/***********************************************************************//** * @brief Pixel-to-spherical deprojection * * @param[in] nx X vector length. * @param[in] ny Y vector length (0=no replication). * @param[in] sxy Input vector step. * @param[in] spt Output vector step. * @param[in] x Vector of projected x coordinates. * @param[in] y Vector of projected y coordinates. * @param[out] phi Longitude of the projected point in native spherical * coordinates [deg]. * @param[out] theta Latitude of the projected point in native spherical * coordinates [deg]. * @param[out] stat Status return value for each vector element (always 0) * * Deproject pixel (x,y) coordinates in the plane of projection to native * spherical coordinates (phi,theta). * * This method has been adapted from the wcslib function prj.c::tanx2s(). * The interface follows very closely that of wcslib. In contrast to the * wcslib routine, however, the method assumes that the projection has been * setup previously (as this will be done by the constructor). ***************************************************************************/ void GWcsTAN::prj_x2s(int nx, int ny, int sxy, int spt, const double* x, const double* y, double* phi, double* theta, int* stat) const { // Initialize projection if required if (!m_prjset) { prj_set(); } // Set value replication length mx,my int mx; int my; if (ny > 0) { mx = nx; my = ny; } else { mx = 1; my = 1; ny = nx; } // Do x dependence const double* xp = x; int rowoff = 0; int rowlen = nx * spt; for (int ix = 0; ix < nx; ++ix, rowoff += spt, xp += sxy) { double xj = *xp + m_x0; double* phip = phi + rowoff; for (int iy = 0; iy < my; ++iy, phip += rowlen) { *phip = xj; } } // Do y dependence const double* yp = y; double* phip = phi; double* thetap = theta; int* statp = stat; for (int iy = 0; iy < ny; ++iy, yp += sxy) { double yj = *yp + m_y0; double yj2 = yj*yj; for (int ix = 0; ix < mx; ++ix, phip += spt, thetap += spt) { double xj = *phip; double r = std::sqrt(xj*xj + yj2); if (r == 0.0) { *phip = 0.0; } else { *phip = gammalib::atan2d(xj, -yj); } *thetap = gammalib::atan2d(m_r0, r); *(statp++) = 0; } } // Return return; }
/***********************************************************************//** * @brief Generic spherical-to-pixel projection * * @param[in] nphi Longitude vector length. * @param[in] ntheta Latitude vector length (0=no replication). * @param[in] spt Input vector step. * @param[in] sxy Output vector step. * @param[in] phi Longitude vector of the projected point in native spherical * coordinates [deg]. * @param[in] theta Latitude vector of the projected point in native spherical * coordinates [deg]. * @param[out] x Vector of projected x coordinates. * @param[out] y Vector of projected y coordinates. * @param[out] stat Status return value for each vector element (always 0) * * Project native spherical coordinates (phi,theta) to pixel (x,y) * coordinates in the plane of projection. * * This method has been adapted from the wcslib function prj.c::sfls2x(). * The interface follows very closely that of wcslib. In contrast to the * wcslib routine, however, the method assumes that the projection has been * setup previously (as this will be done by the constructor). ***************************************************************************/ void GWcsSFL::prj_s2x(int nphi, int ntheta, int spt, int sxy, const double* phi, const double* theta, double* x, double* y, int* stat) const { // Initialize projection if required if (!m_prjset) { prj_set(); } // Set value replication length mphi,mtheta int mphi; int mtheta; if (ntheta > 0) { mphi = nphi; mtheta = ntheta; } else { mphi = 1; mtheta = 1; ntheta = nphi; } // Do phi dependence const double* phip = phi; int rowoff = 0; int rowlen = nphi * sxy; for (int iphi = 0; iphi < nphi; ++iphi, rowoff += sxy, phip += spt) { double xi = m_w[0] * (*phip); double* xp = x + rowoff; for (int itheta = 0; itheta < mtheta; ++itheta, xp += rowlen) { *xp = xi; } } // Do theta dependence const double* thetap = theta; double* xp = x; double* yp = y; int* statp = stat; for (int itheta = 0; itheta < ntheta; ++itheta, thetap += spt) { double xi = gammalib::cosd(*thetap); double eta = m_w[0] * (*thetap) - m_y0; for (int iphi = 0; iphi < mphi; ++iphi, xp += sxy, yp += sxy) { *xp = xi * (*xp) - m_x0; *yp = eta; *(statp++) = 0; } } // Return return; }
/***********************************************************************//** * @brief Pixel-to-spherical deprojection * * @param[in] nx X vector length. * @param[in] ny Y vector length (0=no replication). * @param[in] sxy Input vector step. * @param[in] spt Output vector step. * @param[in] x Vector of projected x coordinates. * @param[in] y Vector of projected y coordinates. * @param[out] phi Longitude of the projected point in native spherical * coordinates [deg]. * @param[out] theta Latitude of the projected point in native spherical * coordinates [deg]. * @param[out] stat Status return value for each vector element (always 0) * * Deproject pixel (x,y) coordinates in the plane of projection to native * spherical coordinates (phi,theta). * * This method has been adapted from the wcslib function prj.c::merx2s(). * The interface follows very closely that of wcslib. In contrast to the * wcslib routine, however, the method assumes that the projection has been * setup previously (as this will be done by the constructor). ***************************************************************************/ void GWcsMER::prj_x2s(int nx, int ny, int sxy, int spt, const double* x, const double* y, double* phi, double* theta, int* stat) const { // Initialize projection if required if (!m_prjset) { prj_set(); } // Set value replication length mx,my int mx; int my; if (ny > 0) { mx = nx; my = ny; } else { mx = 1; my = 1; ny = nx; } // Do x dependence const double* xp = x; int rowoff = 0; int rowlen = nx * spt; for (int ix = 0; ix < nx; ++ix, rowoff += spt, xp += sxy) { double s = m_w[1] * (*xp + m_x0); double* phip = phi + rowoff; for (int iy = 0; iy < my; ++iy, phip += rowlen) { *phip = s; } } // Do y dependence const double* yp = y; double* thetap = theta; int* statp = stat; for (int iy = 0; iy < ny; ++iy, yp += sxy) { double t = 2.0 * gammalib::atand(std::exp((*yp + m_y0)/m_r0)) - 90.0; for (int ix = 0; ix < mx; ++ix, thetap += spt) { *thetap = t; *(statp++) = 0; } } // Return return; }
/***********************************************************************//** * @brief Pixel-to-spherical deprojection * * @param[in] nx X vector length. * @param[in] ny Y vector length (0=no replication). * @param[in] sxy Input vector step. * @param[in] spt Output vector step. * @param[in] x Vector of projected x coordinates. * @param[in] y Vector of projected y coordinates. * @param[out] phi Longitude of the projected point in native spherical * coordinates [deg]. * @param[out] theta Latitude of the projected point in native spherical * coordinates [deg]. * @param[out] stat Status return value for each vector element (always 0) * * Deproject pixel (x,y) coordinates in the plane of projection to native * spherical coordinates (phi,theta). * * This method has been adapted from the wcslib function prj.c::sflx2s(). * The interface follows very closely that of wcslib. In contrast to the * wcslib routine, however, the method assumes that