コード例 #1
0
ファイル: protocol.c プロジェクト: halimbimantara/grbl
// Directs and executes one line of formatted input from protocol_process. While mostly
// incoming streaming g-code blocks, this also directs and executes Grbl internal commands,
// such as settings, initiating the homing cycle, and toggling switch states.
static void protocol_execute_line(char *line) 
{      
  protocol_execute_realtime(); // Runtime command check point.
  if (sys.abort) { return; } // Bail to calling function upon system abort  

  #ifdef REPORT_ECHO_LINE_RECEIVED
    report_echo_line_received(line);
  #endif

  if (line[0] == 0) {
    // Empty or comment line. Send status message for syncing purposes.
    report_status_message(STATUS_OK);

  } else if (line[0] == '$') {
    // Grbl '$' system command
    report_status_message(system_execute_line(line));
    
  } else if (sys.state == STATE_ALARM) {
    // Everything else is gcode. Block if in alarm mode.
    report_status_message(STATUS_ALARM_LOCK);

  } else {
    // Parse and execute g-code block!
    report_status_message(gc_execute_line(line));
  }
}
コード例 #2
0
ファイル: protocol.c プロジェクト: halimbimantara/grbl
// Block until all buffered steps are executed or in a cycle state. Works with feed hold
// during a synchronize call, if it should happen. Also, waits for clean cycle end.
void protocol_buffer_synchronize()
{
  // If system is queued, ensure cycle resumes if the auto start flag is present.
  protocol_auto_cycle_start();
  do {
    protocol_execute_realtime();   // Check and execute run-time commands
    if (sys.abort) { return; } // Check for system abort
  } while (plan_get_current_block() || (sys.state == STATE_CYCLE));
}
コード例 #3
0
ファイル: limits.c プロジェクト: MisterTobi/grbl
// Performs a soft limit check. Called from mc_line() only. Assumes the machine has been homed,
// the workspace volume is in all negative space, and the system is in normal operation.
void limits_soft_check(float *target)
{
  uint8_t idx;
  uint8_t soft_limit_error = false;
  for (idx=0; idx<N_AXIS; idx++) {
   
    #ifdef HOMING_FORCE_SET_ORIGIN
      // When homing forced set origin is enabled, soft limits checks need to account for directionality.
      // NOTE: max_travel is stored as negative
      if (bit_istrue(settings.homing_dir_mask,bit(idx))) {
        if (target[idx] < 0 || target[idx] > -settings.max_travel[idx]) { soft_limit_error = true; }
      } else {
        if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { soft_limit_error = true; }
      }
    #else  
      // NOTE: max_travel is stored as negative
      if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { soft_limit_error = true; }
    #endif
    
    if (soft_limit_error) {
      // Force feed hold if cycle is active. All buffered blocks are guaranteed to be within 
      // workspace volume so just come to a controlled stop so position is not lost. When complete
      // enter alarm mode.
      if (sys.state == STATE_CYCLE) {
        system_set_exec_state_flag(EXEC_FEED_HOLD);
        do {
          protocol_execute_realtime();
          if (sys.abort) { return; }
        } while ( sys.state != STATE_IDLE );
      }
    
      mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
      system_set_exec_alarm_flag((EXEC_ALARM_SOFT_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate soft limit critical event
      protocol_execute_realtime(); // Execute to enter critical event loop and system abort
      return;
    }
  }
}
コード例 #4
0
ファイル: motion_control.c プロジェクト: AngelLM/grbl
// Execute dwell in seconds.
void mc_dwell(float seconds) 
{
   if (sys.state == STATE_CHECK_MODE) { return; }
   
   uint16_t i = floor(1000/DWELL_TIME_STEP*seconds);
   protocol_buffer_synchronize();
   delay_ms(floor(1000*seconds-i*DWELL_TIME_STEP)); // Delay millisecond remainder.
   while (i-- > 0) {
     // NOTE: Check and execute realtime commands during dwell every <= DWELL_TIME_STEP milliseconds.
     protocol_execute_realtime();
     if (sys.abort) { return; }
     _delay_ms(DWELL_TIME_STEP); // Delay DWELL_TIME_STEP increment
   }
}
コード例 #5
0
ファイル: motion_control.c プロジェクト: AngelLM/grbl
// Perform homing cycle to locate and set machine zero. Only '$H' executes this command.
// NOTE: There should be no motions in the buffer and Grbl must be in an idle state before
// executing the homing cycle. This prevents incorrect buffered plans after homing.
void mc_homing_cycle()
{
  // Check and abort homing cycle, if hard limits are already enabled. Helps prevent problems
  // with machines with limits wired on both ends of travel to one limit pin.
  // TODO: Move the pin-specific LIMIT_PIN call to limits.c as a function.
  #ifdef LIMITS_TWO_SWITCHES_ON_AXES  
    if (limits_get_state()) { 
      mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
      bit_true_atomic(sys_rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT));
      return;
    }
  #endif
   
  limits_disable(); // Disable hard limits pin change register for cycle duration
    
  // -------------------------------------------------------------------------------------
  // Perform homing routine. NOTE: Special motion case. Only system reset works.
  
