int ib_cache_setup_one(struct ib_device *device) { int p; int err; rwlock_init(&device->cache.lock); device->cache.ports = kcalloc(rdma_end_port(device) - rdma_start_port(device) + 1, sizeof(*device->cache.ports), GFP_KERNEL); if (!device->cache.ports) return -ENOMEM; err = gid_table_setup_one(device); if (err) { kfree(device->cache.ports); device->cache.ports = NULL; return err; } for (p = 0; p <= rdma_end_port(device) - rdma_start_port(device); ++p) ib_cache_update(device, p + rdma_start_port(device), true); INIT_IB_EVENT_HANDLER(&device->cache.event_handler, device, ib_cache_event); ib_register_event_handler(&device->cache.event_handler); return 0; }
int ib_find_exact_cached_pkey(struct ib_device *device, u8 port_num, u16 pkey, u16 *index) { struct ib_pkey_cache *cache; unsigned long flags; int i; int ret = -ENOENT; if (port_num < rdma_start_port(device) || port_num > rdma_end_port(device)) return -EINVAL; read_lock_irqsave(&device->cache.lock, flags); cache = device->cache.pkey_cache[port_num - rdma_start_port(device)]; *index = -1; for (i = 0; i < cache->table_len; ++i) if (cache->table[i] == pkey) { *index = i; ret = 0; break; } read_unlock_irqrestore(&device->cache.lock, flags); return ret; }
int ib_find_cached_gid_by_port(struct ib_device *ib_dev, const union ib_gid *gid, u8 port, struct net_device *ndev, u16 *index) { int local_index; struct ib_gid_table **ports_table = ib_dev->cache.gid_cache; struct ib_gid_table *table; unsigned long mask = GID_ATTR_FIND_MASK_GID; struct ib_gid_attr val = {.ndev = ndev}; if (port < rdma_start_port(ib_dev) || port > rdma_end_port(ib_dev)) return -ENOENT; table = ports_table[port - rdma_start_port(ib_dev)]; if (ndev) mask |= GID_ATTR_FIND_MASK_NETDEV; local_index = find_gid(table, gid, &val, false, mask); if (local_index >= 0) { if (index) *index = local_index; return 0; } return -ENOENT; }
int ib_get_cached_pkey(struct ib_device *device, u8 port_num, int index, u16 *pkey) { struct ib_pkey_cache *cache; unsigned long flags; int ret = 0; if (port_num < rdma_start_port(device) || port_num > rdma_end_port(device)) return -EINVAL; read_lock_irqsave(&device->cache.lock, flags); cache = device->cache.pkey_cache[port_num - rdma_start_port(device)]; if (index < 0 || index >= cache->table_len) ret = -EINVAL; else *pkey = cache->table[index]; read_unlock_irqrestore(&device->cache.lock, flags); return ret; }
/** * ib_find_gid_by_filter - Returns the GID table index where a specified * GID value occurs * @device: The device to query. * @gid: The GID value to search for. * @port_num: The port number of the device where the GID value could be * searched. * @filter: The filter function is executed on any matching GID in the table. * If the filter function returns true, the corresponding index is returned, * otherwise, we continue searching the GID table. It's guaranteed that * while filter is executed, ndev field is valid and the structure won't * change. filter is executed in an atomic context. filter must not be NULL. * @index: The index into the cached GID table where the GID was found. This * parameter may be NULL. * * ib_cache_gid_find_by_filter() searches for the specified GID value * of which the filter function returns true in the port's GID table. * This function is only supported on RoCE ports. * */ static int ib_cache_gid_find_by_filter(struct ib_device *ib_dev, const union ib_gid *gid, u8 port, bool (*filter)(const union ib_gid *, const struct ib_gid_attr *, void *), void *context, u16 *index) { struct ib_gid_table **ports_table = ib_dev->cache.gid_cache; struct ib_gid_table *table; unsigned int i; bool found = false; if (!ports_table) return -EOPNOTSUPP; if (port < rdma_start_port(ib_dev) || port > rdma_end_port(ib_dev) || !rdma_protocol_roce(ib_dev, port)) return -EPROTONOSUPPORT; table = ports_table[port - rdma_start_port(ib_dev)]; for (i = 0; i < table->sz; i++) { struct ib_gid_attr attr; unsigned long flags; read_lock_irqsave(&table->data_vec[i].lock, flags); if (table->data_vec[i].props & GID_TABLE_ENTRY_INVALID) goto next; if (memcmp(gid, &table->data_vec[i].gid, sizeof(*gid))) goto next; memcpy(&attr, &table->data_vec[i].attr, sizeof(attr)); if (filter(gid, &attr, context)) found = true; next: read_unlock_irqrestore(&table->data_vec[i].lock, flags); if (found) break; } if (!found) return -ENOENT; if (index) *index = i; return 0; }
static int _ib_cache_gid_table_find(struct ib_device *ib_dev, const union ib_gid *gid, const struct ib_gid_attr *val, unsigned long mask, u8 *port, u16 *index) { struct ib_gid_table **ports_table = ib_dev->cache.gid_cache; struct ib_gid_table *table; u8 p; int local_index; for (p = 0; p < ib_dev->phys_port_cnt; p++) { table = ports_table[p]; local_index = find_gid(table, gid, val, false, mask); if (local_index >= 0) { if (index) *index = local_index; if (port) *port = p + rdma_start_port(ib_dev); return 0; } } return -ENOENT; }
static int __ib_cache_gid_get(struct ib_device *ib_dev, u8 port, int index, union ib_gid *gid, struct ib_gid_attr *attr) { struct ib_gid_table **ports_table = ib_dev->cache.gid_cache; struct ib_gid_table *table; unsigned long flags; table = ports_table[port - rdma_start_port(ib_dev)]; if (index < 0 || index >= table->sz) return -EINVAL; read_lock_irqsave(&table->data_vec[index].lock, flags); if (table->data_vec[index].props & GID_TABLE_ENTRY_INVALID) { read_unlock_irqrestore(&table->data_vec[index].lock, flags); return -EAGAIN; } memcpy(gid, &table->data_vec[index].gid, sizeof(*gid)); if (attr) { memcpy(attr, &table->data_vec[index].attr, sizeof(*attr)); if (attr->ndev) dev_hold(attr->ndev); } read_unlock_irqrestore(&table->data_vec[index].lock, flags); return 0; }
int ib_get_cached_lmc(struct ib_device *device, u8 port_num, u8 *lmc) { unsigned long flags; int ret = 0; if (port_num < rdma_start_port(device) || port_num > rdma_end_port(device)) return -EINVAL; read_lock_irqsave(&device->cache.lock, flags); *lmc = device->cache.lmc_cache[port_num - rdma_start_port(device)]; read_unlock_irqrestore(&device->cache.lock, flags); return ret; }
static int _gid_table_setup_one(struct ib_device *ib_dev) { u8 port; struct ib_gid_table **table; int err = 0; table = kcalloc(ib_dev->phys_port_cnt, sizeof(*table), GFP_KERNEL); if (!table) { pr_warn("failed to allocate ib gid cache for %s\n", ib_dev->name); return -ENOMEM; } for (port = 0; port < ib_dev->phys_port_cnt; port++) { u8 rdma_port = port + rdma_start_port(ib_dev); table[port] = alloc_gid_table( ib_dev->port_immutable[rdma_port].gid_tbl_len); if (!table[port]) { err = -ENOMEM; goto rollback_table_setup; } err = gid_table_reserve_default(ib_dev, port + rdma_start_port(ib_dev), table[port]); if (err) goto rollback_table_setup; } ib_dev->cache.gid_cache = table; return 0; rollback_table_setup: for (port = 0; port < ib_dev->phys_port_cnt; port++) { cleanup_gid_table_port(ib_dev, port + rdma_start_port(ib_dev), table[port]); release_gid_table(table[port]); } kfree(table); return err; }
static void gid_table_cleanup_one(struct ib_device *ib_dev) { struct ib_gid_table *table; u8 port; for (port = 0; port < ib_dev->phys_port_cnt; port++) { table = ib_dev->cache.ports[port].gid; cleanup_gid_table_port(ib_dev, port + rdma_start_port(ib_dev), table); } }
