( k = 0; k < gef_conn[gef_conn[ef].I[j]].num_A; k++ ) { ft = gef_conn[gef_conn[ef].I[j]].A[k]; gft_conn[ft].is_true = time; if ( !gft_conn[ft].ch ) { lch_F[lnum_ch_F++] = ft; gft_conn[ft].ch = TRUE; } } } } }
int main (int argc, char *argv[]) { /* resulting name for ops file */ char ops_file[MAX_LENGTH] = ""; /* same for fct file */ char fct_file[MAX_LENGTH] = ""; char sol_file[MAX_LENGTH] = ""; struct tms start, end; struct timeval tv; struct timezone tz; State current_start, current_end; int i, j, k; Bool found_plan=0; #ifdef __EFENCE__ extern int EF_ALLOW_MALLOC_0; EF_ALLOW_MALLOC_0 = 1; #endif printf("#\n"); printf("# (C) Copyright 2008, University of Illinois, Urbana-Champaign\n"); printf("#\n"); printf("# All rights reserved. Use of this software is permitted ONLY for\n"); printf("# non-commercial research purposes, and it may be copied only\n"); printf("# for that use only. All copies must include this copyright message.\n"); printf("# This software is made available AS IS, and neither the authors\n"); printf("# nor the University of Illinois, make any warranty about the\n"); printf("# software or its performance.\n"); printf("#\n"); dis_gcmd_line.display_info = 1; dis_gcmd_line.debug = 0; dis_gcmd_line.ehc = dis_TRUE; dis_gcmd_line.optimize = dis_FALSE; dis_gcmd_line.g_weight = 1; dis_gcmd_line.h_weight = 1; SymmLagrangian = 0; SymmLagrange = 0; GpG.subsolver = 0; //dis_processdis__command_line(argc, argv); /* printf("dis_gcmd_line.g_weight = %d\n", dis_gcmd_line.g_weight ); printf("dis_gcmd_line.h_weight = %d\n", dis_gcmd_line.h_weight ); printf("dis_gcmd_line.ehc = %d\n", dis_gcmd_line.ehc ); printf("dis_gcmd_line.optimize = %d\n", dis_gcmd_line.optimize ); printf("dis_gcmd_line.display_info = %d\n", dis_gcmd_line.display_info ); printf("dis_gcmd_line.debug = %d\n", dis_gcmd_line.debug ); */ //------- so_signal_management(); strcpy (gcomm_line, ""); for (i = 0; i < argc; i++) { strcat (gcomm_line, argv[i]); strcat (gcomm_line, " "); } get_path (*argv, glpg_path); initialize_preset_values (); #ifdef __STATISTIC_LM__ init_statistic(); #endif /*Reset hash-table */ reset_cvar_hash_table(); /* Initialize random seed */ gettimeofday (&tv, &tz); seed = ((tv.tv_sec & 0177) * 1000000) + tv.tv_usec; /* command line treatment */ if (argc == 1 || (argc == 2 && *++argv[0] == '?')) { lpg_usage (); exit (1); } gcmd_line.out_file_name[0] = 0; if (!process_command_line (argc, argv)) { lpg_usage (); exit (1); } /* make file names */ /* one input name missing */ if (!gcmd_line.ops_file_name || !gcmd_line.fct_file_name) { fprintf (stdout, "\n%s: two input files needed\n\n", NAMEPRG); lpg_usage (); exit (1); } /* add path info, complete file names will be stored in * ops_file and fct_file */ sprintf (ops_file, "%s%s", gcmd_line.path, gcmd_line.ops_file_name); sprintf (fct_file, "%s%s", gcmd_line.path, gcmd_line.fct_file_name); strcpy (gops_file, ops_file); strcpy (gfct_file, fct_file); sprintf (sol_file, "%s%s", gcmd_line.path, gcmd_line.sol_file_name); /* parse the input files */ /* start parse & instantiation timing */ times (&glob_start_time); times (&start); /* //GpG.feed_MFF_LPG = TRUE; GpG.feed_MFF_LPG = FALSE; if(GpG.feed_MFF_LPG) { dis_MFF_main(ops_file, fct_file); mff_to_lpg(); } else // START OF PARSING {*/ /* domain file (ops) */ // ADL? GpG.gis_ADL = ADL_ops_file(ops_file); i = get_requirements(ops_file); if((!GpG.is_deripred || i == 1 || !GpG.gis_ADL) && !GpG.is_goal_utilities && !GpG.is_action_costs) { if(!i || !GpG.gis_ADL) { printf ("\nParsing domain file\n"); fflush(stdout); /* it is important for the pddl