/* Subroutine */ int analys_(real *speech, integer *voice, integer *pitch, real *rms, real *rc, struct lpc10_encoder_state *st) { /* Initialized data */ static integer tau[60] = { 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34, 35,36,37,38,39,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72, 74,76,78,80,84,88,92,96,100,104,108,112,116,120,124,128,132,136, 140,144,148,152,156 }; static integer buflim[4] = { 181,720,25,720 }; static real precoef = .9375f; /* System generated locals */ integer i__1; /* Local variables */ real amdf[60]; integer half; real abuf[156]; real *bias; extern /* Subroutine */ int tbdm_(real *, integer *, integer *, integer *, real *, integer *, integer *, integer *); integer *awin; integer midx, ewin[6] /* was [2][3] */; real ivrc[2], temp; real *zpre; integer *vwin; integer i__, j, lanal; extern /* Subroutine */ int rcchk_(integer *, real *, real *), mload_( integer *, integer *, integer *, real *, real *, real *); real *inbuf, *pebuf; real *lpbuf, *ivbuf; real *rcbuf; integer *osbuf; extern /* Subroutine */ int onset_(real *, integer *, integer *, integer * , integer *, integer *, integer *, struct lpc10_encoder_state *); integer *osptr; extern int placea_(integer *, integer * , integer *, integer *, integer *, integer *, integer *, integer * , integer *), dcbias_(integer *, real *, real *), placev_(integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); integer ipitch; integer *obound; extern /* Subroutine */ int preemp_(real *, real *, integer *, real *, real *), voicin_(integer *, real *, real *, integer *, integer *, real *, real *, integer *, real *, integer *, integer *, integer *, struct lpc10_encoder_state *); integer *voibuf; integer mintau; real *rmsbuf; extern /* Subroutine */ int lpfilt_(real *, real *, integer *, integer *), ivfilt_(real *, real *, integer *, integer *, real *), energy_( integer *, real *, real *), invert_(integer *, real *, real *, real *); integer minptr, maxptr; extern /* Subroutine */ int dyptrk_(real *, integer *, integer *, integer *, integer *, integer *, struct lpc10_encoder_state *); real phi[100] /* was [10][10] */, psi[10]; /* LPC Processing control variables: */ /* *** Read-only: initialized in setup */ /* Files for Speech, Parameter, and Bitstream Input & Output, */ /* and message and debug outputs. */ /* Here are the only files which use these variables: */ /* lpcsim.f setup.f trans.f error.f vqsetup.f */ /* Many files which use fdebug are not listed, since it is only used in */ /* those other files conditionally, to print trace statements. */ /* integer fsi, fso, fpi, fpo, fbi, fbo, pbin, fmsg, fdebug */ /* LPC order, Frame size, Quantization rate, Bits per frame, */ /* Error correction */ /* Subroutine SETUP is the only place where order is assigned a value, */ /* and that value is 10. It could increase efficiency 1% or so to */ /* declare order as a constant (i.e., a Fortran PARAMETER) instead of as */ /* a variable in a COMMON block, since it is used in many places in the */ /* core of the coding and decoding routines. Actually, I take that back. */ /* At least when compiling with f2c, the upper bound of DO loops is */ /* stored in a local variable before the DO loop begins, and then that is */ /* compared against on each iteration. */ /* Similarly for lframe, which is given a value of MAXFRM in SETUP. */ /* Similarly for quant, which is given a value of 2400 in SETUP. quant */ /* is used in only a few places, and never in the core coding and */ /* decoding routines, so it could be eliminated entirely. */ /* nbits is similar to quant, and is given a value of 54 in SETUP. */ /* corrp is given a value of .TRUE. in SETUP, and is only used in the */ /* subroutines ENCODE and DECODE. It doesn't affect the speed of the */ /* coder significantly whether it is .TRUE. or .FALSE., or whether it is */ /* a constant or a variable, since it is only examined once per frame. */ /* Leaving it as a variable that is set to .TRUE. seems like a good */ /* idea, since it does enable some error-correction capability for */ /* unvoiced frames, with no change in the coding rate, and no noticeable */ /* quality difference in the decoded speech. */ /* integer quant, nbits */ /* *** Read/write: variables for debugging, not needed for LPC algorithm */ /* Current frame, Unstable frames, Output clip count, Max onset buffer, */ /* Debug listing detail level, Line count on listing page */ /* nframe is not needed for an embedded LPC10 at all. */ /* nunsfm is initialized to 0 in SETUP, and incremented in subroutine */ /* ERROR, which is only called from RCCHK. When LPC10 is embedded into */ /* an application, I would recommend removing the call to ERROR in RCCHK, */ /* and remove ERROR and nunsfm completely. */ /* iclip is initialized to 0 in SETUP, and incremented in entry SWRITE in */ /* sread.f. When LPC10 is embedded into an application, one might want */ /* to cause it to be incremented in a routine that takes the output of */ /* SYNTHS and sends it to an audio device. It could be optionally */ /* displayed, for those that might want to know what it is. */ /* maxosp is never initialized to 0 in SETUP, although it probably should */ /* be, and it is updated in subroutine ANALYS. I doubt that its value */ /* would be of much interest to an application in which LPC10 is */ /* embedded. */ /* listl and lincnt are not needed for an embedded LPC10 at all. */ /* integer nframe, nunsfm, iclip, maxosp, listl, lincnt */ /* common /contrl/ fsi, fso, fpi, fpo, fbi, fbo, pbin, fmsg, fdebug */ /* common /contrl/ quant, nbits */ /* common /contrl/ nframe, nunsfm, iclip, maxosp, listl, lincnt */ /* Arguments to entry PITDEC (below) */ /* Parameters/constants */ /* Constants */ /* NF = Number of frames */ /* AF = Frame in which analysis is done */ /* OSLEN = Length of the onset buffer */ /* LTAU = Number of pitch lags */ /* SBUFL, SBUFH = Start and end index of speech buffers */ /* LBUFL, LBUFH = Start and end index of LPF speech buffer */ /* MINWIN, MAXWIN = Min and Max length of voicing (and analysis) windows */ /* PWLEN, PWINH, PWINL = Length, upper and lower limits of pitch window */ /* DVWINL, DVWINH = Default lower and upper limits of voicing window */ /* The tables TAU and BUFLIM, and the variable PRECOEF, are not */ /* Fortran PARAMETER's, but they are initialized with DATA */ /* statements, and never modified. Thus, they need not have SAVE */ /* statements for them to keep their values from one invocation to */ /* the next. */ /* Local variables that need not be saved */ /* Local state */ /* Data Buffers */ /* INBUF Raw speech (with DC bias removed each frame) */ /* PEBUF Preemphasized speech */ /* LPBUF Low pass speech buffer */ /* IVBUF Inverse filtered speech */ /* OSBUF Indexes of onsets in speech buffers */ /* VWIN Voicing window indices */ /* AWIN Analysis window indices */ /* EWIN Energy window indices */ /* VOIBUF Voicing decisions on windows in VWIN */ /* RMSBUF RMS energy */ /* RCBUF Reflection Coefficients */ /* Pitch is handled separately from the above parameters. */ /* The following variables deal with pitch: */ /* MIDX Encoded initial pitch estimate for analysis frame */ /* IPITCH Initial pitch computed for frame AF (decoded from MIDX) */ /* PITCH The encoded pitch value (index into TAU) for the present */ /* frame (delayed and smoothed by Dyptrack) */ /* Parameter adjustments */ if (speech) { --speech; } if (voice) { --voice; } if (rc) { --rc; } /* Function Body */ /* Calculations are done on future frame due to requirements */ /* of the pitch tracker. Delay RMS and RC's 2 frames to give */ /* current frame parameters on return. */ /* Update all buffers */ inbuf = &(st->inbuf[0]); pebuf = &(st->pebuf[0]); lpbuf = &(st->lpbuf[0]); ivbuf = &(st->ivbuf[0]); bias = &(st->bias); osbuf = &(st->osbuf[0]); osptr = &(st->osptr); obound = &(st->obound[0]); vwin = &(st->vwin[0]); awin = &(st->awin[0]); voibuf = &(st->voibuf[0]); rmsbuf = &(st->rmsbuf[0]); rcbuf = &(st->rcbuf[0]); zpre = &(st->zpre); i__1 = 720 - contrl_1.lframe; for (i__ = 181; i__ <= i__1; ++i__) { inbuf[i__ - 181] = inbuf[contrl_1.lframe + i__ - 181]; pebuf[i__ - 181] = pebuf[contrl_1.lframe + i__ - 181]; } i__1 = 540 - contrl_1.lframe; for (i__ = 229; i__ <= i__1; ++i__) { ivbuf[i__ - 229] = ivbuf[contrl_1.lframe + i__ - 229]; } i__1 = 720 - contrl_1.lframe; for (i__ = 25; i__ <= i__1; ++i__) { lpbuf[i__ - 25] = lpbuf[contrl_1.lframe + i__ - 25]; } j = 1; i__1 = (*osptr) - 1; for (i__ = 1; i__ <= i__1; ++i__) { if (osbuf[i__ - 1] > contrl_1.lframe) { osbuf[j - 1] = osbuf[i__ - 1] - contrl_1.lframe; ++j; } } *osptr = j; voibuf[0] = voibuf[2]; voibuf[1] = voibuf[3]; for (i__ = 1; i__ <= 2; ++i__) { vwin[(i__ << 1) - 2] = vwin[((i__ + 1) << 1) - 2] - contrl_1.lframe; vwin[(i__ << 1) - 1] = vwin[((i__ + 1) << 1) - 1] - contrl_1.lframe; awin[(i__ << 1) - 2] = awin[((i__ + 1) << 1) - 2] - contrl_1.lframe; awin[(i__ << 1) - 1] = awin[((i__ + 1) << 1) - 1] - contrl_1.lframe; /* EWIN(*,J) is unused for J .NE. AF, so the following shift is */ /* unnecessary. It also causes error messages when the C versio n */ /* of the code created from this by f2c is run with Purify. It */ /* correctly complains that uninitialized memory is being read. */ /* EWIN(1,I) = EWIN(1,I+1) - LFRAME */ /* EWIN(2,I) = EWIN(2,I+1) - LFRAME */ obound[i__ - 1] = obound[i__]; voibuf[i__ * 2] = voibuf[(i__ + 1) * 2]; voibuf[(i__ << 1) + 1] = voibuf[((i__ + 1) << 1) + 1]; rmsbuf[i__ - 1] = rmsbuf[i__]; i__1 = contrl_1.order; for (j = 1; j <= i__1; ++j) { rcbuf[j + i__ * 10 - 11] = rcbuf[j + (i__ + 1) * 10 - 11]; } } /* Copy input speech, scale to sign+12 bit integers */ /* Remove long term DC bias. */ /* If the average value in the frame was over 1/4096 (after current */ /* BIAS correction), then subtract that much more from samples in */ /* next frame. If the average value in the frame was under */ /* -1/4096, add 1/4096 more to samples in next frame. In all other */ /* cases, keep BIAS the same. */ temp = 0.f; i__1 = contrl_1.lframe; for (i__ = 1; i__ <= i__1; ++i__) { inbuf[720 - contrl_1.lframe + i__ - 181] = speech[i__] * 4096.f - (*bias); temp += inbuf[720 - contrl_1.lframe + i__ - 181]; } if (temp > (real) contrl_1.lframe) { *bias += 1; } if (temp < (real) (-contrl_1.lframe)) { *bias += -1; } /* Place Voicing Window */ i__ = 721 - contrl_1.lframe; preemp_(&inbuf[i__ - 181], &pebuf[i__ - 181], &contrl_1.lframe, &precoef, zpre); onset_(pebuf, osbuf, osptr, &c__10, &c__181, &c__720, &contrl_1.lframe, st); /* MAXOSP is just a debugging variable. */ /* MAXOSP = MAX( MAXOSP, OSPTR ) */ placev_(osbuf, osptr, &c__10, &obound[2], vwin, &c__3, &contrl_1.lframe, &c__90, &c__156, &c__307, &c__462); /* The Pitch Extraction algorithm estimates the pitch for a frame */ /* of speech by locating the minimum of the average magnitude difference */ /* function (AMDF). The AMDF operates on low-pass, inverse filtered */ /* speech. (The low-pass filter is an 800 Hz, 19 tap, equiripple, FIR */ /* filter and the inverse filter is a 2nd-order LPC filter.) The pitch */ /* estimate is later refined by dynamic programming (DYPTRK). However, */ /* since some of DYPTRK's parameters are a function of the voicing */ /* decisions, a voicing decision must precede the final pitch estimation. */ /* See subroutines LPFILT, IVFILT, and TBDM. */ /* LPFILT reads indices LBUFH-LFRAME-29 = 511 through LBUFH = 720 */ /* of INBUF, and writes indices LBUFH+1-LFRAME = 541 through LBUFH */ /* = 720 of LPBUF. */ lpfilt_(&inbuf[228], &lpbuf[384], &c__312, &contrl_1.lframe); /* IVFILT reads indices (PWINH-LFRAME-7) = 353 through PWINH = 540 */ /* of LPBUF, and writes indices (PWINH-LFRAME+1) = 361 through */ /* PWINH = 540 of IVBUF. */ ivfilt_(&lpbuf[204], ivbuf, &c__312, &contrl_1.lframe, ivrc); /* TBDM reads indices PWINL = 229 through */ /* (PWINL-1)+MAXWIN+(TAU(LTAU)-TAU(1))/2 = 452 of IVBUF, and writes */ /* indices 1 through LTAU = 60 of AMDF. */ tbdm_(ivbuf, &c__156, tau, &c__60, amdf, &minptr, &maxptr, &mintau); /* Voicing decisions are made for each half frame of input speech. */ /* An initial voicing classification is made for each half of the */ /* analysis frame, and the voicing decisions for the present frame */ /* are finalized. See subroutine VOICIN. */ /* The voicing detector (VOICIN) classifies the input signal as */ /* unvoiced (including silence) or voiced using the AMDF windowed */ /* maximum-to-minimum ratio, the zero crossing rate, energy measures, */ /* reflection coefficients, and prediction gains. */ /* The pitch and voicing rules apply smoothing and isolated */ /* corrections to the pitch and voicing estimates and, in the process, */ /* introduce two frames of delay into the corrected pitch estimates and */ /* voicing decisions. */ for (half = 1; half <= 2; ++half) { voicin_(&vwin[4], inbuf, lpbuf, buflim, &half, &amdf[minptr - 1], & amdf[maxptr - 1], &mintau, ivrc, obound, voibuf, &c__3, st); } /* Find the minimum cost pitch decision over several frames */ /* given the current voicing decision and the AMDF array */ dyptrk_(amdf, &c__60, &minptr, &voibuf[7], pitch, &midx, st); ipitch = tau[midx - 1]; /* Place spectrum analysis and energy windows */ placea_(&ipitch, voibuf, &obound[2], &c__3, vwin, awin, ewin, & contrl_1.lframe, &c__156); /* Remove short term DC bias over the analysis window, Put result in ABUF */ lanal = awin[5] + 1 - awin[4]; dcbias_(&lanal, &pebuf[awin[4] - 181], abuf); /* ABUF(1:LANAL) is now defined. It is equal to */ /* PEBUF(AWIN(1,AF):AWIN(2,AF)) corrected for short term DC bias. */ /* Compute RMS over integer number of pitch periods within the */ /* analysis window. */ /* Note that in a hardware implementation this computation may be */ /* simplified by using diagonal elements of PHI computed by MLOAD. */ i__1 = ewin[5] - ewin[4] + 1; energy_(&i__1, &abuf[ewin[4] - awin[4]], &rmsbuf[2]); /* Matrix load and invert, check RC's for stability */ mload_(&contrl_1.order, &c__1, &lanal, abuf, phi, psi); invert_(&contrl_1.order, phi, psi, &rcbuf[20]); rcchk_(&contrl_1.order, &rcbuf[10], &rcbuf[20]); /* Set return parameters */ voice[1] = voibuf[2]; voice[2] = voibuf[3]; *rms = rmsbuf[0]; i__1 = contrl_1.order; for (i__ = 1; i__ <= i__1; ++i__) { rc[i__] = rcbuf[i__ - 1]; } return 0; } /* analys_ */
