static void netduino2_init(MachineState *machine) { DeviceState *dev; dev = qdev_create(NULL, TYPE_STM32F205_SOC); if (machine->kernel_filename) { qdev_prop_set_string(dev, "kernel-filename", machine->kernel_filename); } qdev_prop_set_string(dev, "cpu-model", "cortex-m3"); object_property_set_bool(OBJECT(dev), true, "realized", &error_fatal); }
static inline void zynq_init_spi_flashes(uint32_t base_addr, qemu_irq irq) { DeviceState *dev; SysBusDevice *busdev; SSIBus *spi; int i; dev = qdev_create(NULL, "xilinx,spips"); qdev_init_nofail(dev); busdev = sysbus_from_qdev(dev); sysbus_mmio_map(busdev, 0, base_addr); sysbus_connect_irq(busdev, 0, irq); spi = (SSIBus *)qdev_get_child_bus(dev, "spi"); for (i = 0; i < NUM_SPI_FLASHES; ++i) { qemu_irq cs_line; dev = ssi_create_slave_no_init(spi, "m25p80"); qdev_prop_set_string(dev, "partname", "n25q128"); qdev_init_nofail(dev); cs_line = qdev_get_gpio_in(dev, 0); sysbus_connect_irq(busdev, i+1, cs_line); } }
/* Open code a private version of pflash registration since we * need to set non-default device width for VExpress platform. */ static pflash_t *ve_pflash_cfi01_register(hwaddr base, const char *name, DriveInfo *di) { DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); if (di && qdev_prop_set_drive(dev, "drive", di->bdrv)) { abort(); } qdev_prop_set_uint32(dev, "num-blocks", VEXPRESS_FLASH_SIZE / VEXPRESS_FLASH_SECT_SIZE); qdev_prop_set_uint64(dev, "sector-length", VEXPRESS_FLASH_SECT_SIZE); qdev_prop_set_uint8(dev, "width", 4); qdev_prop_set_uint8(dev, "device-width", 2); qdev_prop_set_uint8(dev, "big-endian", 0); qdev_prop_set_uint16(dev, "id0", 0x89); qdev_prop_set_uint16(dev, "id1", 0x18); qdev_prop_set_uint16(dev, "id2", 0x00); qdev_prop_set_uint16(dev, "id3", 0x00); qdev_prop_set_string(dev, "name", name); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01"); }
void s390_init_ipl_dev(const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *firmware) { DeviceState *dev; dev = qdev_create(NULL, "s390-ipl"); if (kernel_filename) { qdev_prop_set_string(dev, "kernel", kernel_filename); } if (initrd_filename) { qdev_prop_set_string(dev, "initrd", initrd_filename); } qdev_prop_set_string(dev, "cmdline", kernel_cmdline); qdev_prop_set_string(dev, "firmware", firmware); qdev_init_nofail(dev); }
DeviceState *goldfish_battery_create(GoldfishBus *gbus) { DeviceState *dev; char *name = (char *)"goldfish-battery"; dev = qdev_create(&gbus->bus, name); qdev_prop_set_string(dev, "name", name); qdev_init_nofail(dev); return dev; }
static void nrf51_soc_init(Object *obj) { NRF51State *s = NRF51_SOC(obj); memory_region_init(&s->container, obj, "nrf51-container", UINT64_MAX); sysbus_init_child_obj(OBJECT(s), "armv6m", OBJECT(&s->cpu), sizeof(s->cpu), TYPE_ARMV7M); qdev_prop_set_string(DEVICE(&s->cpu), "cpu-type", ARM_CPU_TYPE_NAME("cortex-m0")); qdev_prop_set_uint32(DEVICE(&s->cpu), "num-irq", 32); }
void s390_init_ipl_dev(const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *firmware, bool enforce_bios) { DeviceState *dev; dev = qdev_create(NULL, "s390-ipl"); if (kernel_filename) { qdev_prop_set_string(dev, "kernel", kernel_filename); } if (initrd_filename) { qdev_prop_set_string(dev, "initrd", initrd_filename); } qdev_prop_set_string(dev, "cmdline", kernel_cmdline); qdev_prop_set_string(dev, "firmware", firmware); qdev_prop_set_bit(dev, "enforce_bios", enforce_bios); object_property_add_child(qdev_get_machine(), "s390-ipl", OBJECT(dev), NULL); qdev_init_nofail(dev); }
static DeviceState *goldfish_device_bus_create(GoldfishBus *gbus, uint32_t base, uint32_t irq) { DeviceState *dev; char *name = (char *)"goldfish_device_bus"; dev = qdev_create(&gbus->bus, name); qdev_prop_set_string(dev, "name", name); qdev_prop_set_uint32(dev, "base", base); qdev_prop_set_uint32(dev, "irq", irq); qdev_init_nofail(dev); return dev; }
static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms, void *opaque, const char *name, hwaddr size) { /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE, * and return a pointer to its MemoryRegion. */ UnimplementedDeviceState *uds = opaque; sysbus_init_child_obj(OBJECT(mms), name, uds, sizeof(UnimplementedDeviceState), TYPE_UNIMPLEMENTED_DEVICE); qdev_prop_set_string(DEVICE(uds), "name", name); qdev_prop_set_uint64(DEVICE(uds), "size", size); object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal); return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0); }