language to define the domain before * reading the problem */ load_ops_file (ops_file); // Y. Chen if(gloaded_dps) { // printf("\nSGPlan: Contains derived predicates\n"); GpG.is_deripred = TRUE; } else { // printf("\nSGPlan: No derived predicates\n"); GpG.is_deripred = FALSE; } } else { gdomain_name = dis_copy_dis_Token("PSR"); GpG.is_deripred = TRUE; } } /* ============= Search Modal ======================= * Y. Chen * Decide which parser to use here */ search_ops_modal(); //fprintf(stderr, "\nSearchModal = %d %d\n", GpG.SearchModal, GpG.SecondaryModal); // MFF_parser if((GpG.SearchModal == 5) || (GpG.SearchModal == 7) || (GpG.SearchModal == 6) || (GpG.SearchModal == 100) || (GpG.SearchModal == 104) || (GpG.SearchModal == 106) || (GpG.SearchModal == 107) || (GpG.SearchModal == -1) || (GpG.SearchModal <= -1000)) { /* Settlers 5 Sattelite 6 Sattelite TIME_TIMEWINDOWS_COMPILED 106 UMTS 7 Psr large 100 Psr middle-compiled 104 Promela OPTICAL_TELEGRAPH_FLUENTS PHILOSOPHERS_FLUENTS 107 */ GpG.MFF_parser = TRUE; } else { GpG.MFF_parser = FALSE; } // ComputeMutex if(((GpG.SearchModal == 0)||(GpG.SearchModal == 105)) || (GpG.SearchModal == 3 && GpG.is_til ) ) { /* Airport 0 Airport TEMPORAL_TIMEWINDOWS_COMPILED 105 Pipesworld NOTANKAGE_TEMPORAL_DEADLINES 3 */ GpG.lowmemory = FALSE; ComputeMutex = TRUE; } else { ComputeMutex = FALSE; } if(GpG.is_deripred) { ComputeMutex = FALSE; } /* ==================================================*/ if(GpG.MFF_parser) { mffDistributedSearch(ops_file, fct_file); exit(0); } /* =================================================== */ transfer_PlDP_PlOperator(); /*dirty trick to get another copy of gloaded_ops */ if (GpG.is_til) load_fct_file (fct_file); gloaded_pl2ops = gloaded_ops; gloaded_ops = NULL; /* derived predicates */ gloaded_dps = NULL; /* timed initial literals */ gnum_tils = 0; g_tils = gtils = NULL; gdomain_name = NULL; gorig_initial_facts = NULL; gorig_goal_facts = NULL; gmetric_exp = NULL; gloaded_axioms = NULL; gparse_types = NULL; gparse_constants = NULL; gparse_predicates = NULL; gparse_functions = NULL; gparse_objects = NULL; gorig_constant_list = NULL; gpredicates_and_types = NULL; gfunctions_and_types = NULL; gloaded_constraints = NULL; gloaded_preferences = NULL; load_ops_file (ops_file); // Y. Chen transfer_PlDP_PlOperator(); /*add dummy effect to operators without boolean effects */ add_dummy_effects (gloaded_ops); add_dummy_effects (gloaded_pl2ops); /*counts numeric preconds and effects */ count_num_preconds_and_effects (); GpG.gplan_actions = NULL; /* problem file (facts) */ if (gcmd_line.display_info >= 1) { printf ("\nParsing problem file\n"); fflush(stdout); } load_fct_file (fct_file); if (gcmd_line.display_info >= 1) printf ("\n\n"); allocate_after_parser(); /* now we have PlOperators and PlNodes */ reduce_pddl2_to_pddl1 (); /* This is needed to get all types. */ build_orig_constant_list (); /* last step of parsing: see if it's an ADL domain! */ if (!make_adl_domain ()) { printf ("\n%s: this is an ADL problem!", NAMEPRG); printf ("\n can't be handled by this version.