/*< SUBROUTINE ANALYS(SPEECH, VOICE, PITCH, RMS, RC) >*/ /* Subroutine */ int analys_0_(int n__, real *speech, integer *voice, integer *pitch, real *rms, real *rc, integer *ptau) { /* Initialized data */ static integer tau[60] = { 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34, 35,36,37,38,39,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72, 74,76,78,80,84,88,92,96,100,104,108,112,116,120,124,128,132,136, 140,144,148,152,156 }; static integer buflim[4] = { 181,720,25,720 }; static real precoef = .9375f; static logical first = TRUE_; /* System generated locals */ integer i__1; /* Local variables */ real amdf[60]; integer half; real abuf[156]; static real bias; extern /* Subroutine */ int tbdm_(real *, integer *, integer *, integer *, real *, integer *, integer *, integer *); static integer awin[6] /* was [2][3] */; integer midx, ewin[6] /* was [2][3] */; real ivrc[2], temp; static real zpre; static integer vwin[6] /* was [2][3] */; integer i__, j, lanal; extern /* Subroutine */ int rcchk_(integer *, real *, real *), mload_( integer *, integer *, integer *, real *, real *, real *); static real pebuf[540], rcbuf[30] /* was [10][3] */, inbuf[540], lpbuf[ 696], ivbuf[312]; static integer osbuf[10]; extern /* Subroutine */ int onset_(real *, integer *, integer *, integer * , integer *, integer *, integer *); static integer osptr; extern /* Subroutine */ int initonset_(void), placea_(integer *, integer * , integer *, integer *, integer *, integer *, integer *, integer * , integer *), dcbias_(integer *, real *, real *), placev_(integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); integer ipitch; static integer obound[3]; extern /* Subroutine */ int preemp_(real *, real *, integer *, real *, real *), voicin_(integer *, real *, real *, integer *, integer *, real *, real *, integer *, real *, integer *, integer *, integer * ); static integer voibuf[8] /* was [2][4] */; integer mintau; static real rmsbuf[3]; extern /* Subroutine */ int lpfilt_(real *, real *, integer *, integer *), ivfilt_(real *, real *, integer *, integer *, real *), energy_( integer *, real *, real *), invert_(integer *, real *, real *, real *); integer minptr, maxptr; extern /* Subroutine */ int dyptrk_(real *, integer *, integer *, integer *, integer *, integer *), initvoicin_(void), initdyptrk_(void); real phi[100] /* was [10][10] */, psi[10]; /*< INCLUDE 'config.fh' >*/ /*< INCLUDE 'contrl.fh' >*/ /* $Log: analys.c,v $ /* Revision 1.2 2001/01/25 23:45:49 jpoehlmann /* Version 1.7c. Identical with files on the ftp Server ftp.franken.de. /* (+ 1 patch in cli.c, wich is on the server too) /* Not compiled now /* */ /* Revision 1.3 1996/03/29 22:03:47 jaf */ /* Removed definitions for any constants that were no longer used. */ /* Revision 1.2 1996/03/26 19:34:33 jaf */ /* Added comments indicating which constants are not needed in an */ /* application that uses the LPC-10 coder. */ /* Revision 1.1 1996/02/07 14:43:51 jaf */ /* Initial revision */ /* LPC Configuration parameters: */ /* Frame size, Prediction order, Pitch period */ /*< parameter (MAXFRM = 180, MAXORD = 10, MAXPIT = 156) >*/ /*< REAL SPEECH(LFRAME) >*/ /* Arguments to ANALYS */ /* $Log: analys.c,v $ /* Revision 1.2 2001/01/25 23:45:49 jpoehlmann /* Version 1.7c. Identical with files on the ftp Server ftp.franken.de. /* (+ 1 patch in cli.c, wich is on the server too) /* Not compiled now /* */ /* Revision 1.3 1996/03/29 22:05:55 jaf */ /* Commented out the common block variables that are not needed by the */ /* embedded version. */ /* Revision 1.2 1996/03/26 19:34:50 jaf */ /* Added comments indicating which constants are not needed in an */ /* application that uses the LPC-10 coder. */ /* Revision 1.1 1996/02/07 14:44:09 jaf */ /* Initial revision */ /* LPC Processing control variables: */ /* *** Read-only: initialized in setup */ /* Files for Speech, Parameter, and Bitstream Input & Output, */ /* and message and debug outputs. */ /* Here are the only files which use these variables: */ /* lpcsim.f setup.f trans.f error.f vqsetup.f */ /* Many files which use fdebug are not listed, since it is only used in */ /* those other files conditionally, to print trace statements. */ /* integer fsi, fso, fpi, fpo, fbi, fbo, pbin, fmsg, fdebug */ /* LPC order, Frame size, Quantization rate, Bits per frame, */ /* Error correction */ /* Subroutine SETUP is the only place where order is assigned a value, */ /* and that value is 10. It could increase efficiency 1% or so to */ /* declare order as a constant (i.e., a Fortran PARAMETER) instead of as */ /* a variable in a COMMON block, since it is used in many places in the */ /* core of the coding and decoding routines. Actually, I take that back. */ /* At least when compiling with f2c, the upper bound of DO loops is */ /* stored in a local variable before the DO loop begins, and then that is */ /* compared against on each iteration. */ /* Similarly for lframe, which is given a value of MAXFRM in SETUP. */ /* Similarly for quant, which is given a value of 2400 in SETUP. quant */ /* is used in only a few places, and