DeviceState *goldfish_int_create(GoldfishBus *gbus, uint32_t base, qemu_irq parent_irq, qemu_irq parent_fiq) { DeviceState *dev; GoldfishDevice *gdev; GoldfishInterruptDevice *idev; char *name = (char *)"goldfish_int"; dev = qdev_create(&gbus->bus, name); qdev_prop_set_string(dev, "name", name); qdev_prop_set_uint32(dev, "base", base); qdev_init_nofail(dev); gdev = (GoldfishDevice *)dev; idev = DO_UPCAST(GoldfishInterruptDevice, dev, gdev); idev->parent_irq = parent_irq; idev->parent_fiq = parent_fiq; return dev; }
static inline void zynq_init_spi_flashes(uint32_t base_addr, qemu_irq irq, bool is_qspi) { DeviceState *dev; SysBusDevice *busdev; SSIBus *spi; DeviceState *flash_dev; int i, j; int num_busses = is_qspi ? NUM_QSPI_BUSSES : 1; int num_ss = is_qspi ? NUM_QSPI_FLASHES : NUM_SPI_FLASHES; dev = qdev_create(NULL, "xilinx,spips"); qdev_prop_set_uint8(dev, "num-txrx-bytes", is_qspi ? 4 : 1); qdev_prop_set_uint8(dev, "num-ss-bits", num_ss); qdev_prop_set_uint8(dev, "num-busses", num_busses); qdev_init_nofail(dev); busdev = sysbus_from_qdev(dev); sysbus_mmio_map(busdev, 0, base_addr); if (is_qspi) { sysbus_mmio_map(busdev, 1, 0xFC000000); } sysbus_connect_irq(busdev, 0, irq); for (i = 0; i < num_busses; ++i) { char bus_name[16]; qemu_irq cs_line; snprintf(bus_name, 16, "spi%d", i); spi = (SSIBus *)qdev_get_child_bus(dev, bus_name); for (j = 0; j < num_ss; ++j) { flash_dev = ssi_create_slave_no_init(spi, "m25p80"); qdev_prop_set_string(flash_dev, "partname", "n25q128"); qdev_init_nofail(flash_dev); cs_line = qdev_get_gpio_in(flash_dev, 0); sysbus_connect_irq(busdev, i * num_ss + j + 1, cs_line); } } }
static pflash_t *xtfpga_flash_init(MemoryRegion *address_space, const LxBoardDesc *board, DriveInfo *dinfo, int be) { SysBusDevice *s; DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), &error_abort); qdev_prop_set_uint32(dev, "num-blocks", board->flash_size / board->flash_sector_size); qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size); qdev_prop_set_uint8(dev, "width", 4); qdev_prop_set_bit(dev, "big-endian", be); qdev_prop_set_string(dev, "name", "lx60.io.flash"); qdev_init_nofail(dev); s = SYS_BUS_DEVICE(dev); memory_region_add_subregion(address_space, board->flash_base, sysbus_mmio_get_region(s, 0)); return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01"); }
static void mps2_common_init(MachineState *machine) { MPS2MachineState *mms = MPS2_MACHINE(machine); MPS2MachineClass *mmc = MPS2_MACHINE_GET_CLASS(machine); MemoryRegion *system_memory = get_system_memory(); MachineClass *mc = MACHINE_GET_CLASS(machine); DeviceState *armv7m, *sccdev; if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) { error_report("This board can only be used with CPU %s", mc->default_cpu_type); exit(1); } /* The FPGA images have an odd combination of different RAMs, * because in hardware they are different implementations and * connected to different buses, giving varying performance/size * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily * call the 16MB our "system memory", as it's the largest lump. * * Common to both boards: * 0x21000000..0x21ffffff : PSRAM (16MB) * AN385 only: * 0x00000000 .. 0x003fffff : ZBT SSRAM1 * 0x00400000 .. 0x007fffff : mirror of ZBT SSRAM1 * 0x20000000 .. 0x203fffff : ZBT SSRAM 2&3 * 0x20400000 .. 0x207fffff : mirror of ZBT SSRAM 2&3 * 0x01000000 .. 0x01003fff : block RAM (16K) * 0x01004000 .. 0x01007fff : mirror of above * 0x01008000 .. 0x0100bfff : mirror of above * 0x0100c000 .. 0x0100ffff : mirror of above * AN511 only: * 0x00000000 .. 0x0003ffff : FPGA block RAM * 0x00400000 .. 0x007fffff : ZBT SSRAM1 * 0x20000000 .. 0x2001ffff : SRAM * 0x20400000 .. 