  // Search to engage all axes limit switches at faster homing seek rate.
  limits_go_home(HOMING_CYCLE_0);  // Homing cycle 0
  #ifdef HOMING_CYCLE_1
    limits_go_home(HOMING_CYCLE_1);  // Homing cycle 1
  #endif
  #ifdef HOMING_CYCLE_2
    limits_go_home(HOMING_CYCLE_2);  // Homing cycle 2
  #endif
  #ifdef HOMING_CYCLE_3
    limits_go_home(HOMING_CYCLE_3);  // Homing cycle 3
  #endif
  #ifdef HOMING_CYCLE_4
    limits_go_home(HOMING_CYCLE_4);  // Homing cycle 4
  #endif
  #ifdef HOMING_CYCLE_5
    limits_go_home(HOMING_CYCLE_5);  // Homing cycle 5
  #endif
    
  protocol_execute_realtime(); // Check for reset and set system abort.
  if (sys.abort) { return; } // Did not complete. Alarm state set by mc_alarm.

  // Homing cycle complete! Setup system for normal operation.
  // -------------------------------------------------------------------------------------

  // Gcode parser position was circumvented by the limits_go_home() routine, so sync position now.
  gc_sync_position();

  // If hard limits feature enabled, re-enable hard limits pin change register after homing cycle.
  limits_init();
}
コード例 #6
0
// Perform homing cycle to locate and set machine zero. Only '$H' executes this command.
// NOTE: There should be no motions in the buffer and Grbl must be in an idle state before
// executing the homing cycle. This prevents incorrect buffered plans after homing.
void mc_homing_cycle(uint8_t cycle_mask)
{
  // Check and abort homing cycle, if hard limits are already enabled. Helps prevent problems
  // with machines with limits wired on both ends of travel to one limit pin.
  // TODO: Move the pin-specific LIMIT_PIN call to limits.c as a function.
  #ifdef LIMITS_TWO_SWITCHES_ON_AXES
    if (limits_get_state()) {
      mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
      system_set_exec_alarm(EXEC_ALARM_HARD_LIMIT);
      return;
    }
  #endif

  limits_disable(); // Disable hard limits pin change register for cycle duration

  // -------------------------------------------------------------------------------------
  // Perform homing routine. NOTE: Special motion case. Only system reset works.
  
  #ifdef HOMING_SINGLE_AXIS_COMMANDS
    if (cycle_mask) { limits_go_home(cycle_mask); } // Perform homing cycle based on mask.
    else
  #endif
  {
    // Search to engage all axes limit switches at faster homing seek rate.
    limits_go_home(HOMING_CYCLE_0);  // Homing cycle 0
    #ifdef HOMING_CYCLE_1
      limits_go_home(HOMING_CYCLE_1);  // Homing cycle 1
    #endif
    #ifdef HOMING_CYCLE_2
      limits_go_home(HOMING_CYCLE_2);  // Homing cycle 2
    #endif
  }

  protocol_execute_realtime(); // Check for reset and set system abort.
  if (sys.abort) { return; } // Did not complete. Alarm state set by mc_alarm.

  // Homing cycle complete! Setup system for normal operation.
  // -------------------------------------------------------------------------------------

  // Sync gcode parser and planner positions to homed position.
  gc_sync_position();
  plan_sync_position();

  // If hard limits feature enabled, re-enable hard limits pin change register after homing cycle.
  limits_init();
}
コード例 #7
0
void punch()
{

    if (sys.state == STATE_CHECK_MODE) {
        return ;
    }

    punch_stop();

    // wait for current awaited commands
    protocol_buffer_synchronize();
    // wait for the end of move
    do {
        protocol_execute_realtime();
        if (sys.abort) {
            return;
        }
    } while ( sys.state != STATE_IDLE );

    punch_activate_actuator(COMMAND_PUNCH_UNACTIVATED);

    punch_activate_actuator(COMMAND_PUNCH_DOWN);

    // wait_a_bit();

    punch_wait_sensor_state(PUNCH_SENSOR_DOWN_BIT);

    // wait_a_bit();

    punch_activate_actuator(COMMAND_PUNCH_UNACTIVATED);

    // wait_a_bit();

    // activate the punch up
    punch_activate_actuator(COMMAND_PUNCH_UP);

    // wait_a_bit();
    // activate the punch up, and release the down
    punch_wait_sensor_state(PUNCH_SENSOR_UP_BIT);