the projection has been * setup previously (as this will be done by the constructor). ***************************************************************************/ void GWcsSFL::prj_x2s(int nx, int ny, int sxy, int spt, const double* x, const double* y, double* phi, double* theta, int* stat) const { // Initialize projection if required if (!m_prjset) { prj_set(); } // Set value replication length mx,my int mx; int my; if (ny > 0) { mx = nx; my = ny; } else { mx = 1; my = 1; ny = nx; } // Initialise status code and statistics int status = 0; int n_invalid = 0; // Do x dependence const double* xp = x; int rowoff = 0; int rowlen = nx * spt; for (int ix = 0; ix < nx; ++ix, rowoff += spt, xp += sxy) { double s = m_w[1] * (*xp + m_x0); double* phip = phi + rowoff; for (int iy = 0; iy < my; ++iy, phip += rowlen) { *phip = s; } } // Do y dependence const double* yp = y; double* phip = phi; double* thetap = theta; int* statp = stat; for (int iy = 0; iy < ny; ++iy, yp += sxy) { double yj = *yp + m_y0; double s = std::cos(yj/m_r0); // Initialise status int istat = 0; // Invert s if (s == 0.0) { istat = 1; status = 3; n_invalid++; #if defined(G_DEBUG_PRJ) std::cout << "prj_x2s(Phi)..:"; std::cout << " nx=" << nx; std::cout << " ny=" << ny; std::cout << " ix=" << ix; std::cout << " iy=" << iy; std::cout << " yp=" << *yp; std::cout << " yj=" << yj; std::cout << " phip=" << *phip; std::cout << " s=" << s; std::cout << std::endl; #endif } else { s = 1.0 / s; } // ... double t = m_w[1] * yj; // ... for (int ix = 0; ix < mx; ++ix, phip += spt, thetap += spt) { *phip *= s; *thetap = t; *(statp++) = istat; } } // endfor: y dependence // Handle status code if (status == 3) { throw GException::wcs_invalid_x_y(G_PRJ_X2S, n_invalid); } // Return return; }
/***********************************************************************//** * @brief Generic spherical-to-pixel projection * * @param[in] nphi Longitude vector length. * @param[in] ntheta Latitude vector length (0=no replication). * @param[in] spt Input vector step. * @param[in] sxy Output vector step. * @param[in] phi Longitude vector of the projected point in native spherical * coordinates [deg]. * @param[in] theta Latitude vector of the projected point in native spherical * coordinates [deg]. * @param[out] x Vector of projected x coordinates. * @param[out] y Vector of projected y coordinates. * @param[out] stat Status return value for each vector element (always 0) * * Project native spherical coordinates (phi,theta) to pixel (x,y) * coordinates in the plane of projection. * * This method has been adapted from the wcslib function prj.c::mers2x(). * The interface follows very closely that of wcslib. In contrast to the * wcslib routine, however, the method assumes that the projection has been * setup previously (as this will be done by the constructor). ***************************************************************************/ void GWcsMER::prj_s2x(int nphi, int ntheta, int spt, int sxy, const double* phi, const double* theta, double* x, double* y, int* stat) const { // Initialize projection if required if (!m_prjset) { prj_set(); } // Set value replication length mphi,mtheta int mphi; int mtheta; if (ntheta > 0) { mphi = nphi; mtheta = ntheta; } else { mphi = 1; mtheta = 1; ntheta = nphi; } // Initialise status code and statistics //int status = 0; int n_invalid = 0; // Do phi dependence const double* phip = phi; int rowoff = 0; int rowlen = nphi * sxy; for (int iphi = 0; iphi < nphi; ++iphi, rowoff += sxy, phip += spt) { double xi = m_w[0] * (*phip) - m_x0; double* xp = x + rowoff; for (int itheta = 0; itheta < mtheta; ++itheta, xp += rowlen) { *xp = xi; } } // Do theta dependence const double* thetap = theta; double* yp = y; int* statp = stat; for (int itheta = 0; itheta < ntheta; ++itheta, thetap += spt) { double eta; int istat = 0; if (*thetap <= -90.0 || *thetap >= 90.0) { eta = 0.0; istat = 1; n_invalid++; } else { eta = m_r0 * std::log(gammalib::tand((*thetap+90.0)/2.0)) - m_y0; } for (int iphi = 0; iphi < mphi; ++iphi, yp += sxy) { *yp = eta; *(statp++) = istat; } } // Return return; }
