コード例 #1
0
ファイル: link_local.c プロジェクト: harayz/n900
static void configure_wait(void)
{
	if (timeout_ms == -1)
		return;

	/* poll, being ready to adjust current timeout */
	if (!timeout_ms)
		timeout_ms = random_delay_ms(PROBE_WAIT);

	/* set deadline_ms to the point in time when we timeout */
	deadline_ms = MONOTONIC_MS() + timeout_ms;

	debug_cond(DEBUG_DEV_PKT, "...wait %d %s nprobes=%u, nclaims=%u\n",
			timeout_ms, eth_get_name(), nprobes, nclaims);

	NetSetTimeout(timeout_ms, link_local_timeout);
}
コード例 #2
0
ファイル: zcip.c プロジェクト: sdg7/wl500g
int zcip_main(int argc UNUSED_PARAM, char **argv)
{
	int state;
	char *r_opt;
	unsigned opts;

	// ugly trick, but I want these zeroed in one go
	struct {
		const struct in_addr null_ip;
		const struct ether_addr null_addr;
		struct in_addr ip;
		struct ifreq ifr;
		int timeout_ms; /* must be signed */
		unsigned conflicts;
		unsigned nprobes;
		unsigned nclaims;
		int ready;
	} L;
#define null_ip    (L.null_ip   )
#define null_addr  (L.null_addr )
#define ip         (L.ip        )
#define ifr        (L.ifr       )
#define timeout_ms (L.timeout_ms)
#define conflicts  (L.conflicts )
#define nprobes    (L.nprobes   )
#define nclaims    (L.nclaims   )
#define ready      (L.ready     )

	memset(&L, 0, sizeof(L));
	INIT_G();

#define FOREGROUND (opts & 1)
#define QUIT       (opts & 2)
	// parse commandline: prog [options] ifname script
	// exactly 2 args; -v accumulates and implies -f
	opt_complementary = "=2:vv:vf";
	opts = getopt32(argv, "fqr:p:v", &r_opt, &pidfile, &verbose);
#if !BB_MMU
	// on NOMMU reexec early (or else we will rerun things twice)
	if (!FOREGROUND)
		bb_daemonize_or_rexec(0 /*was: DAEMON_CHDIR_ROOT*/, argv);
#endif
	// open an ARP socket
	// (need to do it before openlog to prevent openlog from taking
	// fd 3 (sock_fd==3))
	xmove_fd(xsocket(AF_PACKET, SOCK_PACKET, htons(ETH_P_ARP)), sock_fd);
	if (!FOREGROUND) {
		// do it before all bb_xx_msg calls
		openlog(applet_name, 0, LOG_DAEMON);
		logmode |= LOGMODE_SYSLOG;
	}
	if (opts & 4) { // -r n.n.n.n
		if (inet_aton(r_opt, &ip) == 0
		 || (ntohl(ip.s_addr) & IN_CLASSB_NET) != LINKLOCAL_ADDR
		) {
			bb_error_msg_and_die("invalid link address");
		}
	}
	argv += optind - 1;

	/* Now: argv[0]:junk argv[1]:intf argv[2]:script argv[3]:NULL */
	/* We need to make space for script argument: */
	argv[0] = argv[1];
	argv[1] = argv[2];
	/* Now: argv[0]:intf argv[1]:script argv[2]:junk argv[3]:NULL */
#define argv_intf (argv[0])

	xsetenv("interface", argv_intf);

	// initialize the interface (modprobe, ifup, etc)
	if (run(argv, "init", NULL))
		return EXIT_FAILURE;

	// initialize saddr
	// saddr is: { u16 sa_family; u8 sa_data[14]; }
	//memset(&saddr, 0, sizeof(saddr));
	//TODO: are we leaving sa_family == 0 (AF_UNSPEC)?!
	safe_strncpy(saddr.sa_data, argv_intf, sizeof(saddr.sa_data));

	// bind to the interface's ARP socket
	xbind(sock_fd, &saddr, sizeof(saddr));

	// get the interface's ethernet address
	//memset(&ifr, 0, sizeof(ifr));
	strncpy_IFNAMSIZ(ifr.ifr_name, argv_intf);
	xioctl(sock_fd, SIOCGIFHWADDR, &ifr);
	memcpy(&eth_addr, &ifr.ifr_hwaddr.sa_data, ETH_ALEN);