    // wait_a_bit();
}
コード例 #8
0
ファイル: motion_control.c プロジェクト: AngelLM/grbl
  void mc_line(float *target, float feed_rate, uint8_t invert_feed_rate)
#endif
{
  // If enabled, check for soft limit violations. Placed here all line motions are picked up
  // from everywhere in Grbl.
  if (bit_istrue(settings.flags,BITFLAG_SOFT_LIMIT_ENABLE)) { limits_soft_check(target); }    
      
  // If in check gcode mode, prevent motion by blocking planner. Soft limits still work.
  if (sys.state == STATE_CHECK_MODE) { return; }
    
  // NOTE: Backlash compensation may be installed here. It will need direction info to track when
  // to insert a backlash line motion(s) before the intended line motion and will require its own
  // plan_check_full_buffer() and check for system abort loop. Also for position reporting 
  // backlash steps will need to be also tracked, which will need to be kept at a system level.
  // There are likely some other things that will need to be tracked as well. However, we feel
  // that backlash compensation should NOT be handled by Grbl itself, because there are a myriad
  // of ways to implement it and can be effective or ineffective for different CNC machines. This
  // would be better handled by the interface as a post-processor task, where the original g-code
  // is translated and inserts backlash motions that best suits the machine. 
  // NOTE: Perhaps as a middle-ground, all that needs to be sent is a flag or special command that
  // indicates to Grbl what is a backlash compensation motion, so that Grbl executes the move but
  // doesn't update the machine position values. Since the position values used by the g-code
  // parser and planner are separate from the system machine positions, this is doable.

  // If the buffer is full: good! That means we are well ahead of the robot. 
  // Remain in this loop until there is room in the buffer.
  do {
    protocol_execute_realtime(); // Check for any run-time commands
    if (sys.abort) { return; } // Bail, if system abort.
    if ( plan_check_full_buffer() ) { protocol_auto_cycle_start(); } // Auto-cycle start when buffer is full.
    else { break; }
  } while (1);

  // Plan and queue motion into planner buffer
  #ifdef USE_LINE_NUMBERS
    plan_buffer_line(target, feed_rate, invert_feed_rate, line_number);
  #else
    plan_buffer_line(target, feed_rate, invert_feed_rate);
  #endif
}
コード例 #9
0
ファイル: system.c プロジェクト: halimbimantara/grbl
// Directs and executes one line of formatted input from protocol_process. While mostly
// incoming streaming g-code blocks, this also executes Grbl internal commands, such as 
// settings, initiating the homing cycle, and toggling switch states. This differs from
// the realtime command module by being susceptible to when Grbl is ready to execute the 
// next line during a cycle, so for switches like block delete, the switch only effects
// the lines that are processed afterward, not necessarily real-time during a cycle, 
// since there are motions already stored in the buffer. However, this 'lag' should not
// be an issue, since these commands are not typically used during a cycle.
uint8_t system_execute_line(char *line) 
{   
  uint8_t char_counter = 1; 
  uint8_t helper_var = 0; // Helper variable
  float parameter, value;
  switch( line[char_counter] ) {
    case 0 : report_grbl_help(); break;
    case '$': case 'G': case 'C': case 'X':
      if ( line[(char_counter+1)] != 0 ) { return(STATUS_INVALID_STATEMENT); }
      switch( line[char_counter] ) {
        case '$' : // Prints Grbl settings
          if ( sys.state & (STATE_CYCLE | STATE_HOLD) ) { return(STATUS_IDLE_ERROR); } // Block during cycle. Takes too long to print.
          else { report_grbl_settings(); }
          break;
        case 'G' : // Prints gcode parser state
          // TODO: Move this to realtime commands for GUIs to request this data during suspend-state.
          report_gcode_modes();
          break;   
        case 'C' : // Set check g-code mode [IDLE/CHECK]
          // Perform reset when toggling off. Check g-code mode should only work if Grbl
          // is idle and ready, regardless of alarm locks. This is mainly to keep things
          // simple and consistent.
          if ( sys.state == STATE_CHECK_MODE ) { 
            mc_reset(); 
            report_feedback_message(MESSAGE_DISABLED);
          } else {
            if (sys.state) { return(STATUS_IDLE_ERROR); } // Requires no alarm mode.
            sys.state = STATE_CHECK_MODE;
            report_feedback_message(MESSAGE_ENABLED);
          }
          break; 
        case 'X' : // Disable alarm lock [ALARM]
          if (sys.state == STATE_ALARM) { 
            report_feedback_message(MESSAGE_ALARM_UNLOCK);
            sys.state = STATE_IDLE;
            // Don't run startup script. Prevents stored moves in startup from causing accidents.
          #ifndef DEFAULTS_TRINAMIC
          if (system_check_safety_door_ajar()) { // Check safety door switch before returning.
              bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR);
              protocol_execute_realtime(); // Enter safety door mode.
            }
	  #endif
          } // Otherwise, no effect.
          break;                   
    //  case 'J' : break;  // Jogging methods
          // TODO: Here jogging can be placed for execution as a seperate subprogram. It does not need to be 
          // susceptible to other realtime commands except for e-stop. The jogging function is intended to
          // be a basic toggle on/off with controlled acceleration and deceleration to prevent skipped 
          // steps. The user would supply the desired feedrate, axis to move, and direction. Toggle on would
          // start motion and toggle off would initiate a deceleration to stop. One could 'feather' the
          // motion by repeatedly toggling to slow the motion to the desired location. Location data would 
          // need to be updated real-time and supplied to the user through status queries.
          //   More controlled exact motions can be taken care of by inputting G0 or G1 commands, which are 
          // handled by the planner. It would be possible for the jog subprogram to insert blocks into the
          // block buffer without having the planner plan them. It would need to manage de/ac-celerations 
          // on its own carefully. This approach could be effective and possibly size/memory efficient.  
//       }
//       break;
      }
      break;
    default : 
      // Block any system command that requires the state as IDLE/ALARM. (i.e. EEPROM, homing)
      if ( !(sys.state == STATE_IDLE || sys.state == STATE_ALARM) ) { return(STATUS_IDLE_ERROR); }
      switch( line[char_counter] ) {
        case '#' : // Print Grbl NGC parameters
          if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
          else { report_ngc_parameters(); }
          break;          
        case 'H' : // Perform homing cycle [IDLE/ALARM]
          if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) { 
            sys.state = STATE_HOMING; // Set system state variable
            // Only perform homing if Grbl is idle or lost.
            