int ib_get_cached_gid(struct ib_device *device, u8 port_num, int index, union ib_gid *gid, struct ib_gid_attr *gid_attr) { if (port_num < rdma_start_port(device) || port_num > rdma_end_port(device)) return -EINVAL; return __ib_cache_gid_get(device, port_num, index, gid, gid_attr); }
int ib_cache_setup_one(struct ib_device *device) { int p; int err; rwlock_init(&device->cache.lock); device->cache.pkey_cache = kzalloc(sizeof *device->cache.pkey_cache * (rdma_end_port(device) - rdma_start_port(device) + 1), GFP_KERNEL); device->cache.lmc_cache = kmalloc(sizeof *device->cache.lmc_cache * (rdma_end_port(device) - rdma_start_port(device) + 1), GFP_KERNEL); if (!device->cache.pkey_cache || !device->cache.lmc_cache) { printk(KERN_WARNING "Couldn't allocate cache " "for %s\n", device->name); return -ENOMEM; } err = gid_table_setup_one(device); if (err) /* Allocated memory will be cleaned in the release function */ return err; for (p = 0; p <= rdma_end_port(device) - rdma_start_port(device); ++p) ib_cache_update(device, p + rdma_start_port(device)); INIT_IB_EVENT_HANDLER(&device->cache.event_handler, device, ib_cache_event); err = ib_register_event_handler(&device->cache.event_handler); if (err) goto err; return 0; err: gid_table_cleanup_one(device); return err; }
static void gid_table_cleanup_one(struct ib_device *ib_dev) { struct ib_gid_table **table = ib_dev->cache.gid_cache; u8 port; if (!table) return; for (port = 0; port < ib_dev->phys_port_cnt; port++) cleanup_gid_table_port(ib_dev, port + rdma_start_port(ib_dev), table[port]); }
int ib_find_cached_pkey(struct ib_device *device, u8 port_num, u16 pkey, u16 *index) { struct ib_pkey_cache *cache; unsigned long flags; int i; int ret = -ENOENT; int partial_ix = -1; if (port_num < rdma_start_port(device) || port_num > rdma_end_port(device)) return -EINVAL; read_lock_irqsave(&device->cache.lock, flags); cache = device->cache.pkey_cache[port_num - rdma_start_port(device)]; *index = -1; for (i = 0; i < cache->table_len; ++i) if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) { if (cache->table[i] & 0x8000) { *index = i; ret = 0; break; } else partial_ix = i; } if (ret && partial_ix >= 0) { *index = partial_ix; ret = 0; } read_unlock_irqrestore(&device->cache.lock, flags); return ret; }
void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port, struct net_device *ndev, enum ib_cache_gid_default_mode mode) { struct ib_gid_table **ports_table = ib_dev->cache.gid_cache; union ib_gid gid; struct ib_gid_attr gid_attr; struct ib_gid_table *table; int ix; union ib_gid current_gid; struct ib_gid_attr current_gid_attr = {}; table = ports_table[port - rdma_start_port(ib_dev)]; make_default_gid(ndev, &gid); memset(&gid_attr, 0, sizeof(gid_attr)); gid_attr.ndev = ndev; mutex_lock(&table->lock); ix = find_gid(table, NULL, NULL, true, GID_ATTR_FIND_MASK_DEFAULT); /* Coudn't find default GID location */ WARN_ON(ix < 0); if (!__ib_cache_gid_get(ib_dev, port, ix, ¤t_gid, ¤t_gid_attr) && mode == IB_CACHE_GID_DEFAULT_MODE_SET && !memcmp(&gid, ¤t_gid, sizeof(gid)) && !memcmp(&gid_attr, ¤t_gid_attr, sizeof(gid_attr))) goto unlock; if ((memcmp(¤t_gid, &zgid, sizeof(current_gid)) || memcmp(¤t_gid_attr, &zattr, sizeof(current_gid_attr))) && del_gid(ib_dev, port, table, ix, true)) { pr_warn("ib_cache_gid: can't delete index %d for default gid %pI6\n", ix, gid.raw); goto unlock; } if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) if (add_gid(ib_dev, port, table, ix, &gid, &gid_attr, true)) pr_warn("ib_cache_gid: unable to add default gid %pI6\n", gid.raw); unlock: if (current_gid_attr.ndev) dev_put(current_gid_attr.ndev); mutex_unlock(&table->lock); }