never in the core coding and */ /* decoding routines, so it could be eliminated entirely. */ /* nbits is similar to quant, and is given a value of 54 in SETUP. */ /* corrp is given a value of .TRUE. in SETUP, and is only used in the */ /* subroutines ENCODE and DECODE. It doesn't affect the speed of the */ /* coder significantly whether it is .TRUE. or .FALSE., or whether it is */ /* a constant or a variable, since it is only examined once per frame. */ /* Leaving it as a variable that is set to .TRUE. seems like a good */ /* idea, since it does enable some error-correction capability for */ /* unvoiced frames, with no change in the coding rate, and no noticeable */ /* quality difference in the decoded speech. */ /* integer quant, nbits */ /*< logical corrp >*/ /* *** Read/write: variables for debugging, not needed for LPC algorithm */ /* Current frame, Unstable frames, Output clip count, Max onset buffer, */ /* Debug listing detail level, Line count on listing page */ /* nframe is not needed for an embedded LPC10 at all. */ /* nunsfm is initialized to 0 in SETUP, and incremented in subroutine */ /* ERROR, which is only called from RCCHK. When LPC10 is embedded into */ /* an application, I would recommend removing the call to ERROR in RCCHK, */ /* and remove ERROR and nunsfm completely. */ /* iclip is initialized to 0 in SETUP, and incremented in entry SWRITE in */ /* sread.f. When LPC10 is embedded into an application, one might want */ /* to cause it to be incremented in a routine that takes the output of */ /* SYNTHS and sends it to an audio device. It could be optionally */ /* displayed, for those that might want to know what it is. */ /* maxosp is never initialized to 0 in SETUP, although it probably should */ /* be, and it is updated in subroutine ANALYS. I doubt that its value */ /* would be of much interest to an application in which LPC10 is */ /* embedded. */ /* listl and lincnt are not needed for an embedded LPC10 at all. */ /* integer nframe, nunsfm, iclip, maxosp, listl, lincnt */ /* common /contrl/ fsi, fso, fpi, fpo, fbi, fbo, pbin, fmsg, fdebug */ /*< common /contrl/ order, lframe >*/ /* common /contrl/ quant, nbits */ /*< common /contrl/ corrp >*/ /* common /contrl/ nframe, nunsfm, iclip, maxosp, listl, lincnt */ /*< INTEGER VOICE(2), PITCH >*/ /*< REAL RMS, RC(ORDER) >*/ /* Arguments to entry PITDEC (below) */ /*< INTEGER PTAU >*/ /* Parameters/constants */ /* Constants */ /* NF = Number of frames */ /* AF = Frame in which analysis is done */ /* OSLEN = Length of the onset buffer */ /* LTAU = Number of pitch lags */ /* SBUFL, SBUFH = Start and end index of speech buffers */ /* LBUFL, LBUFH = Start and end index of LPF speech buffer */ /* MINWIN, MAXWIN = Min and Max length of voicing (and analysis) windows */ /* PWLEN, PWINH, PWINL = Length, upper and lower limits of pitch window */ /* DVWINL, DVWINH = Default lower and upper limits of voicing window */ /*< INTEGER NF, AF, OSLEN, LTAU, SBUFL, SBUFH, LBUFL, LBUFH >*/ /*< INTEGER MINWIN, MAXWIN, PWLEN, PWINL, PWINH, DVWINL, DVWINH >*/ /*< PARAMETER (NF=4, AF=3, OSLEN=10, LTAU=60) >*/ /*< PARAMETER (SBUFL=(AF-2)*MAXFRM+1, SBUFH=NF*MAXFRM) >*/ /*< PARAMETER (LBUFL=(AF-2)*MAXFRM-MAXPIT+1, LBUFH=NF*MAXFRM) >*/ /*< PARAMETER (MINWIN=90, MAXWIN=156) >*/ /*< PARAMETER (PWLEN=MAXPIT+MAXWIN) >*/ /*< PARAMETER (PWINH=AF*MAXFRM, PWINL=PWINH-PWLEN+1) >*/ /*< PARAMETER (DVWINL=PWINH-PWLEN/2-MAXWIN/2+1) >*/ /*< PARAMETER (DVWINH=DVWINL+MAXWIN-1) >*/ /* The tables TAU and BUFLIM, and the variable PRECOEF, are not */ /* Fortran PARAMETER's, but they are initialized with DATA */ /* statements, and never modified. Thus, they need not have SAVE */ /* statements for them to keep their values from one invocation to */ /* the next. */ /*< INTEGER TAU(LTAU) >*/ /*< INTEGER BUFLIM(4) >*/ /*< REAL PRECOEF >*/ /* Local variables that need not be saved */ /*< INTEGER I, J, LANAL, HALF >*/ /*< INTEGER IPITCH, MINPTR, MAXPTR, MINTAU, MIDX >*/ /*< REAL IVRC(2), PHI(MAXORD,MAXORD), PSI(MAXORD) >*/ /*< REAL AMDF(LTAU), TEMP >*/ /*< INTEGER EWIN(2,AF) >*/ /*< REAL ABUF(MAXWIN) >*/ /* Local state */ /* Data Buffers */ /* INBUF Raw speech (with DC bias removed each frame) */ /* PEBUF Preemphasized speech */ /* LPBUF Low pass speech buffer */ /* IVBUF Inverse filtered speech */ /* OSBUF Indexes of onsets in speech buffers */ /* VWIN Voicing window indices */ /* AWIN Analysis window indices */ /* EWIN Energy window indices */ /* VOIBUF Voicing decisions on windows in VWIN */ /* RMSBUF RMS energy */ /* RCBUF Reflection Coefficients */ /* Pitch is handled separately from the above parameters. */ /* The following variables deal with pitch: */ /* MIDX Encoded initial pitch estimate for analysis frame */ /* IPITCH Initial pitch computed for frame AF (decoded from MIDX) */ /* PITCH The encoded pitch value (index into