	// start with some stable ip address, either a function of
	// the hardware address or else the last address we used.
	// we are taking low-order four bytes, as top-order ones
	// aren't random enough.
	// NOTE: the sequence of addresses we try changes only
	// depending on when we detect conflicts.
	{
		uint32_t t;
		move_from_unaligned32(t, ((char *)&eth_addr + 2));
		srand(t);
	}
	if (ip.s_addr == 0)
		ip.s_addr = pick();

	// FIXME cases to handle:
	//  - zcip already running!
	//  - link already has local address... just defend/update

	// daemonize now; don't delay system startup
	if (!FOREGROUND) {
#if BB_MMU
		bb_daemonize(0 /*was: DAEMON_CHDIR_ROOT*/);
#endif
		if (verbose)
			bb_info_msg("start, interface %s", argv_intf);
	}

	write_pidfile(pidfile);
	bb_signals(BB_FATAL_SIGS, cleanup);

	// run the dynamic address negotiation protocol,
	// restarting after address conflicts:
	//  - start with some address we want to try
	//  - short random delay
	//  - arp probes to see if another host uses it
	//  - arp announcements that we're claiming it
	//  - use it
	//  - defend it, within limits
	// exit if:
	// - address is successfully obtained and -q was given:
	//   run "<script> config", then exit with exitcode 0
	// - poll error (when does this happen?)
	// - read error (when does this happen?)
	// - sendto error (in arp()) (when does this happen?)
	// - revents & POLLERR (link down). run "<script> deconfig" first
	state = PROBE;
	while (1) {
		struct pollfd fds[1];
		unsigned deadline_us;
		struct arp_packet p;
		int source_ip_conflict;
		int target_ip_conflict;

		fds[0].fd = sock_fd;
		fds[0].events = POLLIN;
		fds[0].revents = 0;

		// poll, being ready to adjust current timeout
		if (!timeout_ms) {
			timeout_ms = random_delay_ms(PROBE_WAIT);
			// FIXME setsockopt(sock_fd, SO_ATTACH_FILTER, ...) to
			// make the kernel filter out all packets except
			// ones we'd care about.
		}
		// set deadline_us to the point in time when we timeout
		deadline_us = MONOTONIC_US() + timeout_ms * 1000;

		VDBG("...wait %d %s nprobes=%u, nclaims=%u\n",
				timeout_ms, argv_intf, nprobes, nclaims);

		switch (safe_poll(fds, 1, timeout_ms)) {

		default:
			//bb_perror_msg("poll"); - done in safe_poll
			cleanup(EXIT_FAILURE);

		// timeout
		case 0:
			VDBG("state = %d\n", state);
			switch (state) {
			case PROBE:
				// timeouts in the PROBE state mean no conflicting ARP packets
				// have been received, so we can progress through the states
				if (nprobes < PROBE_NUM) {
					nprobes++;
					VDBG("probe/%u %s@%s\n",
							nprobes, argv_intf, inet_ntoa(ip));
					arp(/* ARPOP_REQUEST, */
							/* &eth_addr, */ null_ip,
							&null_addr, ip);
					timeout_ms = PROBE_MIN * 1000;
					timeout_ms += random_delay_ms(PROBE_MAX - PROBE_MIN);
				}
				else {
					// Switch to announce state.
					state = ANNOUNCE;
					nclaims = 0;
					VDBG("announce/%u %s@%s\n",
							nclaims, argv_intf, inet_ntoa(ip));
					arp(/* ARPOP_REQUEST, */
							/* &eth_addr, */ ip,
							&eth_addr, ip);
					timeout_ms = ANNOUNCE_INTERVAL * 1000;
				}
				break;
			case RATE_LIMIT_PROBE:
				// timeouts in the RATE_LIMIT_PROBE state mean no conflicting ARP packets
				// have been received, so we can move immediately to the announce state
				state = ANNOUNCE;
				nclaims = 0;
				VDBG("announce/%u %s@%s\n",
						nclaims, argv_intf, inet_ntoa(ip));
				arp(/* ARPOP_REQUEST, */
						/* &eth_addr, */ ip,
						&eth_addr, ip);
				timeout_ms = ANNOUNCE_INTERVAL * 1000;
				break;
			case ANNOUNCE:
				// timeouts in the ANNOUNCE state mean no conflicting ARP packets
				// have been received, so we can progress through the states
				if (nclaims < ANNOUNCE_NUM) {
					nclaims++;
					VDBG("announce/%u %s@%s\n",
							nclaims, argv_intf, inet_ntoa(ip));
					arp(/* ARPOP_REQUEST, */
							/* &eth_addr, */ ip,
							&eth_addr, ip);
					timeout_ms = ANNOUNCE_INTERVAL * 1000;
				}
				else {
					// Switch to monitor state.
					state = MONITOR;
					// link is ok to use earlier
					// FIXME update filters
					run(argv, "config", &ip);
					ready = 1;
					conflicts = 0;
					timeout_ms = -1; // Never timeout in the monitor state.