/***********************************************************************//** * @brief Generic spherical-to-Cartesian projection * * @param[in] nphi Longitude vector length. * @param[in] ntheta Latitude vector length (0=no replication). * @param[in] spt Input vector step. * @param[in] sxy Output vector step. * @param[in] phi Longitude vector of the projected point in native spherical * coordinates [deg]. * @param[in] theta Latitude vector of the projected point in native spherical * coordinates [deg]. * @param[out] x Vector of projected x coordinates. * @param[out] y Vector of projected y coordinates. * @param[out] stat Status return value for each vector element (always 0) * * Project native spherical coordinates (phi,theta) to Cartesian (x,y) * coordinates in the plane of projection. * * This method has been adapted from the wcslib function prj.c::cars2x(). * The interface follows very closely that of wcslib. In contrast to the * wcslib routine, however, the method assumes that the projection has been * setup previsouly (as this will be done by the constructor). ***************************************************************************/ void GWcsSTG::prj_s2x(int nphi, int ntheta, int spt, int sxy, const double* phi, const double* theta, double* x, double* y, int* stat) const { // Initialize projection if required if (!m_prjset) prj_set(); // Set value replication length mphi,mtheta int mphi; int mtheta; if (ntheta > 0) { mphi = nphi; mtheta = ntheta; } else { mphi = 1; mtheta = 1; ntheta = nphi; } // Initialise status code and statistics int status = 0; int n_invalid = 0; // Do phi dependence const double* phip = phi; int rowoff = 0; int rowlen = nphi * sxy; for (int iphi = 0; iphi < nphi; ++iphi, rowoff += sxy, phip += spt) { double sinphi; double cosphi; sincosd(*phip, &sinphi, &cosphi); double* xp = x + rowoff; double* yp = y + rowoff; for (int itheta = 0; itheta < mtheta; ++itheta) { *xp = sinphi; *yp = cosphi; xp += rowlen; yp += rowlen; } } // Do theta dependence const double* thetap = theta; double* xp = x; double* yp = y; int* statp = stat; for (int itheta = 0; itheta < ntheta; ++itheta, thetap += spt) { // Compute sine of Theta double s = 1.0 + sind(*thetap); // If 1+sine is zero we cannot proceed. Set all pixels to (0,0) and flag // them as being bad if (s == 0.0) { for (int iphi = 0; iphi < mphi; ++iphi, xp += sxy, yp += sxy) { *xp = 0.0; *yp = 0.0; *(statp++) = 1; n_invalid++; } status = 4; } // ... otherwise proceed, but if strict bound checking has been requested // then flag all pixels as bad that have negative sin(theta) else { double r = m_w[0] * cosd(*thetap)/s; for (int iphi = 0; iphi < mphi; ++iphi, xp += sxy, yp += sxy) { *xp = r*(*xp) - m_x0; *yp = -r*(*yp) - m_y0; *(statp++) = 0; } } } // Handle status code if (status == 4) throw GException::wcs_invalid_phi_theta(G_PRJ_S2X, n_invalid); // Return return; }
