コード例 #1
0
/* Receiver */
static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
			      ssize_t *num)
{
	struct cx25840_ir_state *ir_state = to_ir_state(sd);
	bool invert;
	u16 divider;
	unsigned int i, n;
	union cx25840_ir_fifo_rec *p;
	unsigned u, v, w;

	if (ir_state == NULL)
		return -ENODEV;

	invert = (bool) atomic_read(&ir_state->rx_invert);
	divider = (u16) atomic_read(&ir_state->rxclk_divider);

	n = count / sizeof(union cx25840_ir_fifo_rec)
		* sizeof(union cx25840_ir_fifo_rec);
	if (n == 0) {
		*num = 0;
		return 0;
	}

	n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
			     &ir_state->rx_kfifo_lock);

	n /= sizeof(union cx25840_ir_fifo_rec);
	*num = n * sizeof(union cx25840_ir_fifo_rec);

	for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {

		if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
			/* Assume RTO was because of no IR light input */
			u = 0;
			w = 1;
		} else {
			u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
			if (invert)
				u = u ? 0 : 1;
			w = 0;
		}

		v = (unsigned) pulse_width_count_to_ns(
				  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
		if (v > IR_MAX_DURATION)
			v = IR_MAX_DURATION;

		init_ir_raw_event(&p->ir_core_data);
		p->ir_core_data.pulse = u;
		p->ir_core_data.duration = v;
		p->ir_core_data.timeout = w;

		v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns  %s  %s\n",
			 v, u ? "mark" : "space", w ? "(timed out)" : "");
		if (w)
			v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
	}
	return 0;
}
コード例 #2
0
static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
				      u16 *divider)
{
	u64 pulse_clocks;

	if (ns > IR_MAX_DURATION)
		ns = IR_MAX_DURATION;
	pulse_clocks = ns_to_pulse_clocks(ns);
	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
}
コード例 #3
0
ファイル: cx23888-ir.c プロジェクト: OpenStbV4l-dvb/v4l-dvb
static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
				      u16 *divider)
{
	u64 pulse_clocks;

	if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
		ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
	pulse_clocks = ns_to_pulse_clocks(ns);
	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
}
コード例 #4
0
static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
				      u16 *divider)
{
	u64 pulse_clocks;

	if (ns > IR_MAX_DURATION)
		ns = IR_MAX_DURATION;
	pulse_clocks = ns_to_pulse_clocks(ns);
	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
	cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
}
コード例 #5
0
ファイル: cx23888-ir.c プロジェクト: OpenStbV4l-dvb/v4l-dvb
/* Receiver */
static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
			      ssize_t *num)
{
	struct cx23888_ir_state *state = to_state(sd);
	bool invert = (bool) atomic_read(&state->rx_invert);
	u16 divider = (u16) atomic_read(&state->rxclk_divider);

	unsigned int i, n;
	u32 *p;
	u32 u, v;

	n = count / sizeof(u32) * sizeof(u32);
	if (n == 0) {
		*num = 0;
		return 0;
	}

#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 33)
	n = kfifo_get(state->rx_kfifo, buf, n);
#else
	n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
#endif

	n /= sizeof(u32);
	*num = n * sizeof(u32);

	for (p = (u32 *) buf, i = 0; i < n; p++, i++) {
		if ((*p & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
			*p = V4L2_SUBDEV_IR_PULSE_RX_SEQ_END;
			v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
			continue;
		}

		u = (*p & FIFO_RXTX_LVL) ? V4L2_SUBDEV_IR_PULSE_LEVEL_MASK : 0;
		if (invert)
			u = u ? 0 : V4L2_SUBDEV_IR_PULSE_LEVEL_MASK;

		v = (u32) pulse_width_count_to_ns((u16) (*p & FIFO_RXTX),
						  divider);
		if (v >= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
			v = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS - 1;

		*p = u | v;

		v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns  %s\n",
			 v, u ? "mark" : "space");
	}
	return 0;
}
コード例 #6
0
/*
 * V4L2 Subdevice Core Ops
 */
static int cx23888_ir_log_status(struct v4l2_subdev *sd)
{
	struct cx23888_ir_state *state = to_state(sd);
	struct cx23885_dev *dev = state->dev;
	char *s;
	int i, j;