					// NOTE: all other exit paths
					// should deconfig ...
					if (QUIT)
						cleanup(EXIT_SUCCESS);
				}
				break;
			case DEFEND:
				// We won!  No ARP replies, so just go back to monitor.
				state = MONITOR;
				timeout_ms = -1;
				conflicts = 0;
				break;
			default:
				// Invalid, should never happen.  Restart the whole protocol.
				state = PROBE;
				ip.s_addr = pick();
				timeout_ms = 0;
				nprobes = 0;
				nclaims = 0;
				break;
			} // switch (state)
			break; // case 0 (timeout)

		// packets arriving, or link went down
		case 1:
			// We need to adjust the timeout in case we didn't receive
			// a conflicting packet.
			if (timeout_ms > 0) {
				unsigned diff = deadline_us - MONOTONIC_US();
				if ((int)(diff) < 0) {
					// Current time is greater than the expected timeout time.
					// Should never happen.
					VDBG("missed an expected timeout\n");
					timeout_ms = 0;
				} else {
					VDBG("adjusting timeout\n");
					timeout_ms = (diff / 1000) | 1; /* never 0 */
				}
			}

			if ((fds[0].revents & POLLIN) == 0) {
				if (fds[0].revents & POLLERR) {
					// FIXME: links routinely go down;
					// this shouldn't necessarily exit.
					bb_error_msg("iface %s is down", argv_intf);
					if (ready) {
						run(argv, "deconfig", &ip);
					}
					cleanup(EXIT_FAILURE);
				}
				continue;
			}

			// read ARP packet
			if (safe_read(sock_fd, &p, sizeof(p)) < 0) {
				bb_perror_msg(bb_msg_read_error);
				cleanup(EXIT_FAILURE);
			}
			if (p.eth.ether_type != htons(ETHERTYPE_ARP))
				continue;
#ifdef DEBUG
			{
				struct ether_addr *sha = (struct ether_addr *) p.arp.arp_sha;
				struct ether_addr *tha = (struct ether_addr *) p.arp.arp_tha;
				struct in_addr *spa = (struct in_addr *) p.arp.arp_spa;
				struct in_addr *tpa = (struct in_addr *) p.arp.arp_tpa;
				VDBG("%s recv arp type=%d, op=%d,\n",
					argv_intf, ntohs(p.eth.ether_type),
					ntohs(p.arp.arp_op));
				VDBG("\tsource=%s %s\n",
					ether_ntoa(sha),
					inet_ntoa(*spa));
				VDBG("\ttarget=%s %s\n",
					ether_ntoa(tha),
					inet_ntoa(*tpa));
			}
#endif
			if (p.arp.arp_op != htons(ARPOP_REQUEST)
			 && p.arp.arp_op != htons(ARPOP_REPLY))
				continue;

			source_ip_conflict = 0;
			target_ip_conflict = 0;

			if (memcmp(p.arp.arp_spa, &ip.s_addr, sizeof(struct in_addr)) == 0
			 && memcmp(&p.arp.arp_sha, &eth_addr, ETH_ALEN) != 0
			) {
				source_ip_conflict = 1;
			}
			if (p.arp.arp_op == htons(ARPOP_REQUEST)
			 && memcmp(p.arp.arp_tpa, &ip.s_addr, sizeof(struct in_addr)) == 0
			 && memcmp(&p.arp.arp_tha, &eth_addr, ETH_ALEN) != 0
			) {
				target_ip_conflict = 1;
			}

			VDBG("state = %d, source ip conflict = %d, target ip conflict = %d\n",
				state, source_ip_conflict, target_ip_conflict);
			switch (state) {
			case PROBE:
			case ANNOUNCE:
				// When probing or announcing, check for source IP conflicts
				// and other hosts doing ARP probes (target IP conflicts).
				if (source_ip_conflict || target_ip_conflict) {
					conflicts++;
					if (conflicts >= MAX_CONFLICTS) {
						VDBG("%s ratelimit\n", argv_intf);
						timeout_ms = RATE_LIMIT_INTERVAL * 1000;
						state = RATE_LIMIT_PROBE;
					}

