コード例 #1
0
int
netbsd32_process_read_fpregs(struct lwp *l, struct fpreg32 *regs, size_t *sz)
{
	struct fpreg regs64;
	struct save87 *s87 = (struct save87 *)regs;
	size_t fp_size;
	int error, i;

	union fp_addr {
	        uint64_t fa_64; /* Linear address for 64bit systems */
	        struct {
	                uint32_t fa_off;        /* Linear address for 32 bit */
	                uint16_t fa_seg;        /* Code/data (etc) segment */
	                uint16_t fa_pad;
	        } fa_32; 
	} fa;

	/* 
	 * NOTE: This 'struct fpreg32' is just char[108] and is shorter
	 * than 'struct save87'.
	 * If we write to the extra fields we trash the stack when writing
	 * process coredumps (see coredump_note() in core_elf32.c).
	 * This code must not set sv_env.en_tw or s87->sv_ex_sw.
	 */

	/*
	 * All that stuff makes no sense in i386 code :(
	 */

	fp_size = sizeof regs64;
	error = process_read_fpregs(l, &regs64, &fp_size);
	if (error)
		return error;

	s87->sv_env.en_cw = regs64.fxstate.fx_fcw;
	s87->sv_env.en_sw = regs64.fxstate.fx_fsw;
	fa.fa_64 = regs64.fxstate.fx_rip;
	s87->sv_env.en_fip = fa.fa_32.fa_off;
	s87->sv_env.en_fcs = fa.fa_32.fa_seg;
	s87->sv_env.en_opcode = regs64.fxstate.fx_fop;
	fa.fa_64 = regs64.fxstate.fx_rdp;
	s87->sv_env.en_foo = fa.fa_32.fa_off;
	s87->sv_env.en_fos = fa.fa_32.fa_seg;

	s87->sv_env.en_tw = 0;
	for (i = 0; i < 8; i++) {
		s87->sv_env.en_tw |=
		    (xmm_to_s87_tag((uint8_t *)&regs64.fxstate.fx_st[i][0], i,
		     regs64.fxstate.fx_ftw) << (i * 2));

		memcpy(&s87->sv_ac[i].fp_bytes, &regs64.fxstate.fx_st[i][0],
		    sizeof(s87->sv_ac[i].fp_bytes));
	}

	return (0);
}
コード例 #2
0
ファイル: vm_machdep_arm.c プロジェクト: avsm/openbsd-xen-sys
int
cpu_coredump(struct proc *p, struct vnode *vp, struct ucred *cred,
    struct core *chdr)
{
	int error;
	struct {
		struct reg regs;
		struct fpreg fpregs;
	} cpustate;
	struct coreseg cseg;

	CORE_SETMAGIC(*chdr, COREMAGIC, MID_MACHINE, 0);
	chdr->c_hdrsize = ALIGN(sizeof(*chdr));
	chdr->c_seghdrsize = ALIGN(sizeof(cseg));
	chdr->c_cpusize = sizeof(cpustate);

	/* Save integer registers. */
	error = process_read_regs(p, &cpustate.regs);
	if (error)
		return error;
	/* Save floating point registers. */
	error = process_read_fpregs(p, &cpustate.fpregs);
	if (error)
		return error;

	CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_MACHINE, CORE_CPU);
	cseg.c_addr = 0;
	cseg.c_size = chdr->c_cpusize;

	error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&cseg, chdr->c_seghdrsize,
	    (off_t)chdr->c_hdrsize, UIO_SYSSPACE,
	    IO_NODELOCKED|IO_UNIT, cred, NULL, p);
	if (error)
		return error;

	error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&cpustate, sizeof(cpustate),
	    (off_t)(chdr->c_hdrsize + chdr->c_seghdrsize), UIO_SYSSPACE,
	    IO_NODELOCKED|IO_UNIT, cred, NULL, p);
	if (error)
		return error;

	chdr->c_nseg++;

	return error;
}
コード例 #3
0
int
cpu_coredump(struct lwp *l, struct coredump_iostate *iocookie,
    struct core *chdr)
{
	struct md_core md_core;
	struct coreseg cseg;
	int error;

	if (iocookie == NULL) {
		CORE_SETMAGIC(*chdr, COREMAGIC, MID_MACHINE, 0);
		chdr->c_hdrsize = ALIGN(sizeof(*chdr));
		chdr->c_seghdrsize = ALIGN(sizeof(cseg));
		chdr->c_cpusize = sizeof(md_core);
		chdr->c_nseg++;
		return 0;
	}

	/* Save integer registers. */
	error = process_read_regs(l, &md_core.intreg);
	if (error)
		return error;

	if (fputype) {
		/* Save floating point registers. */
		error = process_read_fpregs(l, &md_core.freg, NULL);
		if (error)
			return error;
	} else {
		/* Make sure these are clear. */
		memset((void *)&md_core.freg, 0, sizeof(md_core.freg));
	}

	CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_MACHINE, CORE_CPU);
	cseg.c_addr = 0;
	cseg.c_size = chdr->c_cpusize;

	error = coredump_write(iocookie, UIO_SYSSPACE, &cseg,
	    chdr->c_seghdrsize);
	if (error)
		return error;

	return coredump_write(iocookie, UIO_SYSSPACE, &md_core,
	    sizeof(md_core));
}
コード例 #4
0
int
process_dofpregs(struct lwp *curl /*tracer*/,
    struct lwp *l /*traced*/,
    struct uio *uio)
{
#if defined(PT_GETFPREGS) || defined(PT_SETFPREGS)
	int error;
	struct fpreg r;
	char *kv;
	int kl;

	if (uio->uio_offset < 0 || uio->uio_offset > (off_t)sizeof(r))
		return EINVAL;

	kl = sizeof(r);
	kv = (char *)&r;

	kv += uio->uio_offset;
	kl -= uio->uio_offset;
	if ((size_t)kl > uio->uio_resid)
		kl = uio->uio_resid;

	uvm_lwp_hold(l);

	error = process_read_fpregs(l, &r);
	if (error == 0)
		error = uiomove(kv, kl, uio);
	if (error == 0 && uio->uio_rw == UIO_WRITE) {
		if (l->l_stat != LSSTOP)
			error = EBUSY;
		else
			error = process_write_fpregs(l, &r);
	}

	uvm_lwp_rele(l);

	uio->uio_offset = 0;
	return (error);
#else
	return (EINVAL);
#endif
}
コード例 #5
0
/*
 * Dump the machine specific segment at the start of a core dump.
 */
int
cpu_coredump(struct lwp *l, struct coredump_iostate *iocookie,
    struct core *chdr)
{
	int error;
	struct {
		struct reg regs;
		struct fpreg fpregs;
	} cpustate;
	struct coreseg cseg;

	if (iocookie == NULL) {
		CORE_SETMAGIC(*chdr, COREMAGIC, MID_MACHINE, 0);
		chdr->c_hdrsize = ALIGN(sizeof(*chdr));
		chdr->c_seghdrsize = ALIGN(sizeof(cseg));
		chdr->c_cpusize = sizeof(cpustate);
		chdr->c_nseg++;
		return 0;
	}

	/* Save integer registers. */
	error = process_read_regs(l, &cpustate.regs);
	if (error)
		return error;
	/* Save floating point registers. */
	error = process_read_fpregs(l, &cpustate.fpregs, NULL);
	if (error)
		return error;

	CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_MACHINE, CORE_CPU);
	cseg.c_addr = 0;
	cseg.c_size = chdr->c_cpusize;

	error = coredump_write(iocookie, UIO_SYSSPACE,
	    &cseg, chdr->c_seghdrsize);
	if (error)
		return error;

	return coredump_write(iocookie, UIO_SYSSPACE,
	    &cpustate, sizeof(cpustate));
}
コード例 #6
0
ファイル: vm_machdep.c プロジェクト: alenichev/openbsd-kernel
/*
 * Dump the machine specific header information at the start of a core dump.
 */
int
cpu_coredump(struct proc *p, struct vnode *vp, struct ucred *cred,
    struct core *core)
{
	struct md_coredump md_core;
	struct coreseg cseg;
	off_t off;
	int error;

	CORE_SETMAGIC(*core, COREMAGIC, MID_HPPA, 0);
	core->c_hdrsize = ALIGN(sizeof(*core));
	core->c_seghdrsize = ALIGN(sizeof(cseg));
	core->c_cpusize = sizeof(md_core);

	process_read_regs(p, &md_core.md_reg);
	process_read_fpregs(p, &md_core.md_fpreg);

	CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_HPPA, CORE_CPU);
	cseg.c_addr = 0;
	cseg.c_size = core->c_cpusize;

#define	write(vp, addr, n) \
	vn_rdwr(UIO_WRITE, (vp), (caddr_t)(addr), (n), off, \
	    UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, NULL, p)

	off = core->c_hdrsize;
	if ((error = write(vp, &cseg, core->c_seghdrsize)))
		return error;
	off += core->c_seghdrsize;
	if ((error = write(vp, &md_core, sizeof md_core)))
		return error;

#undef write
	core->c_nseg++;

	return error;
}
コード例 #7
0
/*
 * Process debugging system call.
 */
int
sys_ptrace(struct proc *p, void *v, register_t *retval)
{
	struct sys_ptrace_args /* {
		syscallarg(int) req;
		syscallarg(pid_t) pid;
		syscallarg(caddr_t) addr;
		syscallarg(int) data;
	} */ *uap = v;
	struct proc *t;				/* target thread */
	struct process *tr;			/* target process */
	struct uio uio;
	struct iovec iov;
	struct ptrace_io_desc piod;
	struct ptrace_event pe;
	struct ptrace_thread_state pts;
	struct reg *regs;
#if defined (PT_SETFPREGS) || defined (PT_GETFPREGS)
	struct fpreg *fpregs;
#endif
#if defined (PT_SETXMMREGS) || defined (PT_GETXMMREGS)
	struct xmmregs *xmmregs;
#endif
#ifdef PT_WCOOKIE
	register_t wcookie;
#endif
	int error, write;
	int temp;
	int req = SCARG(uap, req);
	int s;