	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
	u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
	u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
	u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
	u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;

	v4l2_info(sd, "IR Receiver:\n");
	v4l2_info(sd, "\tEnabled:                           %s\n",
		  cntrl & CNTRL_RXE ? "yes" : "no");
	v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
		  cntrl & CNTRL_DMD ? "enabled" : "disabled");
	v4l2_info(sd, "\tFIFO:                              %s\n",
		  cntrl & CNTRL_RFE ? "enabled" : "disabled");
	switch (cntrl & CNTRL_EDG) {
	case CNTRL_EDG_NONE:
		s = "disabled";
		break;
	case CNTRL_EDG_FALL:
		s = "falling edge";
		break;
	case CNTRL_EDG_RISE:
		s = "rising edge";
		break;
	case CNTRL_EDG_BOTH:
		s = "rising & falling edges";
		break;
	default:
		s = "??? edge";
		break;
	}
	v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
	v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
		  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
		  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
	v4l2_info(sd, "\tLoopback mode:                     %s\n",
		  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
	if (cntrl & CNTRL_DMD) {
		v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
			  clock_divider_to_carrier_freq(rxclk));
		switch (cntrl & CNTRL_WIN) {
		case CNTRL_WIN_3_3:
			i = 3;
			j = 3;
			break;
		case CNTRL_WIN_4_3:
			i = 4;
			j = 3;
			break;
		case CNTRL_WIN_3_4:
			i = 3;
			j = 4;
			break;
		case CNTRL_WIN_4_4:
			i = 4;
			j = 4;
			break;
		default:
			i = 0;
			j = 0;
			break;
		}
		v4l2_info(sd, "\tNext carrier edge window:          16 clocks "
			  "-%1d/+%1d, %u to %u Hz\n", i, j,
			  clock_divider_to_freq(rxclk, 16 + j),
			  clock_divider_to_freq(rxclk, 16 - i));
	}
	v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
		  pulse_width_count_to_us(FIFO_RXTX, rxclk),
		  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
	v4l2_info(sd, "\tLow pass filter:                   %s\n",
		  filtr ? "enabled" : "disabled");
	if (filtr)
		v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, "
			  "%u ns\n",
			  lpf_count_to_us(filtr),
			  lpf_count_to_ns(filtr));
	v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
		  stats & STATS_RTO ? "yes" : "no");
	v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
		  irqen & IRQEN_RTE ? "enabled" : "disabled");
	v4l2_info(sd, "\tFIFO overrun:                      %s\n",
		  stats & STATS_ROR ? "yes" : "no");
	v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
		  irqen & IRQEN_ROE ? "enabled" : "disabled");
	v4l2_info(sd, "\tBusy:                              %s\n",
		  stats & STATS_RBY ? "yes" : "no");
	v4l2_info(sd, "\tFIFO service requested:            %s\n",
		  stats & STATS_RSR ? "yes" : "no");
	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
		  irqen & IRQEN_RSE ? "enabled" : "disabled");

	v4l2_info(sd, "IR Transmitter:\n");
	v4l2_info(sd, "\tEnabled:                           %s\n",
		  cntrl & CNTRL_TXE ? "yes" : "no");
	v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
		  cntrl & CNTRL_MOD ? "enabled" : "disabled");
	v4l2_info(sd, "\tFIFO:                              %s\n",
		  cntrl & CNTRL_TFE ? "enabled" : "disabled");
	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
		  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
	v4l2_info(sd, "\tOutput pin level inversion         %s\n",
		  cntrl & CNTRL_IVO ? "yes" : "no");
	v4l2_info(sd, "\tCarrier polarity:                  %s\n",
		  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
				    : "space:noburst mark:burst");
	if (cntrl & CNTRL_MOD) {
		v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
			  clock_divider_to_carrier_freq(txclk));
		v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
			  cduty + 1);
	}
	v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
		  pulse_width_count_to_us(FIFO_RXTX, txclk),
		  pulse_width_count_to_ns(FIFO_RXTX, txclk));
	v4l2_info(sd, "\tBusy:                              %s\n",
		  stats & STATS_TBY ? "yes" : "no");
	v4l2_info(sd, "\tFIFO service requested:            %s\n",
		  stats & STATS_TSR ? "yes" : "no");
	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
		  irqen & IRQEN_TSE ? "enabled" : "disabled");

	return 0;
}
コード例 #7
0
static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
				      struct v4l2_subdev_ir_parameters *p)
{
	struct cx23888_ir_state *state = to_state(sd);
	struct cx23885_dev *dev = state->dev;
	struct v4l2_subdev_ir_parameters *o = &state->tx_params;
	u16 txclk_divider;

	if (p->shutdown)
		return cx23888_ir_tx_shutdown(sd);

	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
		return -ENOSYS;

	mutex_lock(&state->tx_params_lock);

	o->shutdown = p->shutdown;