					// restart the whole protocol
					ip.s_addr = pick();
					timeout_ms = 0;
					nprobes = 0;
					nclaims = 0;
				}
				break;
			case MONITOR:
				// If a conflict, we try to defend with a single ARP probe.
				if (source_ip_conflict) {
					VDBG("monitor conflict -- defending\n");
					state = DEFEND;
					timeout_ms = DEFEND_INTERVAL * 1000;
					arp(/* ARPOP_REQUEST, */
						/* &eth_addr, */ ip,
						&eth_addr, ip);
				}
				break;
			case DEFEND:
				// Well, we tried.  Start over (on conflict).
				if (source_ip_conflict) {
					state = PROBE;
					VDBG("defend conflict -- starting over\n");
					ready = 0;
					run(argv, "deconfig", &ip);

					// restart the whole protocol
					ip.s_addr = pick();
					timeout_ms = 0;
					nprobes = 0;
					nclaims = 0;
				}
				break;
			default:
				// Invalid, should never happen.  Restart the whole protocol.
				VDBG("invalid state -- starting over\n");
				state = PROBE;
				ip.s_addr = pick();
				timeout_ms = 0;
				nprobes = 0;
				nclaims = 0;
				break;
			} // switch state
			break; // case 1 (packets arriving)
		} // switch poll
	} // while (1)
#undef argv_intf
}
コード例 #3
0
ファイル: zcip.c プロジェクト: andy-padavan/rt-n56u
int zcip_main(int argc UNUSED_PARAM, char **argv)
{
	char *r_opt;
	const char *l_opt = "169.254.0.0";
	int state;
	int nsent;
	unsigned opts;

	// Ugly trick, but I want these zeroed in one go
	struct {
		const struct ether_addr null_ethaddr;
		struct ifreq ifr;
		uint32_t chosen_nip;
		int conflicts;
		int timeout_ms; // must be signed
		int verbose;
	} L;
#define null_ethaddr (L.null_ethaddr)
#define ifr          (L.ifr         )
#define chosen_nip   (L.chosen_nip  )
#define conflicts    (L.conflicts   )
#define timeout_ms   (L.timeout_ms  )
#define verbose      (L.verbose     )

	memset(&L, 0, sizeof(L));
	INIT_G();

#define FOREGROUND (opts & 1)
#define QUIT       (opts & 2)
	// Parse commandline: prog [options] ifname script
	// exactly 2 args; -v accumulates and implies -f
	opt_complementary = "=2:vv:vf";
	opts = getopt32(argv, "fqr:l:v", &r_opt, &l_opt, &verbose);
#if !BB_MMU
	// on NOMMU reexec early (or else we will rerun things twice)
	if (!FOREGROUND)
		bb_daemonize_or_rexec(0 /*was: DAEMON_CHDIR_ROOT*/, argv);
#endif
	// Open an ARP socket
	// (need to do it before openlog to prevent openlog from taking
	// fd 3 (sock_fd==3))
	xmove_fd(xsocket(AF_PACKET, SOCK_PACKET, htons(ETH_P_ARP)), sock_fd);
	if (!FOREGROUND) {
		// do it before all bb_xx_msg calls
		openlog(applet_name, 0, LOG_DAEMON);
		logmode |= LOGMODE_SYSLOG;
	}
	bb_logenv_override();

	{ // -l n.n.n.n
		struct in_addr net;
		if (inet_aton(l_opt, &net) == 0
		 || (net.s_addr & htonl(IN_CLASSB_NET)) != net.s_addr
		) {
			bb_error_msg_and_die("invalid network address");
		}
		G.localnet_ip = ntohl(net.s_addr);
	}
	if (opts & 4) { // -r n.n.n.n
		struct in_addr ip;
		if (inet_aton(r_opt, &ip) == 0
		 || (ntohl(ip.s_addr) & IN_CLASSB_NET) != G.localnet_ip
		) {
			bb_error_msg_and_die("invalid link address");
		}
		chosen_nip = ip.s_addr;
	}
	argv += optind - 1;