	/* "A foolish consistency..." XXX */
	switch (req) {
	case PT_TRACE_ME:
		t = p;
		break;

	/* calls that only operate on the PID */
	case PT_READ_I:
	case PT_READ_D:
	case PT_WRITE_I:
	case PT_WRITE_D:
	case PT_KILL:
	case PT_ATTACH:
	case PT_IO:
	case PT_SET_EVENT_MASK:
	case PT_GET_EVENT_MASK:
	case PT_GET_PROCESS_STATE:
	case PT_GET_THREAD_FIRST:
	case PT_GET_THREAD_NEXT:
	default:
		/* Find the process we're supposed to be operating on. */
		if ((t = pfind(SCARG(uap, pid))) == NULL)
			return (ESRCH);
		if (t->p_flag & P_THREAD)
			return (ESRCH);
		break;

	/* calls that accept a PID or a thread ID */
	case PT_CONTINUE:
	case PT_DETACH:
#ifdef PT_STEP
	case PT_STEP:
#endif
	case PT_GETREGS:
	case PT_SETREGS:
#ifdef PT_GETFPREGS
	case PT_GETFPREGS:
#endif
#ifdef PT_SETFPREGS
	case PT_SETFPREGS:
#endif
#ifdef PT_GETXMMREGS
	case PT_GETXMMREGS:
#endif
#ifdef PT_SETXMMREGS
	case PT_SETXMMREGS:
#endif
		if (SCARG(uap, pid) > THREAD_PID_OFFSET) {
			t = pfind(SCARG(uap, pid) - THREAD_PID_OFFSET);
			if (t == NULL)
				return (ESRCH);
		} else {
			if ((t = pfind(SCARG(uap, pid))) == NULL)
				return (ESRCH);
			if (t->p_flag & P_THREAD)
				return (ESRCH);
		}
		break;
	}
	tr = t->p_p;

	if ((tr->ps_flags & PS_INEXEC) != 0)
		return (EAGAIN);

	/* Make sure we can operate on it. */
	switch (req) {
	case  PT_TRACE_ME:
		/* Saying that you're being traced is always legal. */
		break;

	case  PT_ATTACH:
		/*
		 * You can't attach to a process if:
		 *	(1) it's the process that's doing the attaching,
		 */
		if (tr == p->p_p)
			return (EINVAL);

		/*
		 *	(2) it's a system process
		 */
		if (ISSET(tr->ps_flags, PS_SYSTEM))
			return (EPERM);

		/*
		 *	(3) it's already being traced, or
		 */
		if (ISSET(tr->ps_flags, PS_TRACED))
			return (EBUSY);

		/*
		 *	(4) it's not owned by you, or the last exec
		 *	    gave us setuid/setgid privs (unless
		 *	    you're root), or...
		 * 
		 *      [Note: once PS_SUGID or PS_SUGIDEXEC gets set in
		 *	execve(), they stay set until the process does
		 *	another execve().  Hence this prevents a setuid
		 *	process which revokes its special privileges using
		 *	setuid() from being traced.  This is good security.]
		 */
		if ((tr->ps_ucred->cr_ruid != p->p_ucred->cr_ruid ||
		    ISSET(tr->ps_flags, PS_SUGIDEXEC | PS_SUGID)) &&
		    (error = suser(p, 0)) != 0)
			return (error);

		/*
		 * 	(4.5) it's not a child of the tracing process.
		 */
		if (global_ptrace == 0 && !inferior(tr, p->p_p) &&
		    (error = suser(p, 0)) != 0)
			return (error);

		/*
		 *	(5) ...it's init, which controls the security level
		 *	    of the entire system, and the system was not
		 *          compiled with permanently insecure mode turned
		 *	    on.
		 */
		if ((tr->ps_pid == 1) && (securelevel > -1))
			return (EPERM);