TAU) for the present */ /* frame (delayed and smoothed by Dyptrack) */ /*< LOGICAL FIRST >*/ /*< REAL INBUF(SBUFL:SBUFH), PEBUF(SBUFL:SBUFH) >*/ /*< REAL LPBUF(LBUFL:LBUFH), IVBUF(PWINL:PWINH) >*/ /*< REAL BIAS >*/ /*< INTEGER OSBUF(OSLEN), OSPTR, OBOUND(AF) >*/ /*< INTEGER VWIN(2,AF), AWIN(2,AF), VOIBUF(2,0:AF) >*/ /*< REAL RMSBUF(AF), RCBUF(MAXORD, AF) >*/ /*< REAL ZPRE >*/ /*< SAVE FIRST >*/ /*< SAVE INBUF, PEBUF >*/ /*< SAVE LPBUF, IVBUF >*/ /*< SAVE BIAS >*/ /*< SAVE OSBUF, OSPTR, OBOUND >*/ /*< SAVE VWIN, AWIN, VOIBUF >*/ /*< SAVE RMSBUF, RCBUF >*/ /*< SAVE ZPRE >*/ /*< D >*/ /* Parameter adjustments */ if (speech) { --speech; } if (voice) { --voice; } if (rc) { --rc; } /* Function Body */ switch(n__) { case 1: goto L_pitdec; case 2: goto L_initanalys; } /*< DATA BUFLIM / SBUFL, SBUFH, LBUFL, LBUFH / >*/ /*< DATA PRECOEF /.9375/ >*/ /*< DATA FIRST /.TRUE./ >*/ /* IF(LISTL.GE.3) THEN */ /* WRITE(FDEBUG,900) NFRAME */ /* 900 FORMAT(1X,//,65(2H- ),//,' ANALYSIS DATA -- FRAME',I6/) */ /* END IF */ /* Calculations are done on future frame due to requirements */ /* of the pitch tracker. Delay RMS and RC's 2 frames to give */ /* current frame parameters on return. */ /* Update all buffers */ /*< IF (FIRST) THEN >*/ if (first) { /*< CALL INITANALYS () >*/ initanalys_(); /*< FIRST = .FALSE. >*/ first = FALSE_; /*< END IF >*/ } /*< DO I = SBUFL, SBUFH-LFRAME >*/ i__1 = 720 - contrl_1.lframe; for (i__ = 181; i__ <= i__1; ++i__) { /*< INBUF(I) = INBUF(LFRAME+I) >*/ inbuf[i__ - 181] = inbuf[contrl_1.lframe + i__ - 181]; /*< PEBUF(I) = PEBUF(LFRAME+I) >*/ pebuf[i__ - 181] = pebuf[contrl_1.lframe + i__ - 181]; /*< END DO >*/ } /*< DO I = PWINL,PWINH-LFRAME >*/ i__1 = 540 - contrl_1.lframe; for (i__ = 229; i__ <= i__1; ++i__) { /*< IVBUF(I) = IVBUF(LFRAME+I) >*/ ivbuf[i__ - 229] = ivbuf[contrl_1.lframe + i__ - 229]; /*< END DO >*/ } /*< DO I = LBUFL,LBUFH-LFRAME >*/ i__1 = 720 - contrl_1.lframe; for (i__ = 25; i__ <= i__1; ++i__) { /*< LPBUF(I) = LPBUF(LFRAME+I) >*/ lpbuf[i__ - 25] = lpbuf[contrl_1.lframe + i__ - 25]; /*< END DO >*/ } /*< J=1 >*/ j = 1; /*< DO I = 1, OSPTR-1 >*/ i__1 = osptr - 1; for (i__ = 1; i__ <= i__1; ++i__) { /*< IF (OSBUF(I) .GT. LFRAME) THEN >*/ if (osbuf[i__ - 1] > contrl_1.lframe) { /*< OSBUF(J)=OSBUF(I)-LFRAME >*/ osbuf[j - 1] = osbuf[i__ - 1] - contrl_1.lframe; /*< J=J+1 >*/ ++j; /*< END IF >*/ } /*< END DO >*/ } /*< OSPTR=J >*/ osptr = j; /*< VOIBUF(1,0) = VOIBUF(1,1) >*/ voibuf[0] = voibuf[2]; /*< VOIBUF(2,0) = VOIBUF(2,1) >*/ voibuf[1] = voibuf[3]; /*< DO I = 1, AF-1 >*/ for (i__ = 1; i__ <= 2; ++i__) { /*< VWIN(1,I) = VWIN(1,I+1) - LFRAME >*/ vwin[(i__ << 1) - 2] = vwin[(i__ + 1 << 1) - 2] - contrl_1.lframe; /*< VWIN(2,I) = VWIN(2,I+1) - LFRAME >*/ vwin[(i__ << 1) - 1] = vwin[(i__ + 1 << 1) - 1] - contrl_1.lframe; /*< AWIN(1,I) = AWIN(1,I+1) - LFRAME >*/ awin[(i__ << 1) - 2] = awin[(i__ + 1 << 1) - 2] - contrl_1.lframe; /*< AWIN(2,I) = AWIN(2,I+1) - LFRAME >*/ awin[(i__ << 1) - 1] = awin[(i__ + 1 << 1) - 1] - contrl_1.lframe; /* EWIN(*,J) is unused for J .NE. AF, so the following shift is */ /* unnecessary. It also causes uninitialized memory to be read. */ /*< EWIN(1,I) = EWIN(1,I+1) - LFRAME >*/ /*< EWIN(2,I) = EWIN(2,I+1) - LFRAME >*/ /*< OBOUND(I) = OBOUND(I+1) >*/ obound[i__ - 1] = obound[i__]; /*< VOIBUF(1,I) = VOIBUF(1,I+1) >*/ voibuf[i__ * 2] = voibuf[(i__ + 1) * 2]; /*< VOIBUF(2,I) = VOIBUF(2,I+1) >*/ voibuf[(i__ << 1) + 1] = voibuf[(i__ + 1 << 1) + 1]; /*< RMSBUF(I) = RMSBUF(I+1) >*/ rmsbuf[i__ - 1] = rmsbuf[i__]; /*< DO J = 1, ORDER >*/ i__1 = contrl_1.order; for (j = 1; j <= i__1; ++j) { /*< RCBUF(J,I) = RCBUF(J,I+1) >*/ rcbuf[j + i__ * 10 - 11] = rcbuf[j + (i__ + 1) * 10 - 11]; /*< END DO >*/ } /*< END DO >*/ } /* Copy input speech, scale to sign+12 bit integers */ /* Remove long term DC bias. */ /* If the average value in the frame was over 1/4096 (after current */ /* BIAS correction), then subtract that much more from samples in */ /* next frame. If the average value in the frame was under */ /* -1/4096, add 1/4096 more to samples in next frame. In all other */ /* cases, keep BIAS the same. */ /*< TEMP = 0 >*/ temp = 0.f; /*< DO I = 1,LFRAME >*/ i__1 = contrl_1.lframe; for (i__ = 1; i__ <= i__1; ++i__) { /*< INBUF(SBUFH-LFRAME+I) = SPEECH(I)*4096. - BIAS >*/ inbuf[720 - contrl_1.lframe + i__ - 181] = speech[i__] * 4096.f - bias; /*< TEMP = TEMP + INBUF(SBUFH-LFRAME+I) >*/ temp += inbuf[720 - contrl_1.lframe + i__ - 181]; /*< END DO >*/ } /*< IF( TEMP.GT. LFRAME ) BIAS = BIAS + 1 >*/ if (temp > (real) contrl_1.lframe) { bias += 1; } /*< IF( TEMP.LT.