	/* Now: argv[0]:junk argv[1]:intf argv[2]:script argv[3]:NULL */
	/* We need to make space for script argument: */
	argv[0] = argv[1];
	argv[1] = argv[2];
	/* Now: argv[0]:intf argv[1]:script argv[2]:junk argv[3]:NULL */
#define argv_intf (argv[0])

	xsetenv("interface", argv_intf);

	// Initialize the interface (modprobe, ifup, etc)
	if (run(argv, "init", 0))
		return EXIT_FAILURE;

	// Initialize G.iface_sockaddr
	// G.iface_sockaddr is: { u16 sa_family; u8 sa_data[14]; }
	//memset(&G.iface_sockaddr, 0, sizeof(G.iface_sockaddr));
	//TODO: are we leaving sa_family == 0 (AF_UNSPEC)?!
	safe_strncpy(G.iface_sockaddr.sa_data, argv_intf, sizeof(G.iface_sockaddr.sa_data));

	// Bind to the interface's ARP socket
	xbind(sock_fd, &G.iface_sockaddr, sizeof(G.iface_sockaddr));

	// Get the interface's ethernet address
	//memset(&ifr, 0, sizeof(ifr));
	strncpy_IFNAMSIZ(ifr.ifr_name, argv_intf);
	xioctl(sock_fd, SIOCGIFHWADDR, &ifr);
	memcpy(&G.our_ethaddr, &ifr.ifr_hwaddr.sa_data, ETH_ALEN);

	// Start with some stable ip address, either a function of
	// the hardware address or else the last address we used.
	// we are taking low-order four bytes, as top-order ones
	// aren't random enough.
	// NOTE: the sequence of addresses we try changes only
	// depending on when we detect conflicts.
	{
		uint32_t t;
		move_from_unaligned32(t, ((char *)&G.our_ethaddr + 2));
		t += getpid();
		srand(t);
	}
	// FIXME cases to handle:
	//  - zcip already running!
	//  - link already has local address... just defend/update

	// Daemonize now; don't delay system startup
	if (!FOREGROUND) {
#if BB_MMU
		bb_daemonize(0 /*was: DAEMON_CHDIR_ROOT*/);
#endif
		bb_info_msg("start, interface %s", argv_intf);
	}

	// Run the dynamic address negotiation protocol,
	// restarting after address conflicts:
	//  - start with some address we want to try
	//  - short random delay
	//  - arp probes to see if another host uses it
	//    00:04:e2:64:23:c2 > ff:ff:ff:ff:ff:ff arp who-has 169.254.194.171 tell 0.0.0.0
	//  - arp announcements that we're claiming it
	//    00:04:e2:64:23:c2 > ff:ff:ff:ff:ff:ff arp who-has 169.254.194.171 (00:04:e2:64:23:c2) tell 169.254.194.171
	//  - use it
	//  - defend it, within limits
	// exit if:
	// - address is successfully obtained and -q was given:
	//   run "<script> config", then exit with exitcode 0
	// - poll error (when does this happen?)
	// - read error (when does this happen?)
	// - sendto error (in send_arp_request()) (when does this happen?)
	// - revents & POLLERR (link down). run "<script> deconfig" first
	if (chosen_nip == 0) {
 new_nip_and_PROBE:
		chosen_nip = pick_nip();
	}
	nsent = 0;
	state = PROBE;
	while (1) {
		struct pollfd fds[1];
		unsigned deadline_us;
		struct arp_packet p;
		int ip_conflict;
		int n;

		fds[0].fd = sock_fd;
		fds[0].events = POLLIN;
		fds[0].revents = 0;

		// Poll, being ready to adjust current timeout
		if (!timeout_ms) {
			timeout_ms = random_delay_ms(PROBE_WAIT);
			// FIXME setsockopt(sock_fd, SO_ATTACH_FILTER, ...) to
			// make the kernel filter out all packets except
			// ones we'd care about.
		}
		// Set deadline_us to the point in time when we timeout
		deadline_us = MONOTONIC_US() + timeout_ms * 1000;