		/*
		 *	(6) it's an ancestor of the current process and
		 *	    not init (because that would create a loop in
		 *	    the process graph).
		 */
		if (tr->ps_pid != 1 && inferior(p->p_p, tr))
			return (EINVAL);
		break;

	case  PT_READ_I:
	case  PT_READ_D:
	case  PT_WRITE_I:
	case  PT_WRITE_D:
	case  PT_IO:
	case  PT_CONTINUE:
	case  PT_KILL:
	case  PT_DETACH:
#ifdef PT_STEP
	case  PT_STEP:
#endif
	case  PT_SET_EVENT_MASK:
	case  PT_GET_EVENT_MASK:
	case  PT_GET_PROCESS_STATE:
	case  PT_GETREGS:
	case  PT_SETREGS:
#ifdef PT_GETFPREGS
	case  PT_GETFPREGS:
#endif
#ifdef PT_SETFPREGS
	case  PT_SETFPREGS:
#endif
#ifdef PT_GETXMMREGS
	case  PT_GETXMMREGS:
#endif
#ifdef PT_SETXMMREGS
	case  PT_SETXMMREGS:
#endif
#ifdef PT_WCOOKIE
	case  PT_WCOOKIE:
#endif
		/*
		 * You can't do what you want to the process if:
		 *	(1) It's not being traced at all,
		 */
		if (!ISSET(tr->ps_flags, PS_TRACED))
			return (EPERM);

		/*
		 *	(2) it's not being traced by _you_, or
		 */
		if (tr->ps_pptr != p->p_p)
			return (EBUSY);

		/*
		 *	(3) it's not currently stopped.
		 */
		if (t->p_stat != SSTOP || !ISSET(tr->ps_flags, PS_WAITED))
			return (EBUSY);
		break;

	case  PT_GET_THREAD_FIRST:
	case  PT_GET_THREAD_NEXT:
		/*
		 * You can't do what you want to the process if:
		 *	(1) It's not being traced at all,
		 */
		if (!ISSET(tr->ps_flags, PS_TRACED))
			return (EPERM);

		/*
		 *	(2) it's not being traced by _you_, or
		 */
		if (tr->ps_pptr != p->p_p)
			return (EBUSY);

		/*
		 * Do the work here because the request isn't actually
		 * associated with 't'
		 */
		if (SCARG(uap, data) != sizeof(pts))
			return (EINVAL);

		if (req == PT_GET_THREAD_NEXT) {
			error = copyin(SCARG(uap, addr), &pts, sizeof(pts));
			if (error)
				return (error);

			t = pfind(pts.pts_tid - THREAD_PID_OFFSET);
			if (t == NULL || ISSET(t->p_flag, P_WEXIT))
				return (ESRCH);
			if (t->p_p != tr)
				return (EINVAL);
			t = TAILQ_NEXT(t, p_thr_link);
		} else {
			t = TAILQ_FIRST(&tr->ps_threads);
		}

		if (t == NULL)
			pts.pts_tid = -1;
		else
			pts.pts_tid = t->p_pid + THREAD_PID_OFFSET;
		return (copyout(&pts, SCARG(uap, addr), sizeof(pts)));

	default:			/* It was not a legal request. */
		return (EINVAL);
	}

	/* Do single-step fixup if needed. */
	FIX_SSTEP(t);

	/* Now do the operation. */
	write = 0;
	*retval = 0;

	switch (req) {
	case  PT_TRACE_ME:
		/* Just set the trace flag. */
		atomic_setbits_int(&tr->ps_flags, PS_TRACED);
		tr->ps_oppid = tr->ps_pptr->ps_pid;
		if (tr->ps_ptstat == NULL)
			tr->ps_ptstat = malloc(sizeof(*tr->ps_ptstat),
			    M_SUBPROC, M_WAITOK);
		memset(tr->ps_ptstat, 0, sizeof(*tr->ps_ptstat));
		return (0);