\n\n"); exit (1); } /* now instantiate operators; */ /************************** * first do PREPROCESSING * **************************/ /* start by collecting all strings and thereby encoding * the domain in integers. */ encode_domain_in_integers (); /* inertia preprocessing, first step: * - collect inertia information * - split initial state into * _ arrays for individual predicates * - arrays for all static relations * - array containing non - static relations */ do_inertia_preprocessing_step_1 (); /* normalize all PL1 formulae in domain description: * (goal, preconds and effect conditions) * - simplify formula * - expand quantifiers * - NOTs down */ normalize_all_wffs (); /* translate negative preconds: introduce symmetric new predicate * NOT-p(..) (e.g., not-in(?ob) in briefcaseworld) */ translate_negative_preconds (); /* split domain in easy (disjunction of conjunctive preconds) * and hard (non DNF preconds) part, to apply * different instantiation algorithms */ split_domain (); /*********************************************** * PREPROCESSING FINISHED * * * * NOW MULTIPLY PARAMETERS IN EFFECTIVE MANNER * ***********************************************/ build_easy_action_templates (); build_hard_action_templates (); times (&end); TIME (gtempl_time); times (&start); check_time_and_length (0); // Y.Chen seed = 2004; srandom(seed); #ifdef __MY_OUTPUT__ printf ("\n Seed %d \n", seed); #endif /* perform reachability analysis in terms of relaxed * fixpoint */ perform_reachability_analysis (); times (&end); TIME (greach_time); times (&start); check_time_and_length (0); /* collect the relevant facts and build final domain * and problem representations. */ collect_relevant_facts (); times (&end); TIME (grelev_time); times (&start); check_time_and_length (0); /* now build globally accessable connectivity graph */ build_connectivity_graph (); /* }// END PARSING */ // Y. Chen set_DPop_flag(); if(GpG.SearchModal != 3 && GpG.SearchModal != -2) { if(!ComputeMutex) { DistributeSearch(&ginitial_state, &ggoal_state, &subplan_actions); exit(0); } } times (&end); TIME (gconn_time); times (&start); check_time_and_length (0); /* association to gef_conn[i] a corresponding complet ploperator */ associate_PlOperator_with_EfConn (); /* adding composed numeric quantities */ add_composite_vars (); make_numgoal_state(GpG.numeric_goal_PlNode); /* make false the comparison between uninitialized numeric quantities */ make_false_all_checks_on_not_init (); /* Semplification for inertial vars */ propagate_inertias (); if (GpG.SearchModal == -2) { mffDistributedSearch(ops_file, fct_file); exit(0); } if(GpG.SearchModal == 3) { if(!ComputeMutex) { DistributeSearch(&ginitial_state, &ggoal_state, &subplan_actions); exit(0); } } if (DEBUG0) if (GpG.non_strips_domain) { /* if (GpG.variable_duration) printf ("\n\nAction durations have been computed\n"); else printf ("\n\nThere is no action duration to compute\n");*/ } /* Set vars orig_weight_cost and orig_weight_time according with plan evaluation metric */ if (goptimization_exp != -1) set_cost_and_time_coeffs (); /* if (DEBUG0) printf("\nEvaluation function weights:\n Action duration %.2f; Action cost %.2f", GpG.orig_weight_time, GpG.orig_weight_cost); if (DEBUG0) printf ("\n\nTemporal flag: %s\n", GpG.temporal_plan ? "ON" : "OFF"); */ /* Make numeric effects structure */ create_descnumeff_of_efconns (); /* Sets flag is_numeric for each action (efconn) */ set_numeric_flag (); assert (gnum_comp_var < MAX_NUM_VALUE); /* Copy initial state in initial_state */ for (i = 0; i < gnum_comp_var; i++) ginitial_state.V[i] = GCOMP_VAR_VALUE(i); times (&end); TIME (gnum_time); times (&start); /* Print information about action istantiation */ print_parser_info_for_debug(); //print_real_state(ginitial_state); if(ComputeMutex) { //if (GpG.numrun > 0 && GpG.numtry > 0) { if (1) { if (DEBUG0 && !DEBUG1) { // printf ("\nComputing mutex... "); // fflush (stdout); } if (DEBUG1) printf ("\n\n--- COMPUTE MUTEX BETWEEN FACTS ---\n"); if (GpG.accurate_cost >= 1) allocate_reachability_information_data(); /* Comute mutex between