		VDBG("...wait %d %s nsent=%u\n",
				timeout_ms, argv_intf, nsent);

		n = safe_poll(fds, 1, timeout_ms);
		if (n < 0) {
			//bb_perror_msg("poll"); - done in safe_poll
			return EXIT_FAILURE;
		}
		if (n == 0) { // timed out?
			VDBG("state:%d\n", state);
			switch (state) {
			case PROBE:
				// No conflicting ARP packets were seen:
				// we can progress through the states
				if (nsent < PROBE_NUM) {
					nsent++;
					VDBG("probe/%u %s@%s\n",
							nsent, argv_intf, nip_to_a(chosen_nip));
					timeout_ms = PROBE_MIN * 1000;
					timeout_ms += random_delay_ms(PROBE_MAX - PROBE_MIN);
					send_arp_request(0, &null_ethaddr, chosen_nip);
					continue;
				}
  				// Switch to announce state
				nsent = 0;
				state = ANNOUNCE;
				goto send_announce;
			case ANNOUNCE:
				// No conflicting ARP packets were seen:
				// we can progress through the states
				if (nsent < ANNOUNCE_NUM) {
 send_announce:
					nsent++;
					VDBG("announce/%u %s@%s\n",
							nsent, argv_intf, nip_to_a(chosen_nip));
					timeout_ms = ANNOUNCE_INTERVAL * 1000;
					send_arp_request(chosen_nip, &G.our_ethaddr, chosen_nip);
					continue;
				}
				// Switch to monitor state
				// FIXME update filters
				run(argv, "config", chosen_nip);
				// NOTE: all other exit paths should deconfig...
				if (QUIT)
					return EXIT_SUCCESS;
				// fall through: switch to MONITOR
			default:
			// case DEFEND:
			// case MONITOR: (shouldn't happen, MONITOR timeout is infinite)
				// Defend period ended with no ARP replies - we won
				timeout_ms = -1; // never timeout in monitor state
				state = MONITOR;
				continue;
			}
		}

		// Packet arrived, or link went down.
		// We need to adjust the timeout in case we didn't receive
		// a conflicting packet.
		if (timeout_ms > 0) {
			unsigned diff = deadline_us - MONOTONIC_US();
			if ((int)(diff) < 0) {
				// Current time is greater than the expected timeout time.
				diff = 0;
			}
			VDBG("adjusting timeout\n");
			timeout_ms = (diff / 1000) | 1; // never 0
		}

		if ((fds[0].revents & POLLIN) == 0) {
			if (fds[0].revents & POLLERR) {
				// FIXME: links routinely go down;
				// this shouldn't necessarily exit.
				bb_error_msg("iface %s is down", argv_intf);
				if (state >= MONITOR) {
					// Only if we are in MONITOR or DEFEND
					run(argv, "deconfig", chosen_nip);
				}
				return EXIT_FAILURE;
			}
			continue;
		}

		// Read ARP packet
		if (safe_read(sock_fd, &p, sizeof(p)) < 0) {
			bb_perror_msg_and_die(bb_msg_read_error);
		}

		if (p.eth.ether_type != htons(ETHERTYPE_ARP))
			continue;
		if (p.arp.arp_op != htons(ARPOP_REQUEST)
		 && p.arp.arp_op != htons(ARPOP_REPLY)
		) {
			continue;
		}
#ifdef DEBUG
		{
			struct ether_addr *sha = (struct ether_addr *) p.arp.arp_sha;
			struct ether_addr *tha = (struct ether_addr *) p.arp.arp_tha;
			struct in_addr *spa = (struct in_addr *) p.arp.arp_spa;
			struct in_addr *tpa = (struct in_addr *) p.arp.arp_tpa;
			VDBG("source=%s %s\n", ether_ntoa(sha),	inet_ntoa(*spa));
			VDBG("target=%s %s\n", ether_ntoa(tha),	inet_ntoa(*tpa));
		}
#endif
		ip_conflict = 0;
		if (memcmp(&p.arp.arp_sha, &G.our_ethaddr, ETH_ALEN) != 0) {
			if (memcmp(p.arp.arp_spa, &chosen_nip, 4) == 0) {
				// A probe or reply with source_ip == chosen ip
				ip_conflict = 1;
			}
			if (p.arp.arp_op == htons(ARPOP_REQUEST)
			 && memcmp(p.arp.arp_spa, &const_int_0, 4) == 0
			 && memcmp(p.arp.arp_tpa, &chosen_nip, 4) == 0
			) {
				// A probe with source_ip == 0.0.0.0, target_ip == chosen ip:
				// another host trying to claim this ip!
				ip_conflict |= 2;
			}
		}
		VDBG("state:%d ip_conflict:%d\n", state, ip_conflict);
		if (!ip_conflict)
			continue;