0x207fffff : ZBT SSRAM 2&3 * * The AN385 has a feature where the lowest 16K can be mapped * either to the bottom of the ZBT SSRAM1 or to the block RAM. * This is of no use for QEMU so we don't implement it (as if * zbt_boot_ctrl is always zero). */ memory_region_allocate_system_memory(&mms->psram, NULL, "mps.ram", 0x1000000); memory_region_add_subregion(system_memory, 0x21000000, &mms->psram); switch (mmc->fpga_type) { case FPGA_AN385: make_ram(&mms->ssram1, "mps.ssram1", 0x0, 0x400000); make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", &mms->ssram1, 0x400000); make_ram(&mms->ssram23, "mps.ssram23", 0x20000000, 0x400000); make_ram_alias(&mms->ssram23_m, "mps.ssram23_m", &mms->ssram23, 0x20400000); make_ram(&mms->blockram, "mps.blockram", 0x01000000, 0x4000); make_ram_alias(&mms->blockram_m1, "mps.blockram_m1", &mms->blockram, 0x01004000); make_ram_alias(&mms->blockram_m2, "mps.blockram_m2", &mms->blockram, 0x01008000); make_ram_alias(&mms->blockram_m3, "mps.blockram_m3", &mms->blockram, 0x0100c000); break; case FPGA_AN511: make_ram(&mms->blockram, "mps.blockram", 0x0, 0x40000); make_ram(&mms->ssram1, "mps.ssram1", 0x00400000, 0x00800000); make_ram(&mms->sram, "mps.sram", 0x20000000, 0x20000); make_ram(&mms->ssram23, "mps.ssram23", 0x20400000, 0x400000); break; default: g_assert_not_reached(); } sysbus_init_child_obj(OBJECT(mms), "armv7m", &mms->armv7m, sizeof(mms->armv7m), TYPE_ARMV7M); armv7m = DEVICE(&mms->armv7m); switch (mmc->fpga_type) { case FPGA_AN385: qdev_prop_set_uint32(armv7m, "num-irq", 32); break; case FPGA_AN511: qdev_prop_set_uint32(armv7m, "num-irq", 64); break; default: g_assert_not_reached(); } qdev_prop_set_string(armv7m, "cpu-type", machine->cpu_type); qdev_prop_set_bit(armv7m, "enable-bitband", true); object_property_set_link(OBJECT(&mms->armv7m), OBJECT(system_memory), "memory", &error_abort); object_property_set_bool(OBJECT(&mms->armv7m), true, "realized", &error_fatal); create_unimplemented_device("zbtsmram mirror", 0x00400000, 0x00400000); create_unimplemented_device("RESERVED 1", 0x00800000, 0x00800000); create_unimplemented_device("Block RAM", 0x01000000, 0x00010000); create_unimplemented_device("RESERVED 2", 0x01010000, 0x1EFF0000); create_unimplemented_device("RESERVED 3", 0x20800000, 0x00800000); create_unimplemented_device("PSRAM", 0x21000000, 0x01000000); /* These three ranges all cover multiple devices; we may implement * some of them below (in which case the real device takes precedence * over the unimplemented-region mapping). */ create_unimplemented_device("CMSDK APB peripheral region @0x40000000", 0x40000000, 0x00010000); create_unimplemented_device("CMSDK peripheral region @0x40010000", 0x40010000, 0x00010000); create_unimplemented_device("Extra peripheral region @0x40020000", 0x40020000, 0x00010000); create_unimplemented_device("RESERVED 4", 0x40030000, 0x001D0000); create_unimplemented_device("VGA", 0x41000000, 0x0200000); switch (mmc->fpga_type) { case FPGA_AN385: { /* The overflow IRQs for UARTs 0, 1 and 2 are ORed together. * Overflow for UARTs 4 and 5 doesn't trigger any interrupt. */ Object *orgate; DeviceState *orgate_dev; int i; orgate = object_new(TYPE_OR_IRQ); object_property_set_int(orgate, 6, "num-lines", &error_fatal); object_property_set_bool(orgate, true, "realized", &error_fatal); orgate_dev = DEVICE(orgate); qdev_connect_gpio_out(orgate_dev, 0, qdev_get_gpio_in(armv7m, 12)); for (i = 0; i < 5; i++) { static const hwaddr uartbase[] = {0x40004000, 0x40005000, 0x40006000, 0x40007000, 0x40009000}; /* RX irq number; TX irq is always one greater */ static const int uartirq[] = {0, 2, 4, 18, 20}; qemu_irq txovrint = NULL, rxovrint = NULL; if (i < 3) { txovrint = qdev_get_gpio_in(orgate_dev, i * 2); rxovrint = qdev_get_gpio_in(orgate_dev, i * 2 + 1); } cmsdk_apb_uart_create(uartbase[i], qdev_get_gpio_in(armv7m, uartirq[i] + 1), qdev_get_gpio_in(armv7m, uartirq[i]), txovrint, rxovrint, NULL, serial_hd(i), SYSCLK_FRQ); } break; } case FPGA_AN511: { /* The overflow IRQs for all UARTs are ORed together. * Tx and Rx IRQs for each UART are ORed together. */ Object *orgate; DeviceState *orgate_dev; int i; orgate = object_new(TYPE_OR_IRQ); object_property_set_int(orgate, 10, "num-lines", &error_fatal); object_property_set_bool(orgate, true, "realized", &error_fatal); orgate_dev = DEVICE(orgate); qdev_connect_gpio_out(orgate_dev, 0, qdev_get_gpio_in(armv7m, 12)); for (i = 0; i < 5; i++) { /* system irq numbers for the combined tx/rx for each UART */ static const int uart_txrx_irqno[] = {0, 2, 45, 46, 56}; static const hwaddr uartbase[] = {0x40004000, 0x40005000, 0x4002c000, 0x4002d000, 0x4002e000}; Object *txrx_orgate; DeviceState *txrx_orgate_dev; txrx_orgate = object_new(TYPE_OR_IRQ); object_property_set_int(txrx_orgate, 2, "num-lines", &error_fatal); object_property_set_bool(txrx_orgate, true, "realized", &error_fatal); txrx_orgate_dev = DEVICE(txrx_orgate); qdev_connect_gpio_out(txrx_orgate_dev, 