	case  PT_WRITE_I:		/* XXX no separate I and D spaces */
	case  PT_WRITE_D:
		write = 1;
		temp = SCARG(uap, data);
	case  PT_READ_I:		/* XXX no separate I and D spaces */
	case  PT_READ_D:
		/* write = 0 done above. */
		iov.iov_base = (caddr_t)&temp;
		iov.iov_len = sizeof(int);
		uio.uio_iov = &iov;
		uio.uio_iovcnt = 1;
		uio.uio_offset = (off_t)(vaddr_t)SCARG(uap, addr);
		uio.uio_resid = sizeof(int);
		uio.uio_segflg = UIO_SYSSPACE;
		uio.uio_rw = write ? UIO_WRITE : UIO_READ;
		uio.uio_procp = p;
		error = process_domem(p, t, &uio, write ? PT_WRITE_I :
				PT_READ_I);
		if (write == 0)
			*retval = temp;
		return (error);
	case  PT_IO:
		error = copyin(SCARG(uap, addr), &piod, sizeof(piod));
		if (error)
			return (error);
		iov.iov_base = piod.piod_addr;
		iov.iov_len = piod.piod_len;
		uio.uio_iov = &iov;
		uio.uio_iovcnt = 1;
		uio.uio_offset = (off_t)(vaddr_t)piod.piod_offs;
		uio.uio_resid = piod.piod_len;
		uio.uio_segflg = UIO_USERSPACE;
		uio.uio_procp = p;
		switch (piod.piod_op) {
		case PIOD_READ_I:
			req = PT_READ_I;
			uio.uio_rw = UIO_READ;
			break;
		case PIOD_READ_D:
			req = PT_READ_D;
			uio.uio_rw = UIO_READ;
			break;
		case PIOD_WRITE_I:
			req = PT_WRITE_I;
			uio.uio_rw = UIO_WRITE;
			break;
		case PIOD_WRITE_D:
			req = PT_WRITE_D;
			uio.uio_rw = UIO_WRITE;
			break;
		case PIOD_READ_AUXV:
			req = PT_READ_D;
			uio.uio_rw = UIO_READ;
			temp = tr->ps_emul->e_arglen * sizeof(char *);
			if (uio.uio_offset > temp)
				return (EIO);
			if (uio.uio_resid > temp - uio.uio_offset)
				uio.uio_resid = temp - uio.uio_offset;
			piod.piod_len = iov.iov_len = uio.uio_resid;
			error = process_auxv_offset(p, t, &uio);
			if (error)
				return (error);
			break;
		default:
			return (EINVAL);
		}
		error = process_domem(p, t, &uio, req);
		piod.piod_len -= uio.uio_resid;
		(void) copyout(&piod, SCARG(uap, addr), sizeof(piod));
		return (error);
#ifdef PT_STEP
	case  PT_STEP:
		/*
		 * From the 4.4BSD PRM:
		 * "Execution continues as in request PT_CONTINUE; however
		 * as soon as possible after execution of at least one
		 * instruction, execution stops again. [ ... ]"
		 */
#endif
	case  PT_CONTINUE:
		/*
		 * From the 4.4BSD PRM:
		 * "The data argument is taken as a signal number and the
		 * child's execution continues at location addr as if it
		 * incurred that signal.  Normally the signal number will
		 * be either 0 to indicate that the signal that caused the
		 * stop should be ignored, or that value fetched out of
		 * the process's image indicating which signal caused
		 * the stop.  If addr is (int *)1 then execution continues
		 * from where it stopped."
		 */

		if (SCARG(uap, pid) < THREAD_PID_OFFSET && tr->ps_single)
			t = tr->ps_single;

		/* Check that the data is a valid signal number or zero. */
		if (SCARG(uap, data) < 0 || SCARG(uap, data) >= NSIG)
			return (EINVAL);

		/* If the address parameter is not (int *)1, set the pc. */
		if ((int *)SCARG(uap, addr) != (int *)1)
			if ((error = process_set_pc(t, SCARG(uap, addr))) != 0)
				goto relebad;

#ifdef PT_STEP
		/*
		 * Arrange for a single-step, if that's requested and possible.
		 */
		error = process_sstep(t, req == PT_STEP);
		if (error)
			goto relebad;
#endif
		goto sendsig;

	case  PT_DETACH:
		/*
		 * From the 4.4BSD PRM:
		 * "The data argument is taken as a signal number and the
		 * child's execution continues at location addr as if it
		 * incurred that signal.  Normally the signal number will
		 * be either 0 to indicate that the signal that caused the
		 * stop should be ignored, or that value fetched out of
		 * the process's image indicating which signal caused
		 * the stop.  If addr is (int *)1 then execution continues
		 * from where it stopped."
		 */

		if (SCARG(uap, pid) < THREAD_PID_OFFSET && tr->ps_single)
			t = tr->ps_single;

		/* Check that the data is a valid signal number or zero. */
		if (SCARG(uap, data) < 0 || SCARG(uap, data) >= NSIG)
			return (EINVAL);

#ifdef PT_STEP
		/*
		 * Arrange for a single-step, if that's requested and possible.
		 */
		error = process_sstep(t, req == PT_STEP);
		if (error)
			goto relebad;
#endif

		/* give process back to original parent or init */
		if (tr->ps_oppid != tr->ps_pptr->ps_pid) {
			struct process *ppr;

			ppr = prfind(tr->ps_oppid);
			proc_reparent(tr, ppr ? ppr : initprocess);
		}

		/* not being traced any more */
		tr->ps_oppid = 0;
		atomic_clearbits_int(&tr->ps_flags, PS_TRACED|PS_WAITED);

	sendsig:
		memset(tr->ps_ptstat, 0, sizeof(*tr->ps_ptstat));

		/* Finally, deliver the requested signal (or none). */
		if (t->p_stat == SSTOP) {
			t->p_xstat = SCARG(uap, data);
			SCHED_LOCK(s);
			setrunnable(t);
			SCHED_UNLOCK(s);
		} else {
			if (SCARG(uap, data) != 0)
				psignal(t, SCARG(uap, data));
		}

		return (0);

	relebad:
		return (error);

	case  PT_KILL:
		if (SCARG(uap, pid) < THREAD_PID_OFFSET && tr->ps_single)
			t = tr->ps_single;