		// Either src or target IP conflict exists
		if (state <= ANNOUNCE) {
			// PROBE or ANNOUNCE
			conflicts++;
			timeout_ms = PROBE_MIN * 1000
				+ CONFLICT_MULTIPLIER * random_delay_ms(conflicts);
			goto new_nip_and_PROBE;
		}

		// MONITOR or DEFEND: only src IP conflict is a problem
		if (ip_conflict & 1) {
			if (state == MONITOR) {
				// Src IP conflict, defend with a single ARP probe
				VDBG("monitor conflict - defending\n");
				timeout_ms = DEFEND_INTERVAL * 1000;
				state = DEFEND;
				send_arp_request(chosen_nip, &G.our_ethaddr, chosen_nip);
				continue;
			}
			// state == DEFEND
			// Another src IP conflict, start over
			VDBG("defend conflict - starting over\n");
			run(argv, "deconfig", chosen_nip);
			conflicts = 0;
			timeout_ms = 0;
			goto new_nip_and_PROBE;
		}
		// Note: if we only have a target IP conflict here (ip_conflict & 2),
		// IOW: if we just saw this sort of ARP packet:
		//  aa:bb:cc:dd:ee:ff > xx:xx:xx:xx:xx:xx arp who-has <chosen_nip> tell 0.0.0.0
		// we expect _kernel_ to respond to that, because <chosen_nip>
		// is (expected to be) configured on this iface.
	} // while (1)
#undef argv_intf
}
コード例 #4
0
ファイル: link_local.c プロジェクト: harayz/n900
static void link_local_timeout(void)
{
	switch (state) {
	case PROBE:
		/* timeouts in the PROBE state mean no conflicting ARP packets
		   have been received, so we can progress through the states */
		if (nprobes < PROBE_NUM) {
			nprobes++;
			debug_cond(DEBUG_LL_STATE, "probe/%u %s@%pI4\n",
					nprobes, eth_get_name(), &ip);
			arp_raw_request(0, NetEtherNullAddr, ip);
			timeout_ms = PROBE_MIN * 1000;
			timeout_ms += random_delay_ms(PROBE_MAX - PROBE_MIN);
		} else {
			/* Switch to announce state */
			state = ANNOUNCE;
			nclaims = 0;
			debug_cond(DEBUG_LL_STATE, "announce/%u %s@%pI4\n",
					nclaims, eth_get_name(), &ip);
			arp_raw_request(ip, NetOurEther, ip);
			timeout_ms = ANNOUNCE_INTERVAL * 1000;
		}
		break;
	case RATE_LIMIT_PROBE:
		/* timeouts in the RATE_LIMIT_PROBE state mean no conflicting
		   ARP packets have been received, so we can move immediately
		   to the announce state */
		state = ANNOUNCE;
		nclaims = 0;
		debug_cond(DEBUG_LL_STATE, "announce/%u %s@%pI4\n",
				nclaims, eth_get_name(), &ip);
		arp_raw_request(ip, NetOurEther, ip);
		timeout_ms = ANNOUNCE_INTERVAL * 1000;
		break;
	case ANNOUNCE:
		/* timeouts in the ANNOUNCE state mean no conflicting ARP
		   packets have been received, so we can progress through
		   the states */
		if (nclaims < ANNOUNCE_NUM) {
			nclaims++;
			debug_cond(DEBUG_LL_STATE, "announce/%u %s@%pI4\n",
					nclaims, eth_get_name(), &ip);
			arp_raw_request(ip, NetOurEther, ip);
			timeout_ms = ANNOUNCE_INTERVAL * 1000;
		} else {
			/* Switch to monitor state */
			state = MONITOR;
			printf("Successfully assigned %pI4\n", &ip);
			NetCopyIP(&NetOurIP, &ip);
			ready = 1;
			conflicts = 0;
			timeout_ms = -1;
			/* Never timeout in the monitor state */
			NetSetTimeout(0, NULL);

			/* NOTE: all other exit paths should deconfig ... */
			net_set_state(NETLOOP_SUCCESS);
			return;
		}
		break;
	case DEFEND:
		/* We won!  No ARP replies, so just go back to monitor */
		state = MONITOR;
		timeout_ms = -1;
		conflicts = 0;
		break;
	default:
		/* Invalid, should never happen.  Restart the whole protocol */
		state = PROBE;
		ip = pick();
		timeout_ms = 0;
		nprobes = 0;
		nclaims = 0;
		break;
	}
	configure_wait();
}