	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;

	o->bytes_per_data_element = p->bytes_per_data_element
				  = sizeof(union cx23888_ir_fifo_rec);

	/* Before we tweak the hardware, we have to disable the transmitter */
	irqenable_tx(dev, 0);
	control_tx_enable(dev, false);

	control_tx_modulation_enable(dev, p->modulation);
	o->modulation = p->modulation;

	if (p->modulation) {
		p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
						     &txclk_divider);
		o->carrier_freq = p->carrier_freq;

		p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
		o->duty_cycle = p->duty_cycle;

		p->max_pulse_width =
			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
	} else {
		p->max_pulse_width =
			    txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
						       &txclk_divider);
	}
	o->max_pulse_width = p->max_pulse_width;
	atomic_set(&state->txclk_divider, txclk_divider);

	p->resolution = clock_divider_to_resolution(txclk_divider);
	o->resolution = p->resolution;

	/* FIXME - make this dependent on resolution for better performance */
	control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);

	control_tx_polarity_invert(dev, p->invert_carrier_sense);
	o->invert_carrier_sense = p->invert_carrier_sense;

	control_tx_level_invert(dev, p->invert_level);
	o->invert_level = p->invert_level;

	o->interrupt_enable = p->interrupt_enable;
	o->enable = p->enable;
	if (p->enable) {
		if (p->interrupt_enable)
			irqenable_tx(dev, IRQEN_TSE);
		control_tx_enable(dev, p->enable);
	}

	mutex_unlock(&state->tx_params_lock);
	return 0;
}
コード例 #8
0
static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
				      struct v4l2_subdev_ir_parameters *p)
{
	struct cx23888_ir_state *state = to_state(sd);
	struct cx23885_dev *dev = state->dev;
	struct v4l2_subdev_ir_parameters *o = &state->rx_params;
	u16 rxclk_divider;

	if (p->shutdown)
		return cx23888_ir_rx_shutdown(sd);

	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
		return -ENOSYS;

	mutex_lock(&state->rx_params_lock);

	o->shutdown = p->shutdown;

	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;

	o->bytes_per_data_element = p->bytes_per_data_element
				  = sizeof(union cx23888_ir_fifo_rec);

	/* Before we tweak the hardware, we have to disable the receiver */
	irqenable_rx(dev, 0);
	control_rx_enable(dev, false);

	control_rx_demodulation_enable(dev, p->modulation);
	o->modulation = p->modulation;

	if (p->modulation) {
		p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
						     &rxclk_divider);

		o->carrier_freq = p->carrier_freq;

		o->duty_cycle = p->duty_cycle = 50;

		control_rx_s_carrier_window(dev, p->carrier_freq,
					    &p->carrier_range_lower,
					    &p->carrier_range_upper);
		o->carrier_range_lower = p->carrier_range_lower;
		o->carrier_range_upper = p->carrier_range_upper;

		p->max_pulse_width =
			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
	} else {
		p->max_pulse_width =
			    rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
						       &rxclk_divider);
	}
	o->max_pulse_width = p->max_pulse_width;
	atomic_set(&state->rxclk_divider, rxclk_divider);

	p->noise_filter_min_width =
			  filter_rx_s_min_width(dev, p->noise_filter_min_width);
	o->noise_filter_min_width = p->noise_filter_min_width;

	p->resolution = clock_divider_to_resolution(rxclk_divider);
	o->resolution = p->resolution;

	/* FIXME - make this dependent on resolution for better performance */
	control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);

	control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);

	o->invert_level = p->invert_level;
	atomic_set(&state->rx_invert, p->invert_level);

	o->interrupt_enable = p->interrupt_enable;
	o->enable = p->enable;
	if (p->enable) {
		unsigned long flags;

		spin_lock_irqsave(&state->rx_kfifo_lock, flags);
		kfifo_reset(&state->rx_kfifo);
		/* reset tx_fifo too if there is one... */
		spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
		if (p->interrupt_enable)
			irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
		control_rx_enable(dev, p->enable);
	}

	mutex_unlock(&state->rx_params_lock);
	return 0;
}
コード例 #9
0
static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
				      struct v4l2_subdev_ir_parameters *p)
{
	struct cx25840_ir_state *ir_state = to_ir_state(sd);
	struct i2c_client *c;
	struct v4l2_subdev_ir_parameters *o;
	u16 txclk_divider;

	if (ir_state == NULL)
		return -ENODEV;

	if (p->shutdown)
		return cx25840_ir_tx_shutdown(sd);