/***********************************************************************//** * @brief Generic spherical-to-pixel projection * * @param[in] nphi Longitude vector length. * @param[in] ntheta Latitude vector length (0=no replication). * @param[in] spt Input vector step. * @param[in] sxy Output vector step. * @param[in] phi Longitude vector of the projected point in native spherical * coordinates [deg]. * @param[in] theta Latitude vector of the projected point in native spherical * coordinates [deg]. * @param[out] x Vector of projected x coordinates. * @param[out] y Vector of projected y coordinates. * @param[out] stat Status return value for each vector element (always 0) * * @exception GException::wcs_invalid_phi_theta * One or more of the (phi,theta) coordinates were invalid, as * indicated by the stat vector. * * Project native spherical coordinates (phi,theta) to pixel (x,y) * coordinates in the plane of projection. * * This method has been adapted from the wcslib function prj.c::mols2x() * (version 4.20). The interface follows very closely that of wcslib. In * contrast to the wcslib routine, however, the method assumes that the * projection has been setup previously (as this will be done by the * constructor). ***************************************************************************/ void GWcsMOL::prj_s2x(int nphi, int ntheta, int spt, int sxy, const double* phi, const double* theta, double* x, double* y, int* stat) const { // Set tolerance const double tol = 1.0e-13; // Initialize projection if required if (!m_prjset) { prj_set(); } // Set value replication length mphi,mtheta int mphi; int mtheta; if (ntheta > 0) { mphi = nphi; mtheta = ntheta; } else { mphi = 1; mtheta = 1; ntheta = nphi; } // Initialise status code and statistics int status = 0; int n_invalid = 0; // Do phi dependence const double* phip = phi; int rowoff = 0; int rowlen = nphi * sxy; for (int iphi = 0; iphi < nphi; ++iphi, rowoff += sxy, phip += spt) { double xi = m_w[1] * (*phip); double* xp = x + rowoff; for (int itheta = 0; itheta < mtheta; ++itheta) { *xp = xi; xp += rowlen; } } // Do theta dependence const double* thetap = theta; double* xp = x; double* yp = y; int* statp = stat; for (int itheta = 0; itheta < ntheta; ++itheta, thetap += spt) { // Compute xi and eta double xi = 0.0; double eta = 0.0; if (std::abs(*thetap) == 90.0) { xi = 0.0; eta = copysign(m_w[0], *thetap); } else if (*thetap == 0.0) { xi = 1.0; eta = 0.0; } else { double u = gammalib::pi * std::sin(*thetap * gammalib::deg2rad); double v0 = -gammalib::pi; double v1 = gammalib::pi; double v = u; for (int k = 0; k < 100; ++k) { double resid = (v - u) + std::sin(v); if (resid < 0.0) { if (resid > -tol) { break; } v0 = v; } else { if (resid < tol) { break; } v1 = v; } v = 0.5 * (v0 + v1); } double gamma = 0.5 * v; xi = std::cos(gamma); eta = std::sin(gamma) * m_w[0]; } eta -= m_y0; // Do ... for (int iphi = 0; iphi < mphi; ++iphi, xp += sxy, yp += sxy, statp += sxy) { *xp = xi * (*xp) - m_x0; *yp = eta; *statp = 0; } } // endfor: theta dependence // Handle status code if (status == 4) { throw GException::wcs_invalid_phi_theta(G_PRJ_S2X, n_invalid); } // Return return; }
/***********************************************************************//** * @brief Pixel-to-spherical deprojection * * @param[in] nx X vector length. * @param[in] ny Y vector length (0=no replication). * @param[in] sxy Input vector step. * @param[in] spt Output vector step. * @param[in] x Vector of projected x coordinates. * @param[in] y Vector of projected y coordinates. * @param[out] phi Longitude of the projected point in native spherical * coordinates [deg]. * @param[out] theta Latitude of the projected point in native spherical * coordinates [deg]. * @param[out] stat Status return value for each vector element * * @exception GException::wcs_invalid_x_y * One or more of the (x,y) coordinates were invalid, as indicated * by the stat vector. * * Deproject pixel (x,y) coordinates in the