		/* just send the process a KILL signal. */
		SCARG(uap, data) = SIGKILL;
		goto sendsig;	/* in PT_CONTINUE, above. */

	case  PT_ATTACH:
		/*
		 * As was done in procfs:
		 * Go ahead and set the trace flag.
		 * Save the old parent (it's reset in
		 *   _DETACH, and also in kern_exit.c:wait4()
		 * Reparent the process so that the tracing
		 *   proc gets to see all the action.
		 * Stop the target.
		 */
		atomic_setbits_int(&tr->ps_flags, PS_TRACED);
		tr->ps_oppid = tr->ps_pptr->ps_pid;
		if (tr->ps_pptr != p->p_p)
			proc_reparent(tr, p->p_p);
		if (tr->ps_ptstat == NULL)
			tr->ps_ptstat = malloc(sizeof(*tr->ps_ptstat),
			    M_SUBPROC, M_WAITOK);
		SCARG(uap, data) = SIGSTOP;
		goto sendsig;

	case  PT_GET_EVENT_MASK:
		if (SCARG(uap, data) != sizeof(pe))
			return (EINVAL);
		memset(&pe, 0, sizeof(pe));
		pe.pe_set_event = tr->ps_ptmask;
		return (copyout(&pe, SCARG(uap, addr), sizeof(pe)));
	case  PT_SET_EVENT_MASK:
		if (SCARG(uap, data) != sizeof(pe))
			return (EINVAL);
		if ((error = copyin(SCARG(uap, addr), &pe, sizeof(pe))))
			return (error);
		tr->ps_ptmask = pe.pe_set_event;
		return (0);

	case  PT_GET_PROCESS_STATE:
		if (SCARG(uap, data) != sizeof(*tr->ps_ptstat))
			return (EINVAL);

		if (tr->ps_single)
			tr->ps_ptstat->pe_tid =
			    tr->ps_single->p_pid + THREAD_PID_OFFSET;

		return (copyout(tr->ps_ptstat, SCARG(uap, addr),
		    sizeof(*tr->ps_ptstat)));

	case  PT_SETREGS:
		KASSERT((p->p_flag & P_SYSTEM) == 0);
		if ((error = process_checkioperm(p, tr)) != 0)
			return (error);

		regs = malloc(sizeof(*regs), M_TEMP, M_WAITOK);
		error = copyin(SCARG(uap, addr), regs, sizeof(*regs));
		if (error == 0) {
			error = process_write_regs(t, regs);
		}
		free(regs, M_TEMP, sizeof(*regs));
		return (error);
	case  PT_GETREGS:
		KASSERT((p->p_flag & P_SYSTEM) == 0);
		if ((error = process_checkioperm(p, tr)) != 0)
			return (error);

		regs = malloc(sizeof(*regs), M_TEMP, M_WAITOK);
		error = process_read_regs(t, regs);
		if (error == 0)
			error = copyout(regs,
			    SCARG(uap, addr), sizeof (*regs));
		free(regs, M_TEMP, sizeof(*regs));
		return (error);
#ifdef PT_SETFPREGS
	case  PT_SETFPREGS:
		KASSERT((p->p_flag & P_SYSTEM) == 0);
		if ((error = process_checkioperm(p, tr)) != 0)
			return (error);

		fpregs = malloc(sizeof(*fpregs), M_TEMP, M_WAITOK);
		error = copyin(SCARG(uap, addr), fpregs, sizeof(*fpregs));
		if (error == 0) {
			error = process_write_fpregs(t, fpregs);
		}
		free(fpregs, M_TEMP, sizeof(*fpregs));
		return (error);
#endif
#ifdef PT_GETFPREGS
	case  PT_GETFPREGS:
		KASSERT((p->p_flag & P_SYSTEM) == 0);
		if ((error = process_checkioperm(p, tr)) != 0)
			return (error);

		fpregs = malloc(sizeof(*fpregs), M_TEMP, M_WAITOK);
		error = process_read_fpregs(t, fpregs);
		if (error == 0)
			error = copyout(fpregs,
			    SCARG(uap, addr), sizeof(*fpregs));
		free(fpregs, M_TEMP, sizeof(*fpregs));
		return (error);
#endif
#ifdef PT_SETXMMREGS
	case  PT_SETXMMREGS:
		KASSERT((p->p_flag & P_SYSTEM) == 0);
		if ((error = process_checkioperm(p, tr)) != 0)
			return (error);

		xmmregs = malloc(sizeof(*xmmregs), M_TEMP, M_WAITOK);
		error = copyin(SCARG(uap, addr), xmmregs, sizeof(*xmmregs));
		if (error == 0) {
			error = process_write_xmmregs(t, xmmregs);
		}
		free(xmmregs, M_TEMP, sizeof(*xmmregs));
		return (error);
#endif
#ifdef PT_GETXMMREGS
	case  PT_GETXMMREGS:
		KASSERT((p->p_flag & P_SYSTEM) == 0);
		if ((error = process_checkioperm(p, tr)) != 0)
			return (error);

		xmmregs = malloc(sizeof(*xmmregs), M_TEMP, M_WAITOK);
		error = process_read_xmmregs(t, xmmregs);
		if (error == 0)
			error = copyout(xmmregs,
			    SCARG(uap, addr), sizeof(*xmmregs));
		free(xmmregs, M_TEMP, sizeof(*xmmregs));
		return (error);
#endif
#ifdef PT_WCOOKIE
	case  PT_WCOOKIE:
		wcookie = process_get_wcookie (t);
		return (copyout(&wcookie, SCARG(uap, addr),
		    sizeof (register_t)));
#endif
	}