0, qdev_get_gpio_in(armv7m, uart_txrx_irqno[i])); cmsdk_apb_uart_create(uartbase[i], qdev_get_gpio_in(txrx_orgate_dev, 0), qdev_get_gpio_in(txrx_orgate_dev, 1), qdev_get_gpio_in(orgate_dev, i * 2), qdev_get_gpio_in(orgate_dev, i * 2 + 1), NULL, serial_hd(i), SYSCLK_FRQ); } break; } default: g_assert_not_reached(); } cmsdk_apb_timer_create(0x40000000, qdev_get_gpio_in(armv7m, 8), SYSCLK_FRQ); cmsdk_apb_timer_create(0x40001000, qdev_get_gpio_in(armv7m, 9), SYSCLK_FRQ); sysbus_init_child_obj(OBJECT(mms), "dualtimer", &mms->dualtimer, sizeof(mms->dualtimer), TYPE_CMSDK_APB_DUALTIMER); qdev_prop_set_uint32(DEVICE(&mms->dualtimer), "pclk-frq", SYSCLK_FRQ); object_property_set_bool(OBJECT(&mms->dualtimer), true, "realized", &error_fatal); sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 0, qdev_get_gpio_in(armv7m, 10)); sysbus_mmio_map(SYS_BUS_DEVICE(&mms->dualtimer), 0, 0x40002000); sysbus_init_child_obj(OBJECT(mms), "scc", &mms->scc, sizeof(mms->scc), TYPE_MPS2_SCC); sccdev = DEVICE(&mms->scc); qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2); qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008); qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id); object_property_set_bool(OBJECT(&mms->scc), true, "realized", &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(sccdev), 0, 0x4002f000); /* In hardware this is a LAN9220; the LAN9118 is software compatible * except that it doesn't support the checksum-offload feature. */ lan9118_init(&nd_table[0], 0x40200000, qdev_get_gpio_in(armv7m, mmc->fpga_type == FPGA_AN385 ? 13 : 47)); system_clock_scale = NANOSECONDS_PER_SECOND / SYSCLK_FRQ; armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000); }
static void zynq_init(MachineState *machine) { ram_addr_t ram_size = machine->ram_size; const char *cpu_model = machine->cpu_model; const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; const char *initrd_filename = machine->initrd_filename; A9MPPrivState *mpcore; ObjectClass *cpu_oc; ARMCPU *cpu[MAX_CPUS]; MemoryRegion *address_space_mem = get_system_memory(); MemoryRegion *ext_ram = g_new(MemoryRegion, 1); MemoryRegion *ocm_ram = g_new(MemoryRegion, 1); DeviceState *dev; SysBusDevice *busdev; qemu_irq pic[64]; Error *err = NULL; int n; if (machine->cpu_model) { error_report("Zynq does not support CPU model override!\n"); exit(1); } if (!cpu_model) { cpu_model = "cortex-a9"; } cpu_oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); for (n = 0; n < smp_cpus; n++) { cpu[n] = ARM_CPU(object_new(object_class_get_name(cpu_oc))); /* By default A9 CPUs have EL3 enabled. This board does not * currently support EL3 so the CPU EL3 property is disabled before * realization. */ if (object_property_find(OBJECT(cpu[n]), "has_el3", NULL)) { object_property_set_bool(OBJECT(cpu[n]), false, "has_el3", &err); if (err) { error_report("%s", error_get_pretty(err)); exit(1); } } object_property_set_int(OBJECT(cpu[n]), ZYNQ_BOARD_MIDR, "midr", &err); if (err) { error_report("%s", error_get_pretty(err)); exit(1); } object_property_set_int(OBJECT(cpu[n]), MPCORE_PERIPHBASE, "reset-cbar", &err); if (err) { error_report("%s", error_get_pretty(err)); exit(1); } object_property_set_bool(OBJECT(cpu[n]), true, "realized", &err); if (err) { error_report("%s", error_get_pretty(err)); exit(1); } } /* max 2GB ram */ if (ram_size > 0x80000000) { ram_size = 0x80000000; } /* pl353 */ dev = qdev_create(NULL, "arm.pl35x"); /* FIXME: handle this somewhere central */ object_property_add_child(container_get(qdev_get_machine(), "/unattached"), "pl353", OBJECT(dev), NULL); qdev_prop_set_uint8(dev, "x", 3); { DriveInfo *dinfo = drive_get_next(IF_PFLASH); BlockBackend *blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL; DeviceState *att_dev = qdev_create(NULL, "cfi.pflash02"); Error *errp = NULL; if (blk && qdev_prop_set_drive(att_dev, "drive", blk)) { abort(); } qdev_prop_set_uint32(att_dev, "num-blocks", FLASH_SIZE/FLASH_SECTOR_SIZE); qdev_prop_set_uint32(att_dev, "sector-length", FLASH_SECTOR_SIZE); qdev_prop_set_uint8(att_dev, "width", 1); qdev_prop_set_uint8(att_dev, "mappings", 1); qdev_prop_set_uint8(att_dev, "big-endian", 0); qdev_prop_set_uint16(att_dev, "id0", 0x0066); qdev_prop_set_uint16(att_dev, "id1", 0x0022); qdev_prop_set_uint16(att_dev, "id2", 0x0000); qdev_prop_set_uint16(att_dev, "id3", 0x0000); qdev_prop_set_uint16(att_dev, "unlock-addr0", 0x0aaa); qdev_prop_set_uint16(att_dev, "unlock-addr1", 