static void __init msp_smtc_smp_setup(void) { /* * we won't get the definitive value until * we've run smtc_prepare_cpus later, but */ if (read_c0_config3() & (1 << 2)) smp_num_siblings = smtc_build_cpu_map(0); }
/* * Platform SMP pre-initialization */ static void ssmtc_prepare_cpus(unsigned int max_cpus) { /* * As noted above, we can assume a single CPU for now * but it may be multithreaded. */ if (read_c0_config3() & (1 << 2)) { mipsmt_prepare_cpus(); } }
phys_t __mips_cm_phys_base(void) { u32 config3 = read_c0_config3(); u32 cmgcr; /* Check the CMGCRBase register is implemented */ if (!(config3 & MIPS_CONF3_CMGCR)) return 0; /* Read the address from CMGCRBase */ cmgcr = read_c0_cmgcrbase(); return (cmgcr & MIPS_CMGCRF_BASE) << (36 - 32); }
PUBLIC void Jdb_kern_info_cpu::dump_cp0_regs() { Mword val; DUMP_CP0("EBase", read_c0_ebase(), val); DUMP_INT("Ebase.CPUNum", (val & 0x3ff)); DUMP_CP0("EntryHi", read_c0_entryhi(), val); DUMP_HEX("EntryHi.ASID", (val & 0xff)); DUMP_CP0("EPC", read_c0_epc(), val); DUMP_CP0("Status", read_c0_status(), val); DUMP_CP0("Cause", read_c0_cause(), val); DUMP_CP0("PRId", read_c0_prid(), val); DUMP_CP0("HWREna", read_c0_hwrena(), val); DUMP_CP0("Config", read_c0_config(), val); if (val & MIPS_CONF_M) { DUMP_CP0("Config1", read_c0_config1(), val); if (val & MIPS_CONF_M) { DUMP_CP0("Config2", read_c0_config2(), val); if (val & MIPS_CONF_M) { DUMP_CP0("Config3", read_c0_config3(), val); if (val & MIPS_CONF3_ULRI) DUMP_CP0("UserLocal", read_c0_userlocal(), val); } } } if (cpu_has_vz) DUMP_CP0("GuestCtl0", read_c0_guestctl0(), val); if (cpu_has_guestctl0ext) DUMP_CP0("GuestCtl0Ext", read_c0_guestctl0ext(), val); if (cpu_has_vz) DUMP_CP0("GTOffset", read_c0_gtoffset(), val); if (cpu_has_guestctl1) { DUMP_CP0("GuestCtl1", read_c0_guestctl1(), val); DUMP_HEX("GuestCtl1.ID", (val & GUESTCTL1_ID)); } if (cpu_has_guestctl2) { DUMP_CP0("GuestCtl2", read_c0_guestctl2(), val); DUMP_HEX("GuestCtl2.VIP", (val & GUESTCTL2_VIP)); } }
void __init plat_prepare_cpus(unsigned int max_cpus) { if (read_c0_config3() & (1<<2)) mipsmt_prepare_cpus(); }
void plat_smp_setup(void) { if (read_c0_config3() & (1<<2)) mipsmt_build_cpu_map(0); }
static void __init msp_smtc_smp_setup(void) { if (read_c0_config3() & (1 << 2)) smp_num_siblings = smtc_build_cpu_map(0); }
static int show_cpuinfo(struct seq_file *m, void *v) { struct proc_cpuinfo_notifier_args proc_cpuinfo_notifier_args; unsigned long n = (unsigned long) v - 1; unsigned int version = cpu_data[n].processor_id; unsigned int fp_vers = cpu_data[n].fpu_id; char fmt [64]; int i; #ifdef CONFIG_SMP if (!cpu_online(n)) return 0; #endif /* * For the first processor also print the system type */ if (n == 0) { seq_printf(m, "system type\t\t: %s\n", get_system_type()); if (mips_get_machine_name()) seq_printf(m, "machine\t\t\t: %s\n", mips_get_machine_name()); } seq_printf(m, "processor\t\t: %ld\n", n); sprintf(fmt, "cpu model\t\t: %%s V%%d.