facts */ calc_mutex (&ginitial_state); if (!are_goal_reachable_and_non_mutex ()) { printf ("\nThe problem is unsolvable since at the fixpoint level the goals are mutex or not reachable\n\n"); exit (0); } } times (&end); TIME (gmutex_ft_time); if (DEBUG2) printf ("\n"); if (DEBUG1) printf ("\n --> Compute mutex between facts TOTAL TIME: %12.2f",gmutex_ft_time); times (&start); //if (GpG.numrun > 0 && GpG.numtry > 0) { if(1){ if (DEBUG1) printf ("\n\n--- COMPUTE MUTEX BETWEEN ACTIONS ---\n"); /*Compute action-action, action_fact, fact-action mutex */ calc_mutex_ops (); } times (&end); TIME (gmutex_ops_time); if (DEBUG1) printf ("\n --> Compute mutex between actions TOTAL TIME: %12.2f\n",gmutex_ops_time); times (&start); //if (GpG.numrun > 0 && GpG.numtry > 0) { if(1){ if (DEBUG1) printf ("\n\n--- COMPUTE MUTEX BETWEEN NUMERIC FACTS ---\n"); /* Compute mutex between action with numeric effects */ if (!GpG.lowmemory) calc_mutex_num_efs (); } times (&end); TIME (gmutex_num_time); if (DEBUG1) printf("\n --> Compute mutex between numeric facts TOTAL TIME: %12.2f\n",gmutex_num_time); if (DEBUG2) print_mutex_result (); if (DEBUG0 && !DEBUG1) { // printf ("done"); // fflush (stdout); } times (&start); //if (DEBUG6 && !GpG.lowmemory) print_matrs (); gmutex_total_time = gmutex_ft_time + gmutex_ops_time + gmutex_num_time; } if (strlen (gcmd_line.sol_file_name) > 0) load_pddl2_plan (sol_file, &GpG.gplan_actions, 0); if (GpG.SearchModal == 3) ComputeMutex = FALSE; GpG.max_num_actions = gnum_ef_conn; GpG.max_num_facts = gnum_ft_conn; GpG.max_num_ft_block = gnum_ft_block; /*********************************************************** * we are finally through with preprocessing and can worry * * about finding a plan instead. * ***********************************************************/ /* another quick preprocess: approximate goal orderings and split * goal set into sequence of smaller sets, the goal agenda */ // Yixin if(ComputeMutex) { modify_ft_ef_mutex(); compute_goal_agenda(); } // printf ("******************\n"); /* source_to_dest( &(gplan_states[0]), &ginitial_state ); source_to_dest( ¤t_start, &ginitial_state ); source_to_dest( ¤t_end, &(ggoal_agenda[0]) ); for ( i = 0; i < gnum_goal_agenda; i++ ) { if ( !do_enforced_hill_climbing( ¤t_start, ¤t_end ) ) { break; } source_to_dest( ¤t_start, &(gplan_states[gnum_plan_ops]) ); if ( i < gnum_goal_agenda - 1 ) { for ( j = 0; j < ggoal_agenda[i+1].num_F; j++ ) { current_end.F[current_end.num_F++] = ggoal_agenda[i+1].F[j]; } } } found_plan = ( i == gnum_goal_agenda ) ? TRUE : FALSE; */ source_to_dest (&(gplan_states[0]), &ginitial_state); source_to_dest (¤t_start, &ginitial_state); source_to_dest (¤t_end, &ggoal_state); remove_unappliable_actions (); if ((GpG.search_type == LOCAL && GpG.numrun > 0 && GpG.numtry > 0) || GpG.search_type == DIS_SEARCH ) { k = MAX (GpG.input_plan_lenght, gmutex_level); for (i = 0; i < k; i++) { if (i < gmutex_level) create_vectlevel (0); else create_vectlevel (1); } allocate_data_for_local_search(); create_all_min_array (); GpG.fixpoint_plan_length = GpG.max_plan_length - 1; GpG.saved_fixpoint_plan_length = GpG.fixpoint_plan_length ; GpG.curr_goal_state = ¤t_end; } if (DEBUG1) { printf ("\n\nTime spent for preprocessing:"); printf ("\n Instantiating: %7.2f seconds", gtempl_time + greach_time + grelev_time + gconn_time + gsearch_time); printf ("\n Mutex relations: %7.2f seconds", gmutex_total_time); printf ("\n Numeric relations: %7.2f seconds", gnum_time); } if (DEBUG0) { times (&glob_end_time); gtotal_time = (float) ((glob_end_time.tms_utime - glob_start_time.tms_utime + glob_end_time.tms_stime - glob_start_time.tms_stime) / 100.0); // printf ("\nPreprocessing total time: %.2f seconds",gtotal_time); } /* printf ("\n\ninitial state is:\n\n"); for (i = 0; i < ginitial_state.num_F; i++) { print_ft_name (current_start.F[i]); printf ("\n"); } printf ("\n\ngoal state is:\n\n"); for (i = 0; i < current_end.num_F; i++) { print_ft_name (current_end.F[i]); printf ("\n"); } printf("GpG.fixpoint_plan_length = ", GpG.fixpoint_plan_length); */ #ifdef __TEST__ for (i = 0; i < gnum_op_conn; i++) { print_op_name(i); printf(" -- %f \n", get_action_cost (i)); } #endif if (GpG.do_best_first == TRUE && GpG.numrun==0) GpG.search_type=BEST_FIRST; /* Search untill it is not reached termination condition (given by the function 'is_term_condition_reached') */ while(!is_terminated) { /* Different types of local search */ switch(GpG.search_type) { /* Local Search usually used in LPG */ case DIS_SEARCH: DistributeSearch(¤t_start, ¤t_end, &subplan_actions); GpG.gplan_actions = subplan_actions; subplan_actions = NULL; is_terminated=TRUE; break; case LOCAL: /* Do Local Search */ LocalSearch (¤t_start, ¤t_end, &subplan_actions); /* Store plan in GpG.gplan_actions */ GpG.gplan_actions = subplan_actions; subplan_actions = NULL; /* Control if the termination condition is reached */ is_terminated=TRUE; //is_terminated= is_term_condition_reached(); break; /* Best First Search implemented by J. Hoffmann (FF-v2.3) */ case BEST_FIRST: // strips_gef_conn(); // load_ff_gef_conn(); if (DEBUG0) printf("\n\nSwitching to Best-first Search ( code from J. Hoffmann's package FF-v2.3 ) \n"); check_time_and_length (0); /* con zero non controlla la lunghezza */ /* Return solution if reached, FALSE otherwise */ found_plan = do_best_first_search (); printf("do_best_first_search"); //if (do_enforced_hill_climbing (¤t_start, ¤t_end)) //printf("do_hill"); times (&end); TIME (gsearch_time); times (&end); times (&glob_end_time); gtotal_time = (float) ((glob_end_time.tms_utime - glob_start_time.tms_utime + glob_end_time.tms_stime - glob_start_time.tms_stime) / 100.0); /* If a solution was found in best first search print solution */ if (found_plan) { #ifdef __MY_OUTPUT__ printf ("\nFFGGHH::%.2f::%d\n", gtotal_time, gnum_plan_ops); #endif store_adapted_temporal_plan_ff (gcmd_line.fct_file_name); printf ("\nTotal time: %.2f\nSearch time: %.2f\nActions: %d\nExecution cost: %.2f\nDuration: %.3f\nPlan quality: %.3f", gtotal_time, gsearch_time, GpG.num_actions, GpG.total_cost, GpG.total_time,GpG.total_cost * GpG.orig_weight_cost + GpG.total_time * GpG.orig_weight_time); printf ("\n Plan file:"); printf (" plan_bestfirst_%s.SOL", gcmd_line.fct_file_name); } if (DEBUG1) output_planner_info (); /* Control if the termination condition is reached */ is_terminated= is_term_condition_reached(); break; /* Hill Climbing Search */ case HILL_CLIMBING: if (do_enforced_hill_climbing (¤t_start, ¤t_end)) source_to_dest (¤t_start, &(gplan_states[gnum_plan_ops])); printf("do_hill"); /* Control if the termination condition is reached */ is_terminated= is_term_condition_reached(); break; default: /* Control if the termination condition is reached */ is_terminated= is_term_condition_reached(); break; } if (DEBUG2) { printf ("\n\nInitial state is:\n\n"); for (j = 0; j < ginitial_state.num_F; j++) { print_ft_name (current_start.F[j]); printf ("\n"); } printf ("\n\nGoal state is:\n\n"); for (j = 0; j < current_end.num_F; j++) { print_ft_name (current_end.F[j]); printf ("\n"); } } } printf ("\n\n"); printf ("\nTotal time: %.3f\n", gtotal_time); exit (0); }