0x0555); qdev_prop_set_string(att_dev, "name", "pl353.pflash"); qdev_init_nofail(att_dev); object_property_set_link(OBJECT(dev), OBJECT(att_dev), "dev0", &errp); if (err) { error_report("%s", error_get_pretty(err)); exit(1); } dinfo = drive_get_next(IF_PFLASH); att_dev = nand_init(dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, NAND_MFR_STMICRO, 0xaa); object_property_set_link(OBJECT(dev), OBJECT(att_dev), "dev1", &errp); if (err) { error_report("%s", error_get_pretty(err)); exit(1); } } qdev_init_nofail(dev); busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, 0xe000e000); sysbus_mmio_map(busdev, 1, 0xe2000000); sysbus_mmio_map(busdev, 2, 0xe1000000); /* DDR remapped to address zero. */ memory_region_allocate_system_memory(ext_ram, NULL, "zynq.ext_ram", ram_size); memory_region_add_subregion(address_space_mem, 0, ext_ram); /* 256K of on-chip memory */ memory_region_init_ram(ocm_ram, NULL, "zynq.ocm_ram", 256 << 10, &error_abort); vmstate_register_ram_global(ocm_ram); memory_region_add_subregion(address_space_mem, OCM_BASE, ocm_ram); DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); /* AMD */ pflash_cfi02_register(0xe2000000, NULL, "zynq.pflash", FLASH_SIZE, dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, FLASH_SECTOR_SIZE, FLASH_SIZE/FLASH_SECTOR_SIZE, 1, 1, 0x0066, 0x0022, 0x0000, 0x0000, 0x0555, 0x2aa, 0); dev = qdev_create(NULL, "xilinx,zynq_slcr"); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0xF8000000); for (n = 0; n < smp_cpus; n++) { qdev_connect_gpio_out(dev, n, qdev_get_gpio_in(DEVICE(cpu[n]), 0)); } mpcore = A9MPCORE_PRIV(object_new("a9mpcore_priv")); qdev_prop_set_uint32(DEVICE(mpcore), "num-cpu", smp_cpus); object_property_set_bool(OBJECT(mpcore), true, "realized", &err); if (err != NULL) { error_report("Couldn't realize the Zynq A9MPCore: %s", error_get_pretty(err)); exit(1); } busdev = SYS_BUS_DEVICE(DEVICE(mpcore)); sysbus_mmio_map(busdev, 0, MPCORE_PERIPHBASE); for (n = 0; n < smp_cpus; n++) { sysbus_connect_irq(busdev, n, qdev_get_gpio_in(DEVICE(cpu[n]), ARM_CPU_IRQ)); } for (n = 0; n < 64; n++) { pic[n] = qdev_get_gpio_in(dev, n); } zynq_init_zc70x_i2c(0xE0004000, pic[57-IRQ_OFFSET]); zynq_init_zc70x_i2c(0xE0005000, pic[80-IRQ_OFFSET]); dev = qdev_create(NULL, "xlnx,ps7-usb"); qdev_init_nofail(dev); busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, 0xE0002000); sysbus_connect_irq(busdev, 0, pic[53-IRQ_OFFSET]); dev = qdev_create(NULL, "xlnx,ps7-usb"); busdev = SYS_BUS_DEVICE(dev); qdev_init_nofail(dev); sysbus_mmio_map(busdev, 0, 0xE0003000); sysbus_connect_irq(busdev, 0, pic[76-IRQ_OFFSET]); zynq_init_spi_flashes(0xE0006000, pic[58-IRQ_OFFSET], false); zynq_init_spi_flashes(0xE0007000, pic[81-IRQ_OFFSET], false); zynq_init_spi_flashes(0xE000D000, pic[51-IRQ_OFFSET], true); sysbus_create_simple("cadence_uart", 0xE0000000, pic[59-IRQ_OFFSET]); sysbus_create_simple("cadence_uart", 0xE0001000, pic[82-IRQ_OFFSET]); sysbus_create_varargs("cadence_ttc", 0xF8001000, pic[42-IRQ_OFFSET], pic[43-IRQ_OFFSET], pic[44-IRQ_OFFSET], NULL); sysbus_create_varargs("cadence_ttc", 0xF8002000, pic[69-IRQ_OFFSET], pic[70-IRQ_OFFSET], pic[71-IRQ_OFFSET], NULL); gem_init(&nd_table[0], 0xE000B000, pic[54-IRQ_OFFSET]); gem_init(&nd_table[1], 0xE000C000, pic[77-IRQ_OFFSET]); dev = qdev_create(NULL, "generic-sdhci"); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0xE0100000); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[56-IRQ_OFFSET]); dev = qdev_create(NULL, "generic-sdhci"); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0xE0101000); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[79-IRQ_OFFSET]); dev = qdev_create(NULL, TYPE_ZYNQ_XADC); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0xF8007100); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[39-IRQ_OFFSET]); dev = qdev_create(NULL, "pl330"); qdev_prop_set_uint8(dev, "num_chnls", 8); qdev_prop_set_uint8(dev, "num_periph_req", 4); qdev_prop_set_uint8(dev, "num_events", 16); qdev_prop_set_uint8(dev, "data_width", 64); qdev_prop_set_uint8(dev, "wr_cap", 8); qdev_prop_set_uint8(dev, "wr_q_dep", 16); qdev_prop_set_uint8(dev, "rd_cap", 8); qdev_prop_set_uint8(dev, "rd_q_dep", 16); qdev_prop_set_uint16(dev, "data_buffer_dep", 256); qdev_init_nofail(dev); busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, 0xF8003000); sysbus_connect_irq(busdev, 