	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
		return -ENOSYS;

	c = ir_state->c;
	o = &ir_state->tx_params;
	mutex_lock(&ir_state->tx_params_lock);

	o->shutdown = p->shutdown;

	p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
	o->mode = p->mode;

	p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
	o->bytes_per_data_element = p->bytes_per_data_element;

	/* Before we tweak the hardware, we have to disable the transmitter */
	irqenable_tx(sd, 0);
	control_tx_enable(c, false);

	control_tx_modulation_enable(c, p->modulation);
	o->modulation = p->modulation;

	if (p->modulation) {
		p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
						     &txclk_divider);
		o->carrier_freq = p->carrier_freq;

		p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
		o->duty_cycle = p->duty_cycle;

		p->max_pulse_width =
			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
	} else {
		p->max_pulse_width =
			    txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
						       &txclk_divider);
	}
	o->max_pulse_width = p->max_pulse_width;
	atomic_set(&ir_state->txclk_divider, txclk_divider);

	p->resolution = clock_divider_to_resolution(txclk_divider);
	o->resolution = p->resolution;

	/* FIXME - make this dependent on resolution for better performance */
	control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);

	control_tx_polarity_invert(c, p->invert_carrier_sense);
	o->invert_carrier_sense = p->invert_carrier_sense;

	/*
	 * FIXME: we don't have hardware help for IO pin level inversion
	 * here like we have on the CX23888.
	 * Act on this with some mix of logical inversion of data levels,
	 * carrier polarity, and carrier duty cycle.
	 */
	o->invert_level = p->invert_level;

	o->interrupt_enable = p->interrupt_enable;
	o->enable = p->enable;
	if (p->enable) {
		/* reset tx_fifo here */
		if (p->interrupt_enable)
			irqenable_tx(sd, IRQEN_TSE);
		control_tx_enable(c, p->enable);
	}

	mutex_unlock(&ir_state->tx_params_lock);
	return 0;
}
コード例 #10
0
ファイル: cx25840-ir.c プロジェクト: 3null/fastsocket
static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
				      struct v4l2_subdev_ir_parameters *p)
{
	struct cx25840_ir_state *ir_state = to_ir_state(sd);
	struct i2c_client *c;
	struct v4l2_subdev_ir_parameters *o;
	u16 rxclk_divider;

	if (ir_state == NULL)
		return -ENODEV;

	if (p->shutdown)
		return cx25840_ir_rx_shutdown(sd);

	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
		return -ENOSYS;

	c = ir_state->c;
	o = &ir_state->rx_params;

	mutex_lock(&ir_state->rx_params_lock);

	o->shutdown = p->shutdown;

	p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
	o->mode = p->mode;

	p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
	o->bytes_per_data_element = p->bytes_per_data_element;

	/* Before we tweak the hardware, we have to disable the receiver */
	irqenable_rx(sd, 0);
	control_rx_enable(c, false);

	control_rx_demodulation_enable(c, p->modulation);
	o->modulation = p->modulation;

	if (p->modulation) {
		p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
						     &rxclk_divider);

		o->carrier_freq = p->carrier_freq;

		p->duty_cycle = 50;
		o->duty_cycle = p->duty_cycle;

		control_rx_s_carrier_window(c, p->carrier_freq,
					    &p->carrier_range_lower,
					    &p->carrier_range_upper);
		o->carrier_range_lower = p->carrier_range_lower;
		o->carrier_range_upper = p->carrier_range_upper;

		p->max_pulse_width =
			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
	} else {
		p->max_pulse_width =
			    rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
						       &rxclk_divider);
	}
	o->max_pulse_width = p->max_pulse_width;
	atomic_set(&ir_state->rxclk_divider, rxclk_divider);

	p->noise_filter_min_width =
			    filter_rx_s_min_width(c, p->noise_filter_min_width);
	o->noise_filter_min_width = p->noise_filter_min_width;

	p->resolution = clock_divider_to_resolution(rxclk_divider);
	o->resolution = p->resolution;

	/* FIXME - make this dependent on resolution for better performance */
	control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);

	control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);

	o->invert_level = p->invert_level;
	atomic_set(&ir_state->rx_invert, p->invert_level);

	o->interrupt_enable = p->interrupt_enable;
	o->enable = p->enable;
	if (p->enable) {
		kfifo_reset(ir_state->rx_kfifo);
		if (p->interrupt_enable)
			irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
		control_rx_enable(c, p->enable);
	}

	mutex_unlock(&ir_state->rx_params_lock);
	return 0;
}