コード例 #1
0
ファイル: lb_fas.c プロジェクト: winfinit/haproxy
/* This function is responsible for building the trees in case of fast
 * weighted least-conns. It also sets p->lbprm.wdiv to the eweight to
 * uweight ratio. Both active and backup groups are initialized.
 */
void fas_init_server_tree(struct proxy *p)
{
	struct server *srv;
	struct eb_root init_head = EB_ROOT;

	p->lbprm.set_server_status_up   = fas_set_server_status_up;
	p->lbprm.set_server_status_down = fas_set_server_status_down;
	p->lbprm.update_server_eweight  = fas_update_server_weight;
	p->lbprm.server_take_conn = fas_srv_reposition;
	p->lbprm.server_drop_conn = fas_srv_reposition;

	p->lbprm.wdiv = BE_WEIGHT_SCALE;
	for (srv = p->srv; srv; srv = srv->next) {
		srv->eweight = (srv->uweight * p->lbprm.wdiv + p->lbprm.wmult - 1) / p->lbprm.wmult;
		srv_lb_commit_status(srv);
	}

	recount_servers(p);
	update_backend_weight(p);

	p->lbprm.fas.act = init_head;
	p->lbprm.fas.bck = init_head;

	/* queue active and backup servers in two distinct groups */
	for (srv = p->srv; srv; srv = srv->next) {
		if (!srv_is_usable(srv))
			continue;
		srv->lb_tree = (srv->state & SRV_BACKUP) ? &p->lbprm.fas.bck : &p->lbprm.fas.act;
		fas_queue_srv(srv);
	}
}
コード例 #2
0
/* This function is responsible for building the weight trees in case of fast
 * weighted round-robin. It also sets p->lbprm.wdiv to the eweight to uweight
 * ratio. Both active and backup groups are initialized.
 */
void fwrr_init_server_groups(struct proxy *p)
{
	struct server *srv;
	struct eb_root init_head = EB_ROOT;

	p->lbprm.set_server_status_up   = fwrr_set_server_status_up;
	p->lbprm.set_server_status_down = fwrr_set_server_status_down;
	p->lbprm.update_server_eweight  = fwrr_update_server_weight;

	p->lbprm.wdiv = BE_WEIGHT_SCALE;
	for (srv = p->srv; srv; srv = srv->next) {
		srv->prev_eweight = srv->eweight = srv->uweight * BE_WEIGHT_SCALE;
		srv->prev_state = srv->state;
	}

	recount_servers(p);
	update_backend_weight(p);

	/* prepare the active servers group */
	p->lbprm.fwrr.act.curr_pos = p->lbprm.fwrr.act.curr_weight =
		p->lbprm.fwrr.act.next_weight = p->lbprm.tot_wact;
	p->lbprm.fwrr.act.curr = p->lbprm.fwrr.act.t0 =
		p->lbprm.fwrr.act.t1 = init_head;
	p->lbprm.fwrr.act.init = &p->lbprm.fwrr.act.t0;
	p->lbprm.fwrr.act.next = &p->lbprm.fwrr.act.t1;

	/* prepare the backup servers group */
	p->lbprm.fwrr.bck.curr_pos = p->lbprm.fwrr.bck.curr_weight =
		p->lbprm.fwrr.bck.next_weight = p->lbprm.tot_wbck;
	p->lbprm.fwrr.bck.curr = p->lbprm.fwrr.bck.t0 =
		p->lbprm.fwrr.bck.t1 = init_head;
	p->lbprm.fwrr.bck.init = &p->lbprm.fwrr.bck.t0;
	p->lbprm.fwrr.bck.next = &p->lbprm.fwrr.bck.t1;

	/* queue active and backup servers in two distinct groups */
	for (srv = p->srv; srv; srv = srv->next) {
		if (!srv_is_usable(srv->state, srv->eweight))
			continue;
		fwrr_queue_by_weight((srv->state & SRV_BACKUP) ?
				p->lbprm.fwrr.bck.init :
				p->lbprm.fwrr.act.init,
				srv);
	}
}
コード例 #3
0
/* This function updates the map according to server <srv>'s new state */
static void map_set_server_status_up(struct server *srv)
{
	struct proxy *p = srv->proxy;

	if (srv->state == srv->prev_state &&
	    srv->eweight == srv->prev_eweight)
		return;

	if (!srv_is_usable(srv->state, srv->eweight))
		goto out_update_state;

	/* FIXME: could be optimized since we know what changed */
	recount_servers(p);
	update_backend_weight(p);
	p->lbprm.map.state |= LB_MAP_RECALC;
 out_update_state:
	srv->prev_state = srv->state;
	srv->prev_eweight = srv->eweight;
}
コード例 #4
0
/* This function is responsible of building the server MAP for map-based LB
 * algorithms, allocating the map, and setting p->lbprm.wmult to the GCD of the
 * weights if applicable. It should be called only once per proxy, at config
 * time.
 */
void init_server_map(struct proxy *p)
{
	struct server *srv;
	int pgcd;
	int act, bck;

	p->lbprm.set_server_status_up   = map_set_server_status_up;
	p->lbprm.set_server_status_down = map_set_server_status_down;
	p->lbprm.update_server_eweight = NULL;
 
	if (!p->srv)
		return;

	/* We will factor the weights to reduce the table,
	 * using Euclide's largest common divisor algorithm.
	 * Since we may have zero weights, we have to first
	 * find a non-zero weight server.
	 */
	pgcd = 1;
	srv = p->srv;
	while (srv && !srv->uweight)
		srv = srv->next;

	if (srv) {
		pgcd = srv->uweight; /* note: cannot be zero */
		while (pgcd > 1 && (srv = srv->next)) {
			int w = srv->uweight;
			while (w) {
				int t = pgcd % w;
				pgcd = w;
				w = t;
			}
		}
	}

	/* It is sometimes useful to know what factor to apply
	 * to the backend's effective weight to know its real
	 * weight.
	 */
	p->lbprm.wmult = pgcd;

	act = bck = 0;
	for (srv = p->srv; srv; srv = srv->next) {
		srv->eweight = srv->uweight / pgcd;
		srv->prev_eweight = srv->eweight;
		srv->prev_state = srv->state;
		if (srv->state & SRV_BACKUP)
			bck += srv->eweight;
		else
			act += srv->eweight;
	}

	/* this is the largest map we will ever need for this servers list */
	if (act < bck)
		act = bck;

	if (!act)
		act = 1;

	p->lbprm.map.srv = (struct server **)calloc(act, sizeof(struct server *));
	/* recounts servers and their weights */
	p->lbprm.map.state = LB_MAP_RECALC;
	recount_servers(p);
	update_backend_weight(p);
	recalc_server_map(p);
}