0, pic[45-IRQ_OFFSET]); /* abort irq line */ for (n = 0; n < 8; ++n) { /* event irqs */ sysbus_connect_irq(busdev, n + 1, pic[dma_irqs[n] - IRQ_OFFSET]); } dev = qdev_create(NULL, "xlnx.ps7-dev-cfg"); object_property_add_child(qdev_get_machine(), "xilinx-devcfg", OBJECT(dev), NULL); qdev_init_nofail(dev); busdev = SYS_BUS_DEVICE(dev); sysbus_connect_irq(busdev, 0, pic[40-IRQ_OFFSET]); sysbus_mmio_map(busdev, 0, 0xF8007000); zynq_binfo.ram_size = ram_size; zynq_binfo.kernel_filename = kernel_filename; zynq_binfo.kernel_cmdline = kernel_cmdline; zynq_binfo.initrd_filename = initrd_filename; zynq_binfo.nb_cpus = smp_cpus; zynq_binfo.write_secondary_boot = zynq_write_secondary_boot; zynq_binfo.secondary_cpu_reset_hook = zynq_reset_secondary; zynq_binfo.smp_loader_start = SMP_BOOT_ADDR; zynq_binfo.board_id = 0xd32; zynq_binfo.loader_start = 0; arm_load_kernel(ARM_CPU(first_cpu), &zynq_binfo); }
/* PowerPC PREP hardware initialisation */ static void ppc_prep_init(MachineState *machine) { ram_addr_t ram_size = machine->ram_size; const char *cpu_model = machine->cpu_model; const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; const char *initrd_filename = machine->initrd_filename; const char *boot_device = machine->boot_order; MemoryRegion *sysmem = get_system_memory(); PowerPCCPU *cpu = NULL; CPUPPCState *env = NULL; nvram_t nvram; M48t59State *m48t59; #if 0 MemoryRegion *xcsr = g_new(MemoryRegion, 1); #endif int linux_boot, i, nb_nics1; MemoryRegion *ram = g_new(MemoryRegion, 1); uint32_t kernel_base, initrd_base; long kernel_size, initrd_size; DeviceState *dev; PCIHostState *pcihost; PCIBus *pci_bus; PCIDevice *pci; ISABus *isa_bus; ISADevice *isa; qemu_irq *cpu_exit_irq; int ppc_boot_device; DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; sysctrl = g_malloc0(sizeof(sysctrl_t)); linux_boot = (kernel_filename != NULL); /* init CPUs */ if (cpu_model == NULL) cpu_model = "602"; for (i = 0; i < smp_cpus; i++) { cpu = cpu_ppc_init(cpu_model); if (cpu == NULL) { fprintf(stderr, "Unable to find PowerPC CPU definition\n"); exit(1); } env = &cpu->env; if (env->flags & POWERPC_FLAG_RTC_CLK) { /* POWER / PowerPC 601 RTC clock frequency is 7.8125 MHz */ cpu_ppc_tb_init(env, 7812500UL); } else { /* Set time-base frequency to 100 Mhz */ cpu_ppc_tb_init(env, 100UL * 1000UL * 1000UL); } qemu_register_reset(ppc_prep_reset, cpu); } /* allocate RAM */ memory_region_allocate_system_memory(ram, NULL, "ppc_prep.ram", ram_size); memory_region_add_subregion(sysmem, 0, ram); if (linux_boot) { kernel_base = KERNEL_LOAD_ADDR; /* now we can load the kernel */ kernel_size = load_image_targphys(kernel_filename, kernel_base, ram_size - kernel_base); if (kernel_size < 0) { hw_error("qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* load initrd */ if (initrd_filename) { initrd_base = INITRD_LOAD_ADDR; initrd_size = load_image_targphys(initrd_filename, initrd_base, ram_size - initrd_base); if (initrd_size < 0) { hw_error("qemu: could not load initial ram disk '%s'\n", initrd_filename); } } else { initrd_base = 0; initrd_size = 0; } ppc_boot_device = 'm'; } else { kernel_base = 0; kernel_size = 0; initrd_base = 0; initrd_size = 0; ppc_boot_device = '\0'; /* For now, OHW cannot boot from the network. */ for (i = 0; boot_device[i] != '\0'; i++) { if (boot_device[i] >= 'a' && boot_device[i] <= 'f') { ppc_boot_device = boot_device[i]; break; } } if (ppc_boot_device == '\0') { fprintf(stderr, "No valid boot device for Mac99 machine\n"); exit(1); } } if (PPC_INPUT(env) != PPC_FLAGS_INPUT_6xx) { hw_error("Only 6xx bus is supported on PREP machine\n"); } dev = qdev_create(NULL, "raven-pcihost"); if (bios_name == NULL) { bios_name = BIOS_FILENAME; } qdev_prop_set_string(dev, "bios-name", bios_name); qdev_prop_set_uint32(dev, "elf-machine", ELF_MACHINE); pcihost = PCI_HOST_BRIDGE(dev); object_property_add_child(qdev_get_machine(), "raven", OBJECT(dev), NULL); qdev_init_nofail(dev); pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci.0"); if (pci_bus == NULL) { fprintf(stderr, "Couldn't create PCI host controller.