plane of projection to native * spherical coordinates (phi,theta). * * This method has been adapted from the wcslib function prj.c::molx2s() * (version 4.20). The interface follows very closely that of wcslib. In * contrast to the wcslib routine, however, the method assumes that the * projection has been setup previously (as this will be done by the * constructor). ***************************************************************************/ void GWcsMOL::prj_x2s(int nx, int ny, int sxy, int spt, const double* x, const double* y, double* phi, double* theta, int* stat) const { // Set tolerance const double tol = 1.0e-12; // Initialize projection if required if (!m_prjset) { prj_set(); } // Set value replication length mx,my int mx; int my; if (ny > 0) { mx = nx; my = ny; } else { mx = 1; my = 1; ny = nx; } // Initialise status code and statistics int status = 0; int n_invalid = 0; // Do x dependence const double* xp = x; int rowoff = 0; int rowlen = nx * spt; for (int ix = 0; ix < nx; ++ix, rowoff += spt, xp += sxy) { double xj = *xp + m_x0; double s = m_w[3] * xj; double t = std::abs(xj) - tol; double* phip = phi + rowoff; double* thetap = theta + rowoff; for (int iy = 0; iy < my; ++iy, phip += rowlen, thetap += rowlen) { *phip = s; *thetap = t; } } // Do y dependence const double* yp = y; double* phip = phi; double* thetap = theta; int* statp = stat; for (int iy = 0; iy < ny; ++iy, yp += sxy) { // Initialise status int istat = 0; // Compute some stuff double yj = *yp + m_y0; double y0 = yj / m_r0; double r = 2.0 - y0 * y0; double s = 0.0; // Check limits if (r <= tol) { if (r < -tol) { istat = 1; status = 3; n_invalid++; #if defined(G_DEBUG_PRJ) std::cout << "prj_x2s(Phi)..:"; std::cout << " nx=" << nx; std::cout << " ny=" << ny; std::cout << " iy=" << iy; std::cout << " yp=" << *yp; std::cout << " yj=" << yj; std::cout << " y0=" << y0; std::cout << " phip=" << *phip; std::cout << " r=" << r; std::cout << " s=" << s; std::cout << std::endl; #endif } else { istat = -1; // OK if fabs(x) < tol whence phi = 0.0 } r = 0.0; s = 0.0; } else { r = std::sqrt(r); s = 1.0 / r; } // Compute z and t double z = yj * m_w[2]; if (std::abs(z) > 1.0) { if (std::abs(z) > 1.0+tol) { istat = 1; status = 3; n_invalid++; #if defined(G_DEBUG_PRJ) std::cout << "prj_x2s(Phi)..:"; std::cout << " nx=" << nx; std::cout << " ny=" << ny; std::cout << " iy=" << iy; std::cout << " yp=" << *yp; std::cout << " yj=" << yj; std::cout << " y0=" << y0; std::cout << " phip=" << *phip; std::cout << " r=" << r; std::cout << " s=" << s; std::cout << " z=" << z; std::cout << std::endl; #endif z = 0.0; } else { z = copysign(1.0, z) + y0 * r / gammalib::pi; } } else { z = std::asin(z) * m_w[4] + y0 * r / gammalib::pi; } if (std::abs(z) > 1.0) { if (std::abs(z) > 1.0+tol) { istat = 1; status = 3; n_invalid++; #if defined(G_DEBUG_PRJ) std::cout << "prj_x2s(Phi)..:"; std::cout << " nx=" << nx; std::cout << " ny=" << ny; std::cout << " iy=" << iy; std::cout << " yp=" << *yp; std::cout << " yj=" << yj; std::cout << " y0=" << y0; std::cout << " phip=" << *phip; std::cout << " r=" << r; std::cout << " s=" << s; std::cout << " z=" << z; std::cout << std::endl; #endif z = 0.0; } else { z = copysign(1.0, z); } } double t = std::asin(z) * gammalib::rad2deg; // Do ... for (int ix = 0; ix < mx; ++ix, phip += spt, thetap += spt, statp += spt) { // Set status flag if (istat < 0 && *thetap >= 0.0) { *statp = 1; status = 3; n_invalid++; } else { *statp = 0; } // Set values *phip *= s; *thetap = t; } } // endfor: did y dependence // Handle status code if (status == 3) { throw GException::wcs_invalid_x_y(G_PRJ_X2S, n_invalid); } // Return return; }