#ifdef DIAGNOSTIC
	panic("ptrace: impossible");
#endif
	return 0;
}
コード例 #8
0
void
linux_sendsig(const ksiginfo_t *ksi, const sigset_t *mask)
{
	struct lwp *l = curlwp;
	struct proc *p = l->l_proc;
	struct sigacts *ps = p->p_sigacts;
	int onstack, error;
	int sig = ksi->ksi_signo;
	struct linux_rt_sigframe *sfp, sigframe;
	struct linux__fpstate *fpsp, fpstate;
	struct fpreg fpregs;
	struct trapframe *tf = l->l_md.md_regs;
	sig_t catcher = SIGACTION(p, sig).sa_handler;
	linux_sigset_t lmask;
	char *sp;

	/* Do we need to jump onto the signal stack? */
	onstack =
	    (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
	    (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
	
	/* Allocate space for the signal handler context. */
	if (onstack)
		sp = ((char *)l->l_sigstk.ss_sp +
		    l->l_sigstk.ss_size);
	else
		sp = (char *)tf->tf_rsp - 128;

	/* 
	 * Save FPU state, if any 
	 */
	if (l->l_md.md_flags & MDP_USEDFPU) {
		sp = (char *)
		    (((long)sp - sizeof(struct linux__fpstate)) & ~0xfUL);
		fpsp = (struct linux__fpstate *)sp;
	} else
		fpsp = NULL;

	/* 
	 * Populate the rt_sigframe 
	 */
	sp = (char *)
	    ((((long)sp - sizeof(struct linux_rt_sigframe)) & ~0xfUL) - 8);
	sfp = (struct linux_rt_sigframe *)sp;

	bzero(&sigframe, sizeof(sigframe));
	if (ps->sa_sigdesc[sig].sd_vers != 0)
		sigframe.pretcode = 
		    (char *)(u_long)ps->sa_sigdesc[sig].sd_tramp;
	else
		sigframe.pretcode = NULL;

	/* 
	 * The user context 
	 */
	sigframe.uc.luc_flags = 0;
	sigframe.uc.luc_link = NULL;

	/* This is used regardless of SA_ONSTACK in Linux */
	sigframe.uc.luc_stack.ss_sp = l->l_sigstk.ss_sp;
	sigframe.uc.luc_stack.ss_size = l->l_sigstk.ss_size;
	sigframe.uc.luc_stack.ss_flags = 0;
	if (l->l_sigstk.ss_flags & SS_ONSTACK)
		sigframe.uc.luc_stack.ss_flags |= LINUX_SS_ONSTACK;
	if (l->l_sigstk.ss_flags & SS_DISABLE)
		sigframe.uc.luc_stack.ss_flags |= LINUX_SS_DISABLE;

	sigframe.uc.luc_mcontext.r8 = tf->tf_r8;
	sigframe.uc.luc_mcontext.r9 = tf->tf_r9;
	sigframe.uc.luc_mcontext.r10 = tf->tf_r10;
	sigframe.uc.luc_mcontext.r11 = tf->tf_r11;
	sigframe.uc.luc_mcontext.r12 = tf->tf_r12;
	sigframe.uc.luc_mcontext.r13 = tf->tf_r13;
	sigframe.uc.luc_mcontext.r14 = tf->tf_r14;
	sigframe.uc.luc_mcontext.r15 = tf->tf_r15;
	sigframe.uc.luc_mcontext.rdi = tf->tf_rdi;
	sigframe.uc.luc_mcontext.rsi = tf->tf_rsi;
	sigframe.uc.luc_mcontext.rbp = tf->tf_rbp;
	sigframe.uc.luc_mcontext.rbx = tf->tf_rbx;
	sigframe.uc.luc_mcontext.rdx = tf->tf_rdx;
	sigframe.uc.luc_mcontext.rax = tf->tf_rax;
	sigframe.uc.luc_mcontext.rcx = tf->tf_rcx;
	sigframe.uc.luc_mcontext.rsp = tf->tf_rsp;
	sigframe.uc.luc_mcontext.rip = tf->tf_rip;
	sigframe.uc.luc_mcontext.eflags = tf->tf_rflags;
	sigframe.uc.luc_mcontext.cs = tf->tf_cs;
	sigframe.uc.luc_mcontext.gs = tf->tf_gs;
	sigframe.uc.luc_mcontext.fs = tf->tf_fs;
	sigframe.uc.luc_mcontext.err = tf->tf_err;
	sigframe.uc.luc_mcontext.trapno = tf->tf_trapno;
	native_to_linux_sigset(&lmask, mask);
	sigframe.uc.luc_mcontext.oldmask = lmask.sig[0];
	sigframe.uc.luc_mcontext.cr2 = (long)l->l_addr->u_pcb.pcb_onfault;
	sigframe.uc.luc_mcontext.fpstate = fpsp;
	native_to_linux_sigset(&sigframe.uc.luc_sigmask, mask);