\n"); exit(1); } sysctrl->contiguous_map_irq = qdev_get_gpio_in(dev, 0); /* PCI -> ISA bridge */ pci = pci_create_simple(pci_bus, PCI_DEVFN(1, 0), "i82378"); cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1); cpu = POWERPC_CPU(first_cpu); qdev_connect_gpio_out(&pci->qdev, 0, cpu->env.irq_inputs[PPC6xx_INPUT_INT]); qdev_connect_gpio_out(&pci->qdev, 1, *cpu_exit_irq); sysbus_connect_irq(&pcihost->busdev, 0, qdev_get_gpio_in(&pci->qdev, 9)); sysbus_connect_irq(&pcihost->busdev, 1, qdev_get_gpio_in(&pci->qdev, 11)); sysbus_connect_irq(&pcihost->busdev, 2, qdev_get_gpio_in(&pci->qdev, 9)); sysbus_connect_irq(&pcihost->busdev, 3, qdev_get_gpio_in(&pci->qdev, 11)); isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(pci), "isa.0")); /* Super I/O (parallel + serial ports) */ isa = isa_create(isa_bus, TYPE_PC87312); dev = DEVICE(isa); qdev_prop_set_uint8(dev, "config", 13); /* fdc, ser0, ser1, par0 */ qdev_init_nofail(dev); /* init basic PC hardware */ pci_vga_init(pci_bus); nb_nics1 = nb_nics; if (nb_nics1 > NE2000_NB_MAX) nb_nics1 = NE2000_NB_MAX; for(i = 0; i < nb_nics1; i++) { if (nd_table[i].model == NULL) { nd_table[i].model = g_strdup("ne2k_isa"); } if (strcmp(nd_table[i].model, "ne2k_isa") == 0) { isa_ne2000_init(isa_bus, ne2000_io[i], ne2000_irq[i], &nd_table[i]); } else { pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL); } } ide_drive_get(hd, ARRAY_SIZE(hd)); for(i = 0; i < MAX_IDE_BUS; i++) { isa_ide_init(isa_bus, ide_iobase[i], ide_iobase2[i], ide_irq[i], hd[2 * i], hd[2 * i + 1]); } isa_create_simple(isa_bus, "i8042"); cpu = POWERPC_CPU(first_cpu); sysctrl->reset_irq = cpu->env.irq_inputs[PPC6xx_INPUT_HRESET]; portio_list_init(&prep_port_list, NULL, prep_portio_list, sysctrl, "prep"); portio_list_add(&prep_port_list, isa_address_space_io(isa), 0x0); /* PowerPC control and status register group */ #if 0 memory_region_init_io(xcsr, NULL, &PPC_XCSR_ops, NULL, "ppc-xcsr", 0x1000); memory_region_add_subregion(sysmem, 0xFEFF0000, xcsr); #endif if (usb_enabled(false)) { pci_create_simple(pci_bus, -1, "pci-ohci"); } m48t59 = m48t59_init_isa(isa_bus, 0x0074, NVRAM_SIZE, 59); if (m48t59 == NULL) return; sysctrl->nvram = m48t59; /* Initialise NVRAM */ nvram.opaque = m48t59; nvram.read_fn = &m48t59_read; nvram.write_fn = &m48t59_write; PPC_NVRAM_set_params(&nvram, NVRAM_SIZE, "PREP", ram_size, ppc_boot_device, kernel_base, kernel_size, kernel_cmdline, initrd_base, initrd_size, /* XXX: need an option to load a NVRAM image */ 0, graphic_width, graphic_height, graphic_depth); }
static void petalogix_ml605_init(QEMUMachineInitArgs *args) { ram_addr_t ram_size = args->ram_size; const char *cpu_model = args->cpu_model; MemoryRegion *address_space_mem = get_system_memory(); DeviceState *dev, *dma, *eth0; MicroBlazeCPU *cpu; SysBusDevice *busdev; CPUMBState *env; DriveInfo *dinfo; int i; hwaddr ddr_base = MEMORY_BASEADDR; MemoryRegion *phys_lmb_bram = g_new(MemoryRegion, 1); MemoryRegion *phys_ram = g_new(MemoryRegion, 1); qemu_irq irq[32], *cpu_irq; /* init CPUs */ if (cpu_model == NULL) { cpu_model = "microblaze"; } cpu = cpu_mb_init(cpu_model); env = &cpu->env; /* Attach emulated BRAM through the LMB. */ memory_region_init_ram(phys_lmb_bram, "petalogix_ml605.lmb_bram", LMB_BRAM_SIZE); vmstate_register_ram_global(phys_lmb_bram); memory_region_add_subregion(address_space_mem, 0x00000000, phys_lmb_bram); memory_region_init_ram(phys_ram, "petalogix_ml605.ram", ram_size); vmstate_register_ram_global(phys_ram); memory_region_add_subregion(address_space_mem, ddr_base, phys_ram); dinfo = drive_get(IF_PFLASH, 0, 0); /* 5th parameter 2 means bank-width * 10th paremeter 0 means little-endian */ pflash_cfi01_register(FLASH_BASEADDR, NULL, "petalogix_ml605.flash", FLASH_SIZE, dinfo ? dinfo->bdrv : NULL, (64 * 1024), FLASH_SIZE >> 16, 2, 0x89, 0x18, 0x0000, 0x0, 0); cpu_irq = microblaze_pic_init_cpu(env); dev = xilinx_intc_create(INTC_BASEADDR, cpu_irq[0], 4); for (i = 0; i < 32; i++) { irq[i] = qdev_get_gpio_in(dev, i); } serial_mm_init(address_space_mem, UART16550_BASEADDR + 0x1000, 2, irq[5], 115200, serial_hds[0], DEVICE_LITTLE_ENDIAN); /* 2 timers at irq 2 @ 100 Mhz. */ xilinx_timer_create(TIMER_BASEADDR, irq[2], 0, 100 * 1000000); /* axi ethernet and dma initialization. */ dma = qdev_create(NULL, "xlnx.axi-dma"); /* FIXME: attach to the sysbus instead */ object_property_add_child(container_get(qdev_get_machine(), "/unattached"), "xilinx-dma", OBJECT(dma), NULL); eth0 = xilinx_axiethernet_create(&nd_table[0], STREAM_SLAVE(dma), 0x82780000, irq[3], 0x1000, 0x1000); xilinx_axiethernetdma_init(dma, STREAM_SLAVE(eth0), 0x84600000, irq[1], irq[0], 100 * 1000000); { SSIBus *spi; dev = qdev_create(NULL, "xlnx.xps-spi"); qdev_prop_set_uint8(dev, "num-ss-bits", NUM_SPI_FLASHES); qdev_init_nofail(dev); busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, 0x40a00000); sysbus_connect_irq(busdev, 0, irq[4]); spi = (SSIBus *)qdev_get_child_bus(dev, "spi"); for (i = 0; i < NUM_SPI_FLASHES; i++) { qemu_irq cs_line; dev = ssi_create_slave_no_init(spi, "m25p80"); qdev_prop_set_string(dev, "partname", "n25q128"); qdev_init_nofail(dev); cs_line = qdev_get_gpio_in(dev, 0); sysbus_connect_irq(busdev, i+1, cs_line); } } microblaze_load_kernel(cpu, ddr_base, ram_size, BINARY_DEVICE_TREE_FILE, machine_cpu_reset); }