            // TODO: Likely not required.
	#ifndef DEFAULTS_TRINAMIC
            if (system_check_safety_door_ajar()) { // Check safety door switch before homing.
              bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR);
              protocol_execute_realtime(); // Enter safety door mode.
            }
        #endif
            
            mc_homing_cycle(); 
            if (!sys.abort) {  // Execute startup scripts after successful homing.
              sys.state = STATE_IDLE; // Set to IDLE when complete.
              st_go_idle(); // Set steppers to the settings idle state before returning.
              system_execute_startup(line); 
            }
          } else { return(STATUS_SETTING_DISABLED); }
          break;
        case 'I' : // Print or store build info. [IDLE/ALARM]
          if ( line[++char_counter] == 0 ) { 
            settings_read_build_info(line);
            report_build_info(line);
          } else { // Store startup line [IDLE/ALARM]
            if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); }
            helper_var = char_counter; // Set helper variable as counter to start of user info line.
            do {
              line[char_counter-helper_var] = line[char_counter];
            } while (line[char_counter++] != 0);
            settings_store_build_info(line);
          }
          break; 
        case 'R' : // Restore defaults [IDLE/ALARM]
          if (line[++char_counter] != 'S') { return(STATUS_INVALID_STATEMENT); }
          if (line[++char_counter] != 'T') { return(STATUS_INVALID_STATEMENT); }
          if (line[++char_counter] != '=') { return(STATUS_INVALID_STATEMENT); }
          if (line[char_counter+2] != 0) { return(STATUS_INVALID_STATEMENT); }                        
          switch (line[++char_counter]) {
            case '$': settings_restore(SETTINGS_RESTORE_DEFAULTS); break;
            case '#': settings_restore(SETTINGS_RESTORE_PARAMETERS); break;
            case '*': settings_restore(SETTINGS_RESTORE_ALL); break;
            default: return(STATUS_INVALID_STATEMENT);
          }
          report_feedback_message(MESSAGE_RESTORE_DEFAULTS);
          mc_reset(); // Force reset to ensure settings are initialized correctly.
          break;
        case 'N' : // Startup lines. [IDLE/ALARM]
          if ( line[++char_counter] == 0 ) { // Print startup lines
            for (helper_var=0; helper_var < N_STARTUP_LINE; helper_var++) {
              if (!(settings_read_startup_line(helper_var, line))) {
                report_status_message(STATUS_SETTING_READ_FAIL);
              } else {
                report_startup_line(helper_var,line);
              }
            }
            break;
          } else { // Store startup line [IDLE Only] Prevents motion during ALARM.
            if (sys.state != STATE_IDLE) { return(STATUS_IDLE_ERROR); } // Store only when idle.
            helper_var = true;  // Set helper_var to flag storing method. 
            // No break. Continues into default: to read remaining command characters.
          }
        default :  // Storing setting methods [IDLE/ALARM]
          if(!read_float(line, &char_counter, &parameter)) { return(STATUS_BAD_NUMBER_FORMAT); }
          if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); }
          if (helper_var) { // Store startup line
            // Prepare sending gcode block to gcode parser by shifting all characters
            helper_var = char_counter; // Set helper variable as counter to start of gcode block
            do {
              line[char_counter-helper_var] = line[char_counter];
            } while (line[char_counter++] != 0);
            // Execute gcode block to ensure block is valid.
            helper_var = gc_execute_line(line); // Set helper_var to returned status code.
            if (helper_var) { return(helper_var); }
            else { 
              helper_var = trunc(parameter); // Set helper_var to int value of parameter
              settings_store_startup_line(helper_var,line);
            }
          } else { // Store global setting.
            if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); }
            if((line[char_counter] != 0) || (parameter > 255)) { return(STATUS_INVALID_STATEMENT); }
            return(settings_store_global_setting((uint8_t)parameter, value));
          }
      }    
  }
  return(STATUS_OK); // If '$' command makes it to here, then everything's ok.
}
コード例 #10
0
ファイル: motion_control.c プロジェクト: AngelLM/grbl
  void mc_probe_cycle(float *target, float feed_rate, uint8_t invert_feed_rate, uint8_t is_probe_away,
    uint8_t is_no_error)
#endif
{ 
  // TODO: Need to update this cycle so it obeys a non-auto cycle start.
  if (sys.state == STATE_CHECK_MODE) { return; }