	/* 
	 * the siginfo structure
	 */
	sigframe.info.lsi_signo = native_to_linux_signo[sig];
	sigframe.info.lsi_errno = native_to_linux_errno[ksi->ksi_errno];
	sigframe.info.lsi_code = native_to_linux_si_code(ksi->ksi_code);

	/* XXX This is a rought conversion, taken from i386 code */
	switch (sigframe.info.lsi_signo) {
	case LINUX_SIGILL:
	case LINUX_SIGFPE:
	case LINUX_SIGSEGV:
	case LINUX_SIGBUS:
	case LINUX_SIGTRAP:
		sigframe.info._sifields._sigfault._addr = ksi->ksi_addr;
		break;
	case LINUX_SIGCHLD:
		sigframe.info._sifields._sigchld._pid = ksi->ksi_pid;
		sigframe.info._sifields._sigchld._uid = ksi->ksi_uid;
		sigframe.info._sifields._sigchld._utime = ksi->ksi_utime;
		sigframe.info._sifields._sigchld._stime = ksi->ksi_stime;

		if (WCOREDUMP(ksi->ksi_status)) {
			sigframe.info.lsi_code = LINUX_CLD_DUMPED;
			sigframe.info._sifields._sigchld._status =
			    _WSTATUS(ksi->ksi_status);
		} else if (_WSTATUS(ksi->ksi_status)) {
			sigframe.info.lsi_code = LINUX_CLD_KILLED;
			sigframe.info._sifields._sigchld._status =
			    _WSTATUS(ksi->ksi_status);
		} else {
			sigframe.info.lsi_code = LINUX_CLD_EXITED;
			sigframe.info._sifields._sigchld._status =
			    ((ksi->ksi_status & 0xff00U) >> 8);
		}
		break;
	case LINUX_SIGIO:
		sigframe.info._sifields._sigpoll._band = ksi->ksi_band;
		sigframe.info._sifields._sigpoll._fd = ksi->ksi_fd;
		break;
	default:
		sigframe.info._sifields._sigchld._pid = ksi->ksi_pid;
		sigframe.info._sifields._sigchld._uid = ksi->ksi_uid;
		if ((sigframe.info.lsi_signo == LINUX_SIGALRM) ||
		    (sigframe.info.lsi_signo >= LINUX_SIGRTMIN))
			sigframe.info._sifields._timer._sigval.sival_ptr =
			     ksi->ksi_value.sival_ptr;
		break;
	}

	sendsig_reset(l, sig);
	mutex_exit(p->p_lock);
	error = 0;

	/* 
	 * Save FPU state, if any 
	 */
	if (fpsp != NULL) {
		(void)process_read_fpregs(l, &fpregs);
		bzero(&fpstate, sizeof(fpstate));
		fpstate.cwd = fpregs.fp_fcw;
		fpstate.swd = fpregs.fp_fsw;
		fpstate.twd = fpregs.fp_ftw;
		fpstate.fop = fpregs.fp_fop;
		fpstate.rip = fpregs.fp_rip;
		fpstate.rdp = fpregs.fp_rdp;
		fpstate.mxcsr = fpregs.fp_mxcsr;
		fpstate.mxcsr_mask = fpregs.fp_mxcsr_mask;
		memcpy(&fpstate.st_space, &fpregs.fp_st, 
		    sizeof(fpstate.st_space));
		memcpy(&fpstate.xmm_space, &fpregs.fp_xmm, 
		    sizeof(fpstate.xmm_space));
		error = copyout(&fpstate, fpsp, sizeof(fpstate));
	}

	if (error == 0)
		error = copyout(&sigframe, sp, sizeof(sigframe));

	mutex_enter(p->p_lock);

	if (error != 0) {
		sigexit(l, SIGILL);
		return;
	}	

	linux_buildcontext(l, catcher, sp);
	tf->tf_rdi = sigframe.info.lsi_signo;
	tf->tf_rax = 0;
	tf->tf_rsi = (long)&sfp->info;
	tf->tf_rdx = (long)&sfp->uc;

	/*
	 * Remember we use signal stack
	 */
	if (onstack)
		l->l_sigstk.ss_flags |= SS_ONSTACK;
	return;
}