int ib_cache_gid_add(struct ib_device *ib_dev, u8 port, union ib_gid *gid, struct ib_gid_attr *attr) { struct ib_gid_table **ports_table = ib_dev->cache.gid_cache; struct ib_gid_table *table; int ix; int ret = 0; struct net_device *idev; table = ports_table[port - rdma_start_port(ib_dev)]; if (!memcmp(gid, &zgid, sizeof(*gid))) return -EINVAL; if (ib_dev->get_netdev) { idev = ib_dev->get_netdev(ib_dev, port); if (idev && attr->ndev != idev) { union ib_gid default_gid; /* Adding default GIDs in not permitted */ make_default_gid(idev, &default_gid); if (!memcmp(gid, &default_gid, sizeof(*gid))) { dev_put(idev); return -EPERM; } } if (idev) dev_put(idev); } mutex_lock(&table->lock); ix = find_gid(table, gid, attr, false, GID_ATTR_FIND_MASK_GID | GID_ATTR_FIND_MASK_NETDEV); if (ix >= 0) goto out_unlock; ix = find_gid(table, &zgid, NULL, false, GID_ATTR_FIND_MASK_GID | GID_ATTR_FIND_MASK_DEFAULT); if (ix < 0) { ret = -ENOSPC; goto out_unlock; } add_gid(ib_dev, port, table, ix, gid, attr, false); out_unlock: mutex_unlock(&table->lock); return ret; }
void ib_cache_release_one(struct ib_device *device) { int p; /* * The release function frees all the cache elements. * This function should be called as part of freeing * all the device's resources when the cache could no * longer be accessed. */ for (p = 0; p <= rdma_end_port(device) - rdma_start_port(device); ++p) kfree(device->cache.ports[p].pkey); gid_table_release_one(device); kfree(device->cache.ports); }
int ib_get_cached_lmc(struct ib_device *device, u8 port_num, u8 *lmc) { unsigned long flags; int ret = 0; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; read_lock_irqsave(&device->cache.lock, flags); *lmc = device->cache.ports[port_num - rdma_start_port(device)].lmc; read_unlock_irqrestore(&device->cache.lock, flags); return ret; }
int ib_get_cached_subnet_prefix(struct ib_device *device, u8 port_num, u64 *sn_pfx) { unsigned long flags; int p; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; p = port_num - rdma_start_port(device); read_lock_irqsave(&device->cache.lock, flags); *sn_pfx = device->cache.ports[p].subnet_prefix; read_unlock_irqrestore(&device->cache.lock, flags); return 0; }
int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port, struct net_device *ndev) { struct ib_gid_table **ports_table = ib_dev->cache.gid_cache; struct ib_gid_table *table; int ix; table = ports_table[port - rdma_start_port(ib_dev)]; mutex_lock(&table->lock); for (ix = 0; ix < table->sz; ix++) if (table->data_vec[ix].attr.ndev == ndev) del_gid(ib_dev, port, table, ix, false); mutex_unlock(&table->lock); return 0; }
static int _gid_table_setup_one(struct ib_device *ib_dev) { u8 port; struct ib_gid_table *table; for (port = 0; port < ib_dev->phys_port_cnt; port++) { u8 rdma_port = port + rdma_start_port(ib_dev); table = alloc_gid_table( ib_dev->port_immutable[rdma_port].gid_tbl_len); if (!table) goto rollback_table_setup; gid_table_reserve_default(ib_dev, rdma_port, table); ib_dev->cache.ports[port].gid = table; } return 0; rollback_table_setup: gid_table_release_one(ib_dev); return -ENOMEM; }
int ib_cache_gid_del(struct ib_device *ib_dev, u8 port, union ib_gid *gid, struct ib_gid_attr *attr) { struct ib_gid_table **ports_table = ib_dev->cache.gid_cache; struct ib_gid_table *table; int ix; table = ports_table[port - rdma_start_port(ib_dev)]; mutex_lock(&table->lock); ix = find_gid(table, gid, attr, false, GID_ATTR_FIND_MASK_GID | GID_ATTR_FIND_MASK_NETDEV | GID_ATTR_FIND_MASK_DEFAULT); if (ix < 0) goto out_unlock; del_gid(ib_dev, port, table, ix, false); out_unlock: mutex_unlock(&table->lock); return 0; }
static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port) { return device->cache.ports[port - rdma_start_port(device)].gid; }