  // Finish all queued commands and empty planner buffer before starting probe cycle.
  protocol_buffer_synchronize();

  // Initialize probing control variables
  sys.probe_succeeded = false; // Re-initialize probe history before beginning cycle.  
  probe_configure_invert_mask(is_probe_away);
  
  // After syncing, check if probe is already triggered. If so, halt and issue alarm.
  // NOTE: This probe initialization error applies to all probing cycles.
  if ( probe_get_state() ) { // Check probe pin state.
    bit_true_atomic(sys_rt_exec_alarm, EXEC_ALARM_PROBE_FAIL);
    protocol_execute_realtime();
  }
  if (sys.abort) { return; } // Return if system reset has been issued.

  // Setup and queue probing motion. Auto cycle-start should not start the cycle.
  #ifdef USE_LINE_NUMBERS
    mc_line(target, feed_rate, invert_feed_rate, line_number);
  #else
    mc_line(target, feed_rate, invert_feed_rate);
  #endif
  
  // Activate the probing state monitor in the stepper module.
  sys_probe_state = PROBE_ACTIVE;

  // Perform probing cycle. Wait here until probe is triggered or motion completes.
  bit_true_atomic(sys_rt_exec_state, EXEC_CYCLE_START);
  do {
    protocol_execute_realtime(); 
    if (sys.abort) { return; } // Check for system abort
  } while (sys.state != STATE_IDLE);
  
  // Probing cycle complete!
  
  // Set state variables and error out, if the probe failed and cycle with error is enabled.
  if (sys_probe_state == PROBE_ACTIVE) {
    if (is_no_error) { memcpy(sys.probe_position, sys.position, sizeof(float)*N_AXIS); }
    else { bit_true_atomic(sys_rt_exec_alarm, EXEC_ALARM_PROBE_FAIL); }
  } else { 
    sys.probe_succeeded = true; // Indicate to system the probing cycle completed successfully.
  }
  sys_probe_state = PROBE_OFF; // Ensure probe state monitor is disabled.
  protocol_execute_realtime();   // Check and execute run-time commands
  if (sys.abort) { return; } // Check for system abort

  // Reset the stepper and planner buffers to remove the remainder of the probe motion.
  st_reset(); // Reest step segment buffer.
  plan_reset(); // Reset planner buffer. Zero planner positions. Ensure probing motion is cleared.
  plan_sync_position(); // Sync planner position to current machine position.

  // TODO: Update the g-code parser code to not require this target calculation but uses a gc_sync_position() call.
  // NOTE: The target[] variable updated here will be sent back and synced with the g-code parser.
  system_convert_array_steps_to_mpos(target, sys.position);

  #ifdef MESSAGE_PROBE_COORDINATES
    // All done! Output the probe position as message.
    report_probe_parameters();
  #endif
}
コード例 #11
0
// Perform tool length probe cycle. Requires probe switch.
// NOTE: Upon probe failure, the program will be stopped and placed into ALARM state.
uint8_t mc_probe_cycle(float *target, plan_line_data_t *pl_data, uint8_t parser_flags)
{
  // TODO: Need to update this cycle so it obeys a non-auto cycle start.
  if (sys.state == STATE_CHECK_MODE) { return(GC_PROBE_CHECK_MODE); }

  // Finish all queued commands and empty planner buffer before starting probe cycle.
  protocol_buffer_synchronize();
  if (sys.abort) { return(GC_PROBE_ABORT); } // Return if system reset has been issued.