-LFRAME ) BIAS = BIAS - 1 >*/ if (temp < (real) (-contrl_1.lframe)) { bias += -1; } /* Place Voicing Window */ /*< I = SBUFH + 1 - LFRAME >*/ i__ = 721 - contrl_1.lframe; /*< CALL PREEMP(INBUF(I), PEBUF(I), LFRAME, PRECOEF, ZPRE) >*/ preemp_(&inbuf[i__ - 181], &pebuf[i__ - 181], &contrl_1.lframe, &precoef, &zpre); /*< C >*/ onset_(pebuf, osbuf, &osptr, &c__10, &c__181, &c__720, &contrl_1.lframe); /* MAXOSP is just a debugging variable. */ /* MAXOSP = MAX( MAXOSP, OSPTR ) */ /*< C >*/ placev_(osbuf, &osptr, &c__10, &obound[2], vwin, &c__3, &contrl_1.lframe, &c__90, &c__156, &c__307, &c__462); /* The Pitch Extraction algorithm estimates the pitch for a frame */ /* of speech by locating the minimum of the average magnitude difference */ /* function (AMDF). The AMDF operates on low-pass, inverse filtered */ /* speech. (The low-pass filter is an 800 Hz, 19 tap, equiripple, FIR */ /* filter and the inverse filter is a 2nd-order LPC filter.) The pitch */ /* estimate is later refined by dynamic programming (DYPTRK). However, */ /* since some of DYPTRK's parameters are a function of the voicing */ /* decisions, a voicing decision must precede the final pitch estimation. */ /* See subroutines LPFILT, IVFILT, and TBDM. */ /* LPFILT reads indices LBUFH-LFRAME-29 = 511 through LBUFH = 720 */ /* of INBUF, and writes indices LBUFH+1-LFRAME = 541 through LBUFH */ /* = 720 of LPBUF. */ /*< C >*/ lpfilt_(&inbuf[228], &lpbuf[384], &c__312, &contrl_1.lframe); /* IVFILT reads indices (PWINH-LFRAME-7) = 353 through PWINH = 540 */ /* of LPBUF, and writes indices (PWINH-LFRAME+1) = 361 through */ /* PWINH = 540 of IVBUF. */ /*< CALL IVFILT( LPBUF(PWINL), IVBUF(PWINL), PWLEN, LFRAME, IVRC ) >*/ ivfilt_(&lpbuf[204], ivbuf, &c__312, &contrl_1.lframe, ivrc); /* TBDM reads indices PWINL = 229 through */ /* (PWINL-1)+MAXWIN+(TAU(LTAU)-TAU(1))/2 = 452 of IVBUF, and writes */ /* indices 1 through LTAU = 60 of AMDF. */ /*< C >*/ tbdm_(ivbuf, &c__156, tau, &c__60, amdf, &minptr, &maxptr, &mintau); /* Voicing decisions are made for each half frame of input speech. */ /* An initial voicing classification is made for each half of the */ /* analysis frame, and the voicing decisions for the present frame */ /* are finalized. See subroutine VOICIN. */ /* The voicing detector (VOICIN) classifies the input signal as */ /* unvoiced (including silence) or voiced using the AMDF windowed */ /* maximum-to-minimum ratio, the zero crossing rate, energy measures, */ /* reflection coefficients, and prediction gains. */ /* The pitch and voicing rules apply smoothing and isolated */ /* corrections to the pitch and voicing estimates and, in the process, */ /* introduce two frames of delay into the corrected pitch estimates and */ /* voicing decisions. */ /*< DO HALF = 1,2 >*/ for (half = 1; half <= 2; ++half) { /*< >*/ voicin_(&vwin[4], inbuf, lpbuf, buflim, &half, &amdf[minptr - 1], & amdf[maxptr - 1], &mintau, ivrc, obound, voibuf, &c__3); /*< END DO >*/ } /* Find the minimum cost pitch decision over several frames */ /* given the current voicing decision and the AMDF array */ /*< CALL DYPTRK( AMDF, LTAU, MINPTR, VOIBUF(2,AF), PITCH, MIDX ) >*/ dyptrk_(amdf, &c__60, &minptr, &voibuf[7], pitch, &midx); /*< IPITCH = TAU(MIDX) >*/ ipitch = tau[midx - 1]; /* Place spectrum analysis and energy windows */ /*< C >*/ placea_(&ipitch, voibuf, &obound[2], &c__3, vwin, awin, ewin, & contrl_1.lframe, &c__156); /* Remove short term DC bias over the analysis window, Put result in ABUF */ /*< LANAL = AWIN(2,AF) + 1 - AWIN(1,AF) >*/ lanal = awin[5] + 1 - awin[4]; /*< CALL DCBIAS( LANAL, PEBUF(AWIN(1,AF)), ABUF ) >*/ dcbias_(&lanal, &pebuf[awin[4] - 181], abuf); /* ABUF(1:LANAL) is now defined. It is equal to */ /* PEBUF(AWIN(1,AF):AWIN(2,AF)) corrected for short term DC bias. */ /* IF ((AWIN(1,AF) .LT. SBUFL) .OR. (SBUFH .LT. AWIN(2,AF))) THEN */ /* WRITE (2,999) AWIN(1,AF), AWIN(2,AF), SBUFL, SBUFH */ /* 999 FORMAT(1X,'AWIN (',I4,':',I4, */ /* 1 ') goes outside of PEBUFs range (',I4,':',I4,')') */ /* STOP */ /* END IF */ /* IF (MAXWIN .LT. LANAL) THEN */ /* WRITE (2,998) LANAL, MAXWIN */ /* 998 FORMAT(1X,'LANAL (',I4, */ /* 1 ') goes outside of ABUFs range (1:',I4,')') */ /* STOP */ /* END IF */ /* Compute RMS over integer number of pitch periods within the */ /* analysis window. */ /* Note that in a hardware implementation this computation may be */ /* simplified by using diagonal elements of PHI computed by MLOAD. */ /* IF ( (EWIN(1,AF) .LT. AWIN(1,AF)) */ /* 1 .OR. (AWIN(2,AF) .LT. EWIN(2,AF))) THEN */ /* WRITE (2,997) EWIN(1,AF), EWIN(2,AF), AWIN(1,AF), AWIN(2,AF) */ /* 997 FORMAT(1X,'EWIN (',I4,':',I4, */ /* 1 ') goes outside of AWINs range (',I4,':',I4,')') */ /* STOP */ /* END IF */ /*< C >*/ i__1 = ewin[5] - ewin[4] + 1; energy_(&i__1, &abuf[ewin[4] - awin[4]], &rmsbuf[2]); /* Matrix load and invert, check RC's for stability */ /* IF (LANAL .LT. ORDER) THEN */ /* WRITE (2,996) LANAL, ORDER */ /* 996 FORMAT(1X,'MLOAD will read outside of ABUFs defined range ', */ /* 1 'of (1:LANAL=',I4,') because LANAL is less than', */ /* 1 ' ORDER=',I4) */ /* STOP */ /* END IF */ /*< CALL MLOAD( ORDER, 1, LANAL, ABUF, PHI, PSI ) >*/ mload_(&contrl_1.order, &c__1, &lanal, abuf, phi, psi); /*< CALL INVERT( ORDER, PHI, PSI, RCBUF(1,AF) ) >*/ invert_(&contrl_1.order, phi, psi, &rcbuf[20]); /*< CALL RCCHK( ORDER, RCBUF(1,AF-1), RCBUF(1,AF) ) >*/ rcchk_(&contrl_1.order, &rcbuf[10], &rcbuf[20]); /* Set return parameters */ /*< VOICE(1) = VOIBUF(1,AF-2) >*/ voice[1] = voibuf[2]; /*< VOICE(2) = VOIBUF(2,AF-2) >*/ voice[2] = voibuf[3]; /*< RMS = RMSBUF(AF-2) >*/ *rms = rmsbuf[0]; /*< DO I = 1,ORDER >*/ i__1 = contrl_1.order; for (i__ = 1; i__ <= i__1; ++i__) { /*< RC(I) = RCBUF(I,AF-2) >*/ rc[i__] = rcbuf[i__ - 1]; /*< END DO >*/ } /* Print out test data */ /* IF(LISTL.GE.3) THEN */ /* IF(LISTL.GE.4) THEN */ /* IF(LISTL.GE.6) THEN */ /* WRITE(FDEBUG,980) 'INBUF:',INBUF */ /* WRITE(FDEBUG,980) 'LPBUF:',LPBUF */ /* WRITE(FDEBUG,980) 'IVBUF:',IVBUF */ /* WRITE(FDEBUG,980) 'PEBUF:',PEBUF */ /* END IF */ /* WRITE(FDEBUG,980) 'AMDF:',AMDF */ /* END IF */ /* IF(OSPTR.GT.1) WRITE(FDEBUG,970) */ /* 1 'OSBUF Onset Locations:', (OSBUF(I),I=1,OSPTR-1) */ /* IF(LISTL.GE.4) THEN */ /* WRITE(FDEBUG,980) 'PHI Matrix Values:', */ /* 1 ((PHI(I,J),J=1,ORDER),I=1,ORDER) */ /* WRITE(FDEBUG,980) 'PSI Vector Values:',PSI */ /* 970 FORMAT(1X,A,100(/1X,20I6)) */ /* 980 FORMAT(1X,A,100(/1X,10F12.1)) */ /* END IF */ /* WRITE(FDEBUG,990) */ /* 990 FORMAT(' FRAME AWIN EWIN BIAS',T34, */ /* 1 'V/UV Pitch RMS',T54, */ /* 1 'RC1 RC2 RC3 RC4 RC5 ', */ /* 1 'RC6 RC7 RC8 RC9 RC10') */ /* WRITE(FDEBUG,992) NFRAME, AWIN(1,AF), AWIN(2,AF), */ /* 1 EWIN(1,AF), EWIN(2,AF), BIAS, */ /* 1 VOIBUF(2,AF), IPITCH, RMSBUF(AF), (RCBUF(I,AF),I=1,ORDER) */ /* 992 FORMAT(1X,I6,2I4,1X,2I4,F6.1,T34,I2,I8,F6.0,T50,10F8.3) */ /* END IF */ /*< RETURN >*/ return 0; /* ******************************************************************* */ /* Decode pitch index (PITCH) to pitch period (PTAU) */ /* ******************************************************************* */ /*< ENTRY PITDEC( PITCH, PTAU ) >*/ L_pitdec: /*< IF (PITCH .GE. 1 .AND. PITCH .LE. LTAU) THEN >*/ if (*pitch >= 1 && *pitch <= 60) { /*< PTAU = TAU(PITCH) >*/ *ptau = tau[*pitch - 1]; /*< ELSE >*/ } else { /*< PTAU = 0 >*/ *ptau = 0; /*< END IF >*/ } /*< RETURN >*/ return 0; /*< ENTRY INITANALYS () >*/ L_initanalys: /* Set FIRST to .FALSE., so that just in case someone calls */ /* INITANALYS before calling ANALYS for the first time, then this */ /* entry will not be called by ANALYS itself. */ /*< FIRST = .FALSE. >*/ first = FALSE_; /* Initialize local state in all subroutines that have local state. */ /*< CALL INITONSET () >*/ initonset_(); /*< CALL INITVOICIN () >*/ initvoicin_(); /*< CALL INITDYPTRK () >*/ initdyptrk_(); /* INBUF, PEBUF, LPBUF, and IVBUF were not initialized in the */ /* original code. Initial values of 0 appear to be safe. */ /*< DO I = SBUFL,SBUFH >*/ for (i__ = 181; i__ <= 720; ++i__) { /*< INBUF(I) = 0. >*/ inbuf[i__ - 181] = 0.f; /*< PEBUF(I) = 0. >*/ pebuf[i__ - 181] = 0.f; /*< END DO >*/ } /*< DO I = LBUFL,LBUFH >*/ for (i__ = 25; i__ <= 720; ++i__) { /*< LPBUF(I) = 0. >*/ lpbuf[i__ - 25] = 0.f; /*< END DO >*/ } /*< DO I = PWINL,PWINH >*/ for (i__ = 229; i__ <= 540; ++i__) { /*< IVBUF(I) = 0. >*/ ivbuf[i__ - 229] = 0.f; /*< END DO >*/ } /*< BIAS = 0 >*/ bias = 0.f; /* Although OSBUF is saved from one invocation to the next, it need */ /* not have an initial defined value, because OSPTR is initialized */ /* to 1, and only entries 1 through OSPTR-1 may be read without */ /* writing them first. */ /*< OSPTR = 1 >*/ osptr = 1; /*< DO I = 1,AF >*/ for (i__ = 1; i__ <= 3; ++i__) { /*< OBOUND(I) = 0 >*/ obound[i__ - 1] = 0; /*< END DO >*/ } /* Should other indices of VWIN and AWIN be initialized, or is this */ /* unnecessary? If unnecessary, why? */ /*< VWIN(1,AF) = DVWINL >*/ vwin[4] = 307; /*< VWIN(2,AF) = DVWINH >*/ vwin[5] = 462; /*< AWIN(1,AF) = DVWINL >*/ awin[4] = 307; /*< AWIN(2,AF) = DVWINH >*/ awin[5] = 462; /* VOIBUF was not initialized in the original code. I believe */ /* initializing it to all 0's is a safe decision, given that its */ /* contents are always 0/1 truth values representing the decision */ /* of whether a half-frame was voiced or not. */ /*< DO I = 1,2 >*/ for (i__ = 1; i__ <= 2; ++i__) { /*< DO J = 0,AF >*/ for (j = 0; j <= 3; ++j) { /*< VOIBUF(I,J) = 0 >*/ voibuf[i__ + (j << 1) - 1] = 0; /*< END DO >*/ } /*< END DO >*/ } /* RMSBUF and RCBUF were also not initialized in the original code. */ /* Again, initial values of 0 appear to be safe. */ /*< DO I = 1,AF >*/ for (i__ = 1; i__ <= 3; ++i__) { /*< RMSBUF(I) = 0. >*/ rmsbuf[i__ - 1] = 0.f; /*< DO J = 1,ORDER >*/ i__1 = contrl_1.order; for (j = 1; j <= i__1; ++j) { /*< RCBUF(J,I) = 0. >*/ rcbuf[j + i__ * 10 - 11] = 0.f; /*< END DO >*/ } /*< END DO >*/ } /*< ZPRE = 0. >*/ zpre = 0.f; /*< RETURN >*/ return 0; /*< END >*/ } /* analys_ */