static void m2sxxx_soc_realize(DeviceState *dev_soc, Error **errp) { MSF2State *s = MSF2_SOC(dev_soc); DeviceState *dev, *armv7m; SysBusDevice *busdev; Error *err = NULL; int i; MemoryRegion *system_memory = get_system_memory(); MemoryRegion *nvm = g_new(MemoryRegion, 1); MemoryRegion *nvm_alias = g_new(MemoryRegion, 1); MemoryRegion *sram = g_new(MemoryRegion, 1); memory_region_init_rom(nvm, NULL, "MSF2.eNVM", s->envm_size, &error_fatal); /* * On power-on, the eNVM region 0x60000000 is automatically * remapped to the Cortex-M3 processor executable region * start address (0x0). We do not support remapping other eNVM, * eSRAM and DDR regions by guest(via Sysreg) currently. */ memory_region_init_alias(nvm_alias, NULL, "MSF2.eNVM", nvm, 0, s->envm_size); memory_region_add_subregion(system_memory, ENVM_BASE_ADDRESS, nvm); memory_region_add_subregion(system_memory, 0, nvm_alias); memory_region_init_ram(sram, NULL, "MSF2.eSRAM", s->esram_size, &error_fatal); memory_region_add_subregion(system_memory, SRAM_BASE_ADDRESS, sram); armv7m = DEVICE(&s->armv7m); qdev_prop_set_uint32(armv7m, "num-irq", 81); qdev_prop_set_string(armv7m, "cpu-type", s->cpu_type); qdev_prop_set_bit(armv7m, "enable-bitband", true); object_property_set_link(OBJECT(&s->armv7m), OBJECT(get_system_memory()), "memory", &error_abort); object_property_set_bool(OBJECT(&s->armv7m), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } if (!s->m3clk) { error_setg(errp, "Invalid m3clk value"); error_append_hint(errp, "m3clk can not be zero\n"); return; } qdev_connect_gpio_out_named(DEVICE(&s->armv7m.nvic), "SYSRESETREQ", 0, qemu_allocate_irq(&do_sys_reset, NULL, 0)); system_clock_scale = NANOSECONDS_PER_SECOND / s->m3clk; for (i = 0; i < MSF2_NUM_UARTS; i++) { if (serial_hd(i)) { serial_mm_init(get_system_memory(), uart_addr[i], 2, qdev_get_gpio_in(armv7m, uart_irq[i]), 115200, serial_hd(i), DEVICE_NATIVE_ENDIAN); } } dev = DEVICE(&s->timer); /* APB0 clock is the timer input clock */ qdev_prop_set_uint32(dev, "clock-frequency", s->m3clk / s->apb0div); object_property_set_bool(OBJECT(&s->timer), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, MSF2_TIMER_BASE); sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(armv7m, timer_irq[0])); sysbus_connect_irq(busdev, 1, qdev_get_gpio_in(armv7m, timer_irq[1])); dev = DEVICE(&s->sysreg); qdev_prop_set_uint32(dev, "apb0divisor", s->apb0div); qdev_prop_set_uint32(dev, "apb1divisor", s->apb1div); object_property_set_bool(OBJECT(&s->sysreg), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, MSF2_SYSREG_BASE); for (i = 0; i < MSF2_NUM_SPIS; i++) { gchar *bus_name; object_property_set_bool(OBJECT(&s->spi[i]), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->spi[i]), 0, spi_addr[i]); sysbus_connect_irq(SYS_BUS_DEVICE(&s->spi[i]), 0, qdev_get_gpio_in(armv7m, spi_irq[i])); /* Alias controller SPI bus to the SoC itself */ bus_name = g_strdup_printf("spi%d", i); object_property_add_alias(OBJECT(s), bus_name, OBJECT(&s->spi[i]), "spi", &error_abort); g_free(bus_name); } /* Below devices are not modelled yet. */ create_unimplemented_device("i2c_0", 0x40002000, 0x1000); create_unimplemented_device("dma", 0x40003000, 0x1000); create_unimplemented_device("watchdog", 0x40005000, 0x1000); create_unimplemented_device("i2c_1", 0x40012000, 0x1000); create_unimplemented_device("gpio", 0x40013000, 0x1000); create_unimplemented_device("hs-dma", 0x40014000, 0x1000); create_unimplemented_device("can", 0x40015000, 0x1000); create_unimplemented_device("rtc", 0x40017000, 0x1000); create_unimplemented_device("apb_config", 0x40020000, 0x10000); create_unimplemented_device("emac", 0x40041000, 0x1000); create_unimplemented_device("usb", 0x40043000, 0x1000); }