  // Initialize probing control variables
  uint8_t is_probe_away = bit_istrue(parser_flags,GC_PARSER_PROBE_IS_AWAY);
  uint8_t is_no_error = bit_istrue(parser_flags,GC_PARSER_PROBE_IS_NO_ERROR);
  sys.probe_succeeded = false; // Re-initialize probe history before beginning cycle.
  probe_configure_invert_mask(is_probe_away);

  // After syncing, check if probe is already triggered. If so, halt and issue alarm.
  // NOTE: This probe initialization error applies to all probing cycles.
  if ( probe_get_state() ) { // Check probe pin state.
    system_set_exec_alarm(EXEC_ALARM_PROBE_FAIL_INITIAL);
    protocol_execute_realtime();
    probe_configure_invert_mask(false); // Re-initialize invert mask before returning.
    return(GC_PROBE_FAIL_INIT); // Nothing else to do but bail.
  }

  // Setup and queue probing motion. Auto cycle-start should not start the cycle.
  mc_line(target, pl_data);

  // Activate the probing state monitor in the stepper module.
  sys_probe_state = PROBE_ACTIVE;

  // Perform probing cycle. Wait here until probe is triggered or motion completes.
  system_set_exec_state_flag(EXEC_CYCLE_START);
  do {
    protocol_execute_realtime();
    if (sys.abort) { return(GC_PROBE_ABORT); } // Check for system abort
  } while (sys.state != STATE_IDLE);

  // Probing cycle complete!

  // Set state variables and error out, if the probe failed and cycle with error is enabled.
  if (sys_probe_state == PROBE_ACTIVE) {
    if (is_no_error) { memcpy(sys_probe_position, sys_position, sizeof(sys_position)); }
    else { system_set_exec_alarm(EXEC_ALARM_PROBE_FAIL_CONTACT); }
  } else {
    sys.probe_succeeded = true; // Indicate to system the probing cycle completed successfully.
  }
  sys_probe_state = PROBE_OFF; // Ensure probe state monitor is disabled.
  probe_configure_invert_mask(false); // Re-initialize invert mask.
  protocol_execute_realtime();   // Check and execute run-time commands

  // Reset the stepper and planner buffers to remove the remainder of the probe motion.
  st_reset(); // Reset step segment buffer.
  plan_reset(); // Reset planner buffer. Zero planner positions. Ensure probing motion is cleared.
  plan_sync_position(); // Sync planner position to current machine position.

  #ifdef MESSAGE_PROBE_COORDINATES
    // All done! Output the probe position as message.
    report_probe_parameters();
  #endif

  if (sys.probe_succeeded) { return(GC_PROBE_FOUND); } // Successful probe cycle.
  else { return(GC_PROBE_FAIL_END); } // Failed to trigger probe within travel. With or without error.
}
コード例 #12
0
ファイル: limits.c プロジェクト: MisterTobi/grbl
// Homes the specified cycle axes, sets the machine position, and performs a pull-off motion after
// completing. Homing is a special motion case, which involves rapid uncontrolled stops to locate
// the trigger point of the limit switches. The rapid stops are handled by a system level axis lock 
// mask, which prevents the stepper algorithm from executing step pulses. Homing motions typically 
// circumvent the processes for executing motions in normal operation.
// NOTE: Only the abort realtime command can interrupt this process.
// TODO: Move limit pin-specific calls to a general function for portability.
void limits_go_home(uint8_t cycle_mask) 
{
  if (sys.abort) { return; } // Block if system reset has been issued.

  // Initialize
  uint8_t n_cycle = (2*N_HOMING_LOCATE_CYCLE+1);
  uint8_t step_pin[N_AXIS];
  float target[N_AXIS];
  float max_travel = 0.0;
  uint8_t idx;
  for (idx=0; idx<N_AXIS; idx++) {  
    // Initialize step pin masks
    step_pin[idx] = get_step_pin_mask(idx);
    #ifdef COREXY    
      if ((idx==A_MOTOR)||(idx==B_MOTOR)) { step_pin[idx] = (get_step_pin_mask(X_AXIS)|get_step_pin_mask(Y_AXIS)); } 
    #endif

    if (bit_istrue(cycle_mask,bit(idx))) { 
      // Set target based on max_travel setting. Ensure homing switches engaged with search scalar.
      // NOTE: settings.max_travel[] is stored as a negative value.
      max_travel = max(max_travel,(-HOMING_AXIS_SEARCH_SCALAR)*settings.max_travel[idx]);
    }
  }

  // Set search mode with approach at seek rate to quickly engage the specified cycle_mask limit switches.
  bool approach = true;
  float homing_rate = settings.homing_seek_rate;

  uint8_t limit_state, axislock, n_active_axis;
  do {

    system_convert_array_steps_to_mpos(target,sys.position);

    // Initialize and declare variables needed for homing routine.
    axislock = 0;
    n_active_axis = 0;
    for (idx=0; idx<N_AXIS; idx++) {
      // Set target location for active axes and setup computation for homing rate.
      if (bit_istrue(cycle_mask,bit(idx))) {
        n_active_axis++;
        sys.position[idx] = 0;
        // Set target direction based on cycle mask and homing cycle approach state.
        // NOTE: This happens to compile smaller than any other implementation tried.
        if (bit_istrue(settings.homing_dir_mask,bit(idx))) {
          if (approach) { target[idx] = -max_travel; }
          else { target[idx] = max_travel; }
        } else { 
          if (approach) { target[idx] = max_travel; }
          else { target[idx] = -max_travel; }
        }        
        // Apply axislock to the step port pins active in this cycle.
        axislock |= step_pin[idx];
      }

    }
    homing_rate *= sqrt(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate.
    sys.homing_axis_lock = axislock;

    plan_sync_position(); // Sync planner position to current machine position.
    