%%d%s\n", cpu_data[n].options & MIPS_CPU_FPU ? " FPU V%d.%d" : ""); seq_printf(m, fmt, __cpu_name[n], (version >> 4) & 0x0f, version & 0x0f, (fp_vers >> 4) & 0x0f, fp_vers & 0x0f); seq_printf(m, "BogoMIPS\t\t: %u.%02u\n", cpu_data[n].udelay_val / (500000/HZ), (cpu_data[n].udelay_val / (5000/HZ)) % 100); seq_printf(m, "wait instruction\t: %s\n", cpu_wait ? "yes" : "no"); seq_printf(m, "microsecond timers\t: %s\n", cpu_has_counter ? "yes" : "no"); seq_printf(m, "tlb_entries\t\t: %d\n", cpu_data[n].tlbsize); seq_printf(m, "extra interrupt vector\t: %s\n", cpu_has_divec ? "yes" : "no"); seq_printf(m, "hardware watchpoint\t: %s", cpu_has_watch ? "yes, " : "no\n"); if (cpu_has_watch) { seq_printf(m, "count: %d, address/irw mask: [", cpu_data[n].watch_reg_count); for (i = 0; i < cpu_data[n].watch_reg_count; i++) seq_printf(m, "%s0x%04x", i ? ", " : "" , cpu_data[n].watch_reg_masks[i]); seq_printf(m, "]\n"); } seq_printf(m, "isa\t\t\t: mips1"); if (cpu_has_mips_2) seq_printf(m, "%s", " mips2"); if (cpu_has_mips_3) seq_printf(m, "%s", " mips3"); if (cpu_has_mips_4) seq_printf(m, "%s", " mips4"); if (cpu_has_mips_5) seq_printf(m, "%s", " mips5"); if (cpu_has_mips32r1) seq_printf(m, "%s", " mips32r1"); if (cpu_has_mips32r2) seq_printf(m, "%s", " mips32r2"); if (cpu_has_mips64r1) seq_printf(m, "%s", " mips64r1"); if (cpu_has_mips64r2) seq_printf(m, "%s", " mips64r2"); seq_printf(m, "\n"); seq_printf(m, "ASEs implemented\t:"); if (cpu_has_mips16) seq_printf(m, "%s", " mips16"); if (cpu_has_mdmx) seq_printf(m, "%s", " mdmx"); if (cpu_has_mips3d) seq_printf(m, "%s", " mips3d"); if (cpu_has_smartmips) seq_printf(m, "%s", " smartmips"); if (cpu_has_dsp) seq_printf(m, "%s", " dsp"); if (cpu_has_dsp2) seq_printf(m, "%s", " dsp2"); if (cpu_has_mipsmt) seq_printf(m, "%s", " mt"); if (cpu_has_mmips) seq_printf(m, "%s", " micromips"); if (cpu_has_vz) seq_printf(m, "%s", " vz"); if (cpu_has_msa) seq_printf(m, "%s", " msa"); if (cpu_has_eva) seq_printf(m, "%s", " eva"); seq_printf(m, "\n"); if (cpu_has_mmips) { seq_printf(m, "micromips kernel\t: %s\n", (read_c0_config3() & MIPS_CONF3_ISA_OE) ? "yes" : "no"); } seq_printf(m, "shadow register sets\t: %d\n", cpu_data[n].srsets); seq_printf(m, "kscratch registers\t: %d\n", hweight8(cpu_data[n].kscratch_mask)); seq_printf(m, "package\t\t\t: %d\n", cpu_data[n].package); seq_printf(m, "core\t\t\t: %d\n", cpu_data[n].core); sprintf(fmt, "VCE%%c exceptions\t\t: %s\n", cpu_has_vce ? "%u" : "not available"); seq_printf(m, fmt, 'D', vced_count); seq_printf(m, fmt, 'I', vcei_count); proc_cpuinfo_notifier_args.m = m; proc_cpuinfo_notifier_args.n = n; raw_notifier_call_chain(&proc_cpuinfo_chain, 0, &proc_cpuinfo_notifier_args); seq_printf(m, "\n"); return 0; }
static void __init ssmtc_smp_setup(void) { if (read_c0_config3() & (1 << 2)) mipsmt_build_cpu_map(0); }