static void ib_cache_update(struct ib_device *device, u8 port, bool enforce_security) { struct ib_port_attr *tprops = NULL; struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache; int i; int ret; if (!rdma_is_port_valid(device, port)) return; tprops = kmalloc(sizeof *tprops, GFP_KERNEL); if (!tprops) return; ret = ib_query_port(device, port, tprops); if (ret) { dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret); goto err; } if (!rdma_protocol_roce(device, port)) { ret = config_non_roce_gid_cache(device, port, tprops->gid_tbl_len); if (ret) goto err; } pkey_cache = kmalloc(struct_size(pkey_cache, table, tprops->pkey_tbl_len), GFP_KERNEL); if (!pkey_cache) goto err; pkey_cache->table_len = tprops->pkey_tbl_len; for (i = 0; i < pkey_cache->table_len; ++i) { ret = ib_query_pkey(device, port, i, pkey_cache->table + i); if (ret) { dev_warn(&device->dev, "ib_query_pkey failed (%d) for index %d\n", ret, i); goto err; } } write_lock_irq(&device->cache.lock); old_pkey_cache = device->cache.ports[port - rdma_start_port(device)].pkey; device->cache.ports[port - rdma_start_port(device)].pkey = pkey_cache; device->cache.ports[port - rdma_start_port(device)].lmc = tprops->lmc; device->cache.ports[port - rdma_start_port(device)].port_state = tprops->state; device->cache.ports[port - rdma_start_port(device)].subnet_prefix = tprops->subnet_prefix; write_unlock_irq(&device->cache.lock); if (enforce_security) ib_security_cache_change(device, port, tprops->subnet_prefix); kfree(old_pkey_cache); kfree(tprops); return; err: kfree(pkey_cache); kfree(tprops); }
static void ib_cache_update(struct ib_device *device, u8 port) { struct ib_port_attr *tprops = NULL; struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache; struct ib_gid_cache { int table_len; union ib_gid table[0]; } *gid_cache = NULL; int i; int ret; struct ib_gid_table *table; struct ib_gid_table **ports_table = device->cache.gid_cache; bool use_roce_gid_table = rdma_cap_roce_gid_table(device, port); if (port < rdma_start_port(device) || port > rdma_end_port(device)) return; table = ports_table[port - rdma_start_port(device)]; tprops = kmalloc(sizeof *tprops, GFP_KERNEL); if (!tprops) return; ret = ib_query_port(device, port, tprops); if (ret) { printk(KERN_WARNING "ib_query_port failed (%d) for %s\n", ret, device->name); goto err; } pkey_cache = kmalloc(sizeof *pkey_cache + tprops->pkey_tbl_len * sizeof *pkey_cache->table, GFP_KERNEL); if (!pkey_cache) goto err; pkey_cache->table_len = tprops->pkey_tbl_len; if (!use_roce_gid_table) { gid_cache = kmalloc(sizeof(*gid_cache) + tprops->gid_tbl_len * sizeof(*gid_cache->table), GFP_KERNEL); if (!gid_cache) goto err; gid_cache->table_len = tprops->gid_tbl_len; } for (i = 0; i < pkey_cache->table_len; ++i) { ret = ib_query_pkey(device, port, i, pkey_cache->table + i); if (ret) { printk(KERN_WARNING "ib_query_pkey failed (%d) for %s (index %d)\n", ret, device->name, i); goto err; } } if (!use_roce_gid_table) { for (i = 0; i < gid_cache->table_len; ++i) { ret = ib_query_gid(device, port, i, gid_cache->table + i, NULL); if (ret) { printk(KERN_WARNING "ib_query_gid failed (%d) for %s (index %d)\n", ret, device->name, i); goto err; } } } write_lock_irq(&device->cache.lock); old_pkey_cache = device->cache.pkey_cache[port - rdma_start_port(device)]; device->cache.pkey_cache[port - rdma_start_port(device)] = pkey_cache; if (!use_roce_gid_table) { for (i = 0; i < gid_cache->table_len; i++) { modify_gid(device, port, table, i, gid_cache->table + i, &zattr, false); } } device->cache.lmc_cache[port - rdma_start_port(device)] = tprops->lmc; write_unlock_irq(&device->cache.lock); kfree(gid_cache); kfree(old_pkey_cache); kfree(tprops); return; err: kfree(pkey_cache); kfree(gid_cache); kfree(tprops); }