    // Perform homing cycle. Planner buffer should be empty, as required to initiate the homing cycle.
    #ifdef USE_LINE_NUMBERS
      plan_buffer_line(target, homing_rate, false, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan homing motion.
    #else
      plan_buffer_line(target, homing_rate, false, false); // Bypass mc_line(). Directly plan homing motion.
    #endif
    
    st_prep_buffer(); // Prep and fill segment buffer from newly planned block.
    st_wake_up(); // Initiate motion
    do {
      if (approach) {
        // Check limit state. Lock out cycle axes when they change.
        limit_state = limits_get_state();
        for (idx=0; idx<N_AXIS; idx++) {
          if (axislock & step_pin[idx]) {
            if (limit_state & (1 << idx)) { axislock &= ~(step_pin[idx]); }
          }
        }
        sys.homing_axis_lock = axislock;
      }

      st_prep_buffer(); // Check and prep segment buffer. NOTE: Should take no longer than 200us.

      // Exit routines: No time to run protocol_execute_realtime() in this loop.
      if (sys_rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET | EXEC_CYCLE_STOP)) {
        // Homing failure: Limit switches are still engaged after pull-off motion
        if ( (sys_rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET)) ||  // Safety door or reset issued
           (!approach && (limits_get_state() & cycle_mask)) ||  // Limit switch still engaged after pull-off motion
           ( approach && (sys_rt_exec_state & EXEC_CYCLE_STOP)) ) { // Limit switch not found during approach.
          mc_reset(); // Stop motors, if they are running.
          protocol_execute_realtime();
          return;
        } else {
          // Pull-off motion complete. Disable CYCLE_STOP from executing.
          system_clear_exec_state_flag(EXEC_CYCLE_STOP);
          break;
        } 
      }

    } while (STEP_MASK & axislock);

    st_reset(); // Immediately force kill steppers and reset step segment buffer.
    plan_reset(); // Reset planner buffer to zero planner current position and to clear previous motions.

    delay_ms(settings.homing_debounce_delay); // Delay to allow transient dynamics to dissipate.

    // Reverse direction and reset homing rate for locate cycle(s).
    approach = !approach;

    // After first cycle, homing enters locating phase. Shorten search to pull-off distance.
    if (approach) { 
      max_travel = settings.homing_pulloff*HOMING_AXIS_LOCATE_SCALAR; 
      homing_rate = settings.homing_feed_rate;
    } else {
      max_travel = settings.homing_pulloff;    
      homing_rate = settings.homing_seek_rate;
    }
    
  } while (n_cycle-- > 0);
      
  // The active cycle axes should now be homed and machine limits have been located. By 
  // default, Grbl defines machine space as all negative, as do most CNCs. Since limit switches
  // can be on either side of an axes, check and set axes machine zero appropriately. Also,
  // set up pull-off maneuver from axes limit switches that have been homed. This provides
  // some initial clearance off the switches and should also help prevent them from falsely
  // triggering when hard limits are enabled or when more than one axes shares a limit pin.
  #ifdef COREXY
    int32_t off_axis_position = 0;
  #endif
  int32_t set_axis_position;
  // Set machine positions for homed limit switches. Don't update non-homed axes.
  for (idx=0; idx<N_AXIS; idx++) {
    // NOTE: settings.max_travel[] is stored as a negative value.
    if (cycle_mask & bit(idx)) {
      #ifdef HOMING_FORCE_SET_ORIGIN
        set_axis_position = 0;
      #else 
        if ( bit_istrue(settings.homing_dir_mask,bit(idx)) ) {
          set_axis_position = lround((settings.max_travel[idx]+settings.homing_pulloff)*settings.steps_per_mm[idx]);
        } else {
          set_axis_position = lround(-settings.homing_pulloff*settings.steps_per_mm[idx]);
        }
      #endif
      
      #ifdef COREXY
        if (idx==X_AXIS) { 
          off_axis_position = (sys.position[B_MOTOR] - sys.position[A_MOTOR])/2;
          sys.position[A_MOTOR] = set_axis_position - off_axis_position;
          sys.position[B_MOTOR] = set_axis_position + off_axis_position;          
        } else if (idx==Y_AXIS) {
          off_axis_position = (sys.position[A_MOTOR] + sys.position[B_MOTOR])/2;
          sys.position[A_MOTOR] = off_axis_position - set_axis_position;
          sys.position[B_MOTOR] = off_axis_position + set_axis_position;
        } else {
          sys.position[idx] = set_axis_position;
        }        
      #else 
        sys.position[idx] = set_axis_position;
      #endif

    }
  }
  plan_sync_position(); // Sync planner position to homed machine position.
    
  // sys.state = STATE_HOMING; // Ensure system state set as homing before returning. 
}
コード例 #13
0
ファイル: protocol.c プロジェクト: halimbimantara/grbl
/* 
  GRBL PRIMARY LOOP:
*/
void protocol_main_loop()
{
  // ------------------------------------------------------------
  // Complete initialization procedures upon a power-up or reset.
  // ------------------------------------------------------------
  
  // Print welcome message   
  report_init_message();

  // Check for and report alarm state after a reset, error, or an initial power up.
  if (sys.state == STATE_ALARM) {
    report_feedback_message(MESSAGE_ALARM_LOCK); 
  } else {
    // All systems go! But first check for safety door.
    #ifndef DEFAULTS_TRINAMIC
    if (system_check_safety_door_ajar()) {
      bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR);
      protocol_execute_realtime(); // Enter safety door mode. Should return as IDLE state.
    } else {
      sys.state = STATE_IDLE; // Set system to ready. Clear all state flags.
    } 
    #endif
    system_execute_startup(line); // Execute startup script.
  }
    
  // ---------------------------------------------------------------------------------  
  // Primary loop! Upon a system abort, this exits back to main() to reset the system. 
  // ---------------------------------------------------------------------------------  
  
  uint8_t comment = COMMENT_NONE;
  uint8_t char_counter = 0;
  uint8_t c;
  for (;;) {

    // Process one line of incoming serial data, as the data becomes available. Performs an
    // initial filtering by removing spaces and comments and capitalizing all letters.
    
    // NOTE: While comment, spaces, and block delete(if supported) handling should technically 
    // be done in the g-code parser, doing it here helps compress the incoming data into Grbl's
    // line buffer, which is limited in size. The g-code standard actually states a line can't
    // exceed 256 characters, but the Arduino Uno does not have the memory space for this.
    // With a better processor, it would be very easy to pull this initial parsing out as a 
    // seperate task to be shared by the g-code parser and Grbl's system commands.
    
    while((c = serial_read()) != SERIAL_NO_DATA) {
      if ((c == '\n') || (c == '\r')) { // End of line reached
        line[char_counter] = 0; // Set string termination character.
        protocol_execute_line(line); // Line is complete. Execute it!
        comment = COMMENT_NONE;
        char_counter = 0;
      } else {
        if (comment != COMMENT_NONE) {
          // Throw away all comment characters
          if (c == ')') {
            // End of comment. Resume line. But, not if semicolon type comment.
            if (comment == COMMENT_TYPE_PARENTHESES) { comment = COMMENT_NONE; }
          }
        } else {
          if (c <= ' ') { 
            // Throw away whitepace and control characters  
          } else if (c == '/') { 
            // Block delete NOT SUPPORTED. Ignore character.
            // NOTE: If supported, would simply need to check the system if block delete is enabled.
          } else if (c == '(') {
            // Enable comments flag and ignore all characters until ')' or EOL.
            // NOTE: This doesn't follow the NIST definition exactly, but is good enough for now.
            // In the future, we could simply remove the items within the comments, but retain the
            // comment control characters, so that the g-code parser can error-check it.
            comment = COMMENT_TYPE_PARENTHESES;
          } else if (c == ';') {
            // NOTE: ';' comment to EOL is a LinuxCNC definition. Not NIST.
            comment = COMMENT_TYPE_SEMICOLON;
            
          // TODO: Install '%' feature 
          // } else if (c == '%') {
            // Program start-end percent sign NOT SUPPORTED.
            // NOTE: This maybe installed to tell Grbl when a program is running vs manual input,
            // where, during a program, the system auto-cycle start will continue to execute 
            // everything until the next '%' sign. This will help fix resuming issues with certain
            // functions that empty the planner buffer to execute its task on-time.

          } else if (char_counter >= (LINE_BUFFER_SIZE-1)) {
            // Detect line buffer overflow. Report error and reset line buffer.
            report_status_message(STATUS_OVERFLOW);
            comment = COMMENT_NONE;
            char_counter = 0;
          } else if (c >= 'a' && c <= 'z') { // Upcase lowercase
            line[char_counter++] = c-'a'+'A';
          } else {
            line[char_counter++] = c;
          }
        }
      }
    }
    
    // If there are no more characters in the serial read buffer to be processed and executed,
    // this indicates that g-code streaming has either filled the planner buffer or has 
    // completed. In either case, auto-cycle start, if enabled, any queued moves.
    protocol_auto_cycle_start();

    protocol_execute_realtime();  // Runtime command check point.
    if (sys.abort) { return; } // Bail to main() program loop to reset system.